Equivariant Topology and Derived Algebra

A conference in honor of John Greenlees’ 60*" birthday
NTNU, August 2019

Edited by
Scott Balchin
David Barnes
Magdalena Kedziorek
Markus Szymik






iii



iv



Contents

page vi
Preface vii

[l Comparing Dualities in the K (n)-local Category P. G. Goerss |

| and M. J. Hopkins| 1

[2 Axiomatic Representation Theory of Finite Groups by way of |

[ Groupoids [. Dell’Ambrogio| 39

(3 Chromatic Fracture Cubes 0. Antolin-Camarena and T. Barthel]l 100

[4 An Introduction to Algebraic Models for Rational G-Spectra |
| D. Barnes and M. Kedziorek| 119

[ Monoidal Bousfield Localizations and Algebras over Operads |
[_D. White 179

|6 Stratification and Duality for Unipotent Finite Supergroup |
| Schemes D. Benson and S. B. Iyengar and H. Krause and |
L Peutsoval 240

[7 Bi-incomplete Tambara Functors  A. J. Blumberg and M. A. Hill| 275

|8 Homotopy Limits of Model Categories, Revisited J. K. Bergner 313




Contributors

[Omar Antolin-Camarena  National Autonomous Uni. of Mexico|

[David Barnes  Queen’s University Belfast

[Tobias Barthel — Max Planck Institute for Mathematics|

[Dave Benson  Unwersity of Aberdeen)

[Julia E. Bergner  Unwversity of Virginia)

[Andrew J. Blumberg  Columbia University|

[Ivo Dell’Ambrogio  University of Lille|

[Paul G. Goerss  Northwestern University

[Michael A. Hill ~ University of California Los Angeles|

[Michael J. Hopkins — Harvard Unwversity|

[Srikanth B. Iyengar — Unwversity of Utah|

[Magdalena Kedziorek  Radboud University Nijmegen|

[Henning Krause  Unwwversitat Bielefeld|

[Julia Pevtsova  University of Washington|

[David White — Denison University




Preface

The present volume is a collection of papers whose topics connect to
several major themes from John Greenlees’ vast mathematical career.

Conference

The catalyst for this proceedings was a week-long conference held at
NTNU (Trondheim) between the 29t" of July and the 2" of August 2019.
This conference, entitled Fquivariant Topology and Derived Algebra, was
held in honor of John Greenlees’ 60" birthday. The conference consisted
of 15 invited talks, 11 contributed talks, and 13 shorter gong show style
talks, and was attended by a diverse group of over 90 international
participants. The mathematical content was enhanced by a customary
hiking excursion and a hearty conference dinner with beautiful scenic
views.

Summary of the papers

We briefly outline the papers in this proceedings, while also taking the
opportunity to connect them to the work of John Greenlees, which
at the date of writing spans more than 90 papers and four research
monographs [32] 45} 57 [73].
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Comparing Dualities in the K(n)-local Category
P. G. Goerss and M. J. Hopkins

Duality is a recurring theme through the work of John Greenlees,
the starting place is perhaps Spanier—Whitehead duality. In modern
language, the Spanier—Whitehead dual of a spectrum X is the function
spectrum DX = F(X,S), which arises from the commutative monoidal
structure of the stable homotopy category. A common calculation is to
show that the dual of the Moore spectrum for Z/2 is simply a shift of that
spectrum. A detailed examination of functional duals and Moore spectra
is the subject of Greenlees’ first published work, [93]. It is natural to
look for generalisations of (Spanier—Whitehead) duality, for example [86]
and [88] consider duality in the equivariant stable homotopy category,
while [31] and [41] look more generally at questions of duality.

The first paper of this proceedings takes up this theme and investigates
duality in the K (n)-local stable homotopy category, giving a full and
detailed proof of a result relating K (n)-local Spanier—Whitehead duality
to the more computable notion of Brown—-Comenetz duality.

Axiomatic Representation Theory of Finite Groups by way of
Groupoids
1. Dell’Ambrogio

A second major theme in the work of John Greenlees is representation
theory, and in particular, the use and study of Mackey functors. The most
immediate way Mackey functors appear in the work of Greenlees is via
equivariant cohomology theories. These are a generalisation of cohomology
theories that have G-spaces as input, and take G-Mackey functors as
coefficients. The category of Mackey functors is also a rich and interesting
category in its own right, as demonstrated in [40] 60} [73] [82] 85]. Indeed,
three papers of this volume consider Mackey functors at length.

This paper considers very general notions of Mackey functors and
gives a common conceptual framework for several different versions. It
provides relations between these different versions and connects the
theory to 2-categories and bisets.
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Chromatic Fracture Cubes
0. Antolin-Camarena and T. Barthel

A sizable portion of John Greenlees’ work is dedicated to the develop-
ment of algebraic models for rational G-spectra, where G is a compact
Lie group. Algebraic models for several groups have been established,
including all finite groups, the circle, tori of arbitrary dimension, O(2)
and SO(3) see 73], [57) [16] [11] 59, [52]. Greenlees has conjectured that
an algebraic model (satisfying a list of key properties) exists for every
compact Lie group G. A key tool for this project is an isotropy sep-
aration of the sphere spectrum in rational G-spectra. This separation
is a pullback square similar to the arithmetic pullback square or the
chromatic fracture square. As the sphere spectrum is the monoidal unit,
the isotropy separation extends to a decomposition of the (homotopy)
category of rational G-spectra into simpler building blocks. Recent work
of Greenlees abstracts this machinery to the setting of axiomatic stable
homotopy theory [1].

This paper generalises the familiar chromatic fracture square in the E(n)-
local stable homotopy category to a chromatic fracture cube. This cube
provides a combinatorial decomposition of the category into monochro-
matic pieces. The E(n)-local stable homotopy category can be recon-
structed by taking a homotopy limit of these monochromatic pieces over
a certain diagram of diagrams.

An Introduction to Algebraic Models for Rational G-Spectra
D. Barnes and M. Kedziorek

As mentioned above, a major project of Greenlees is the development
of algebraic models for rational G-spectra, where G is a compact Lie
group, see |73l 57, [16] [11 [59 [52]. The initial case is where G is a
finite group, here the algebraic model for rational G-spectra is a finite
product over conjugacy classes of subgroups H < G of graded Q[WqsH]-
modules (WgH is the Weyl group of H in G). One of the ways to prove
this result uses the idempotent splitting of rational G-Mackey functors,
see Appendix A of [73]. There are many papers building upon that
work, such as constructing an algebraic model for naive-commutative
ring G-spectra [9).

This paper gives an introduction to rational Mackey functors and
summarises the main techniques used to obtain algebraic models for
rational G-spectra, concentrating on the case of a finite group G. It
discusses the topological and algebraic parallels of using idempotents to
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split the category of rational G-spectra and rational G-Mackey functors.
It also briefly mentions the techniques to obtain algebraic models when G
is not finite.

Monoidal Bousfield Localizations and Algebras over Operads
D. White

Commutative monoidal structures appear throughout John Greenlees’
work, occurring with algebraic origins [63][72] [74], topological origins |4} 9]
and bridging the divide between algebra and topology: |13}, 36} 37 [75].
Moreover, the construction of algebraic models for rational G-spectra
often depends upon making use of (commutative) monoidal structures
in both topology and algebra. For example, the isotropy separation
arguments require that certain localizations of the sphere spectrum are
still commutative monoids. This property is not automatic, even under
suitable cofibrancy conditions.

This paper characterizes those Bousfield localizations that respect (com-
mutative) monoidal structures, and moreover proves that these localiza-
tions preserve algebras over cofibrant operads. This general machinery
can be used to retrieve many classical results which have repeatedly been
used in the work of Greenlees.

Stratification and Duality for Unipotent Finite Supergroup
Schemes
D. Benson, S. B. Iyengar, H. Krause and J. Pevtsova

A recent direction in the work of Greenlees is the study of tensor-
triangulated categories, triangulated categories with compatible symmet-
ric monoidal product and function object. A central example is the stable
homotopy category, arising from homotopy (co)fibre sequences and the
smash product and function spectrum. The equivariant stable homotopy
category for a compact Lie group G is an even richer example, see [1], [3]
and [8]. A localization of a tensor-triangulated category is (roughly speak-
ing) a method to construct a quotient category by inverting certain maps
in the original category (an idea closely related to Bousfield localisations)
and is deeply related to questions of duality, as in [33].

The purpose of this paper is to give an outline of the theory of local-
isation and duality by applying it to the stable module category of a
unipotent finite supergroup scheme.
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Bi-incomplete Tambara Functors
A. J. Blumberg and M. A. Hill

One of the recent themes in equivariant homotopy theory is to un-
derstand commutative ring objects in GG-spaces and G-spectra. This is
reflected in John Greenlees’ work through the research on commutativity
described above and more directly, as in [16] [9]. The subtlety and com-
plications of equivariant commutativity can be described using certain
class of G-operads, called N, operads. Algebras over an N, operad O
in G-topological spaces correspond, roughly speaking, to a G-spectrum
with transfers determined by O. Thus, one might think of O as gov-
erning the additive structure of a G-spectrum. Algebras over an N,
operad O in G-spectra (as opposed to G-spaces) correspond, roughly
speaking, to O-commutative ring G-spectra, that is, ring G-spectra with
norm maps on homotopy groups determined by O. Thus, in this case
one might think of O as governing the multiplicative ring structure of
a G-spectrum. The natural question is: how one can mix the various
additive and multiplicative structures?

This paper investigates the compatibility conditions between incom-
plete additive transfers and incomplete multiplicative norms in the alge-
braic setting of G-Tambara functors and provides a full description of
the possible interactions of these two classes of maps.

Homotopy Limits of Model Categories, Revisited
J. E. Bergner

A key observation of the paper [I] is that the algebraic models for
rational G-equivariant spectra can be described as homotopy limits of
diagrams of model categories. This observation developed from homotopy
pullback constructions in [11] based on isotropy separation, building
on machinery of Greenlees—Shipley [20] 21] 25]. Homotopy limits also
occur in the paper of Antolin-Camarena—Barthel (in the setting of (oo, 1)-
categories) further demonstrating their ubiquity.

The final paper of this proceedings provides a comprehensive outline
of the machinery required for constructing homotopy limits of diagrams
of Quillen model categories and left Quillen functors between them,
collecting previous work of the author. Moreover the paper provides a
wealth of important examples of this homotopy limit construction. The
paper also provides some warning on working with diagrams which come
with a mix of left and right Quillen functors.
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Monoidal Bousfield Localizations and
Algebras over Operads

David Whiteﬁ

Abstract

We give conditions on a monoidal model category M and on a set of maps
C so that the Bousfield localization of M with respect to C preserves the
structure of algebras over various operads. This problem was motivated by
an example that demonstrates that, for the model category of equivariant
spectra, preservation does not come for free, even for cofibrant operads.
We discuss this example in detail and provide a general theorem regarding
when localization preserves P-algebra structure for an arbitrary operad
P.

We characterize the localizations that respect monoidal structure
and prove that all such localizations preserve algebras over cofibrant
operads. As a special case we recover numerous classical theorems about
preservation of algebraic structure under localization, in the context
of spaces, spectra, chain complexes, and equivariant spectra. We also
provide several new results in these settings, and we sharpen a recent
result of Hill and Hopkins regarding preservation for equivariant spectra.
To demonstrate our preservation result for non-cofibrant operads, we
work out when localization preserves commutative monoids and the
commutative monoid axiom, and again numerous examples are provided.
Finally, we provide conditions so that localization preserves the monoid
axiom.

@ Department of Mathematics and Computer Science, Denison University
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5.1 Introduction

Bousfield localization is a powerful tool in homotopical algebra, with clas-
sical applications to homology localization for spaces and spectra [11], to
cellularization and nullification [21], and to p-localization and completion
[12]. Hirschhorn generalized the machinery of Bousfield localization to the
setting of model categories [32], inverting any class of morphisms gener-
ated by a set. This general framework has seen tremendous applications:
it allows for the passage from levelwise model structures to stable model
structures [38], it is used to set up motivic homotopy theory [35], and
it allows for the study of combinatorial model categories via simplicial
presheaves [16]. The interplay between left Bousfield localization and
monoidal structure has often proven fruitful, e.g. to put an F..,-algebra
structure on connective K-theory [19], for homotopy theoretic computa-
tions involving generalized Eilenberg-Maclane spaces [13] [15] 21]], and,
recently, to create an equivariant spectrum with a certain periodicity that
is used to resolve the Kervaire invariant one problem [31]. In this paper,
we further the study of the interplay between left Bousfield localization
and monoidal model categories, we provide conditions so that left Bous-
field localization preserves algebras over operads (and several important
model categorical axioms), and we apply our results to numerous classical
and new examples of interest.

Structured ring spectra have had numerous applications in stable
homotopy theory [19} 38| [43]. Nowadays, structured ring spectra are often
thought of as algebras over operads acting in any of the monoidal model
categories for spectra. It is therefore natural to ask the extent to which
Bousfield localization preserves such algebraic structure. For Bousfield
localizations at homology isomorphisms this question is answered in [19]
and [43]. The case for spaces is subtle and is addressed in [13], [15], and
[21]. More general Bousfield localizations are considered in [14].

The preservation question may also be asked in the context of equiv-
ariant and motivic spectra, and it turns out the answer is far more
subtle. In Example [5.36] we discuss an example of a naturally occurring
Bousfield localization of equivariant spectra that preserves the type of
algebraic structure considered in [19] but fails to preserve the equivariant
commutativity needed for the landmark results in [31]. We generalize
this example in [5.37]

In order to understand this and related examples, we find conditions on
a model category M and on a class of maps C so that the left Bousfield
localization L with respect to C preserves the structure of algebras over



Monoidal Bousfield Localizations and Algebras over Operads 181

various operads. After a review of the pertinent terminology in Section
[6.2] we give our general preservation result in Section which we state
here for the reader’s convenience.

Theorem 1 Let M be a monoidal model category and C a class of
morphisms such that the Bousfield localization L¢(M) exists and is
a monoidal model category. Let P be an operad valued in M. If the
categories of P-algebras in M and in L¢(M) inherit transferred semi-
model structures from M and L¢(M) (with weak equivalences and
fibrations defined via the forgetful functor) then L¢ preserves P-algebras.

In general, it is difficult to check that P-algebras in L¢ (M) inherit
a transferred semi-model structure. To make it easier to check this
hypothesis, in Section we characterize when L¢ (M) is a monoidal
model category, proving the following theorem.

Theorem 2 Suppose M is a cofibrantly generated monoidal model
category in which cofibrant objects are flat (i.e., for all weak equivalences
f and all cofibrant K, f ® idk is a weak equivalence). Then L¢ (M) is a
monoidal model category with cofibrant objects flat if and only if every
map of the form f ® idg, where f is in C and K is cofibrant, is a C-local
equivalence. If the domains of the generating cofibrations I are cofibrant,
it suffices to consider K in the set of domains and codomains of the
morphisms in [.

Most monoidal model categories encountered in nature satisfy the
property that cofibrant objects are flat, as examples in Section [5.5
demonstrate. Furthermore, given a set of morphisms C, the condition that
f ®idx be a C-local equivalence is easy to check in practice (for example,
it is true for every localization of spaces and for every stable localization
of spectra). In Section we apply these theorems to numerous model
categories and localizations of interest, obtaining preservation results for
Y-cofibrant operads such as A, and E., in model categories of spaces,
spectra, chain complexes, and equivariant spectra. We recover several
classical preservation results, and prove several new preservation results.
We also provide counterexamples, such as Example and Example
to show that the hypotheses of these theorems are really necessary.

In Section we present a lattice of equivariant operads that inter-
polate between non-equivariant E.-algebra structure and equivariant
FE-algebra structure. We apply our results to determine which localiza-
tions preserve the type of algebraic structure encoded by these operads.
This new collection of operads is different from the Ny.-operads of [10]
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(that interpolate between equivariant F..-algebra structure and genuine
commutative structure), and a common generalization of both types of
operads is discussed in [27]. Example [5.36]demonstrates that it is possible
to preserve equivariant F.-algebra structure, but fail to preserve genuine
commutative structure. This motivates the latter half of the paper.

In Section we turn to preservation of structure over non-cofibrant
operads, specifically, preservation of commutative monoids. For categories
of spectra the phenomenon known as rectification means that preservation
of strict commutativity is equivalent to preservation of E..-structure, but
for general model categories (including equivariant spectra) there can be
Bousfield localizations that preserve the latter type of structure and not
the former. In the companion paper [58] we introduced a condition on
a monoidal model category called the commutative monoid ariom, that
guarantees that the category of commutative monoids inherits a model
structure. We build on this work in Section by providing conditions
on the maps in C so that Bousfield localization preserves the commutative
monoid axiom, proving the following theorem.

Theorem 3 Assume M is a cofibrantly generated monoidal model
category satisfying the strong commutative monoid axiom and with
domains of the generating cofibrations cofibrant. Suppose that L¢ (M)
is a monoidal Bousfield localization with generating trivial cofibrations
Jc. Then L¢ (M) satisfies the strong commutative monoid axiom if and
only if Sym™(f) is a C-local equivalence for all n € N and for all f € Je.
This occurs if and only if Sym(—) preserves C-local equivalences between
cofibrant objects.

The hypotheses of this theorem are difficult to check, requiring complex
arguments unraveling the symmetric group actions. However, in Section
[.7, we apply Theorems[I and [3 to obtain preservation results for com-
mutative monoids in spaces, spectra, chain complexes, and equivariant
spectra. We recover classical preservation results, and several new preser-
vation results, including Theorem which sharpens and generalizes
the main theorem of [30]. This is the main application of the paper, and
gives a concrete explanation of what goes wrong in Example [5.36| when
a specific localization fails to preserve equivariant commutative monoid
structure.

Finally, in Section we provide conditions so that L¢(M) satisfies
the monoid axiom when M does, proving the following theorem (see
Section for definitions of the unfamiliar terms, from [5]).
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Theorem 4 Suppose M is a cofibrantly generated, h-monoidal, left
proper model category such that the (co)domains of I are cofibrant and
are finite relative to the h-cofibrations and cofibrant objects are flat.
Then for any monoidal Bousfield localization L¢, the model category
L¢ (M) satisfies the monoid axiom.

In general, it is difficult to check the hypotheses of this theorem.
Fortunately, because Theorem [I only requires transferred semi-model
structures, Theorem [4 is not required for preservation, but is required
in order to have a comprehensive study of the relationship between left
Bousfield localization and monoidal structure, as the monoid axiom is
often required for purposes other than transferring model structures. As
always, we provide applications of Theorem {4 to the examples of interest
in this paper: spectra, spaces, chain complexes, and equivariant spectra.
Roughly half of this paper consists of applications to these examples. In
the setting of Theorem [4, this requires some new results, including a
verification that the commonly studied model structures on symmetric
spectra are h-monoidal, and the introduction of new model structures
on equivariant spectra that are combinatorial and h-monoidal.
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5.2 Preliminaries

We assume the reader is familiar with basic facts about model categories.
Excellent introductions to the subject can be found in [18], [32], and [34].
Throughout the paper we will assume M is a cofibrantly generated model



184 D. White

category [34], Section 2.1], with generating cofibrations I and generating
trivial cofibrations J.

Let I-cell denote the class of transfinite compositions of pushouts of
maps in I, and let I-cof denote retracts of such. In order to run the small
object argument, we will assume the domains K of the maps in I (and
J) are k-small relative to I-cell (resp. J-cell), i.e. given a regular cardinal
A >k and any A-sequence Xo — X; — ... formed of maps Xg — Xg41
in I-cell, then the map of sets lim  M(K, Xg) - M(K,lim  Xpg) is

— B<A — B<A

a bijection. An object is small if there is some k for which it is k-small.
See Chapter 10 of [32] for a more thorough treatment of this material. For
any object X we have a cofibrant replacement QX — X and a fibrant
replacement X — RX.

We will at times also need the hypothesis that M possesses sets of
generating (trivial) cofibrations I and J with domains (hence codomains)
cofibrant. This hypothesis is satisfied by all model categories of interest
in this paper, but does not come for free, even for combinatorial model
categories M. An example, due to Carlos Simpson, is discussed in Remark
A method for finding sets I and J with cofibrant domains is given
in Lemma [5.19

Our model category M will be a closed symmetric monoidal category
with product ® and unit S € M. Additionally, we assume the following
two axioms, which make M a monoidal model category |34, Chapter 4].

1 Unit Axiom: For any cofibrant X, the map QS ® X — S® X 2 X is
a weak equivalence.

2 Pushout Product Axiom: Given any f : Xg - Xy and g: Yy = Y1
cofibrations, f[g : Xo®Y; HX0®Y0 X1®Yy) — X1 ®Y] is a cofibration.
Furthermore, if, in addition, f or g is a trivial cofibration, then f g
is a trivial cofibration.

Note that the pushout product axiom is equivalent to the statement
that —® — is a Quillen bifunctor. Furthermore, it is sufficient to check the
pushout product axiom on the generating maps I and J, by Proposition
4.2.5 of [34]. When we need M to be a simplicial model category, we
require the SM7 axiom, which is analogous to the pushout product axiom.
We refer the reader to Definition 4.2.18 in [34] for details.

We will at times also need to assume that cofibrant objects are flat in
M, i.e. that whenever X is cofibrant and f is a weak equivalence then
f ® X is a weak equivalence. When a monoidal model category satisfies
this condition, it is called a tensor model category in [22] (Section 12).



Monoidal Bousfield Localizations and Algebras over Operads 185

Finally, we remind the reader of the monoid axiom of Definition 3.3 in
[50].

Given a class of maps C in M, let C ® M denote the class of maps
f ®idx where f € C and X € M. A model category is said to satisfy
the monoid aziom if every map in (Trivial-Cofibrations @ M)-cell is a
weak equivalence.

We will be discussing preservation of algebraic structure as encoded by
an operad. Let P be an operad valued in M (for a general discussion of the
interplay between operads and homotopy theory see [9]). Let P-alg(M)
denote the category whose objects are P-algebras in M (i.e. admit an
action of P) and whose morphisms are P-algebra homomorphisms (i.e.
respect the P-action). The free P-algebra functor from M to P-alg(M)
is left adjoint to the forgetful functor. We will say that P-alg(M) inherits
a model structure from M if the model structure is transferred across
this adjunction, i.e. if a P-algebra homomorphism is a weak equivalence
(resp. fibration) if and only if it is so in M. In Section 4 of [9], an operad
P is said to be admissible if P-alg(M) inherits a model structure in this
way.

Finally, we remind the reader about the process of Bousfield localization
as discussed in [32]. This is a general machine that starts with a (nice)
model category M and a set of morphisms C and produces a new model
structure L¢ (M) on the same category in which maps in C are now weak
equivalences. Furthermore, this is done in a universal way, introducing
the smallest number of new weak equivalences as possible. When we say
Bousfield localization we will always mean left Bousfield localization. So
the cofibrations in L¢ (M) will be the same as the cofibrations in M.

Bousfield localization proceeds by first constructing the fibrant objects
of Le (M) and then constructing the weak equivalences. In both cases this
is done via homotopy function complexes map(—, —). If M is a simplicial
or topological model category then one can use the hom-object in sSet or
Top. Otherwise a framing is required to construct the homotopy function
complex. We refer the reader to [34] or [32] for details on this process.

An object N is said to be C-local if it is fibrant in M and if for
all g : X —» Y in C, map(g,N) : map(Y, N) — map(X,N) is a weak
equivalence in sSet. These objects are precisely the fibrant objects in
Le(M). Amap f: A— Bis a C-local equivalence if for all N as above,
map(f, N) : map(B, N) — map(A, N) is a weak equivalence. These maps
are precisely the weak equivalences in L¢(M).

It is often more convenient to work with left Bousfield localizations
that invert a set of cofibrations (i.e. with left derived Bousfield local-
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ization). This can always be guaranteed in the following way. For any
map f let Qf denote the cofibrant replacement and let fdenote the left
factor in the cofibration-trivial fibration factorization of @ f. Then fis a
cofibration between cofibrant objects and we may define C = {f| fec}.
Localization with respect to C yields the same result as localization with
respect to C, so our assumption that the maps in C are cofibrations
between cofibrant objects loses no generality. We thus make the following
convention.

Convention 5.1 Throughout this paper we assume C is a set of cofi-
brations between cofibrant objects, and that the model category L (M)
exists.

The existence of L¢(M) can be guaranteed by assuming M is left
proper and either combinatorial (as discussed in [3]) or cellular (as
discussed in [32]). A model category is left proper if pushouts of weak
equivalences along cofibrations are again weak equivalences. We will make
this a standing hypothesis on M. However, as we have not needed the
cellularity or combinatoriality assumptions for our work, outside of the
existence of L¢(M), we have decided not to assume them. In this way if
a Bousfield localization is known to exist for some reason other than the
theory in [32] then our results will be applicable.

5.3 General Preservation Result

In this section we provide a general result regarding when Bousfield
localization preserves P-algebras. Essentially, this means that (up to
weak equivalence) the localization of a P-algebra is again a P-algebra
and the localization morphism is a P-algebra homomorphism. We make
this precise in Definition

Throughout this section, let M be a monoidal model category and let
C be a set of maps in M such that Bousfield localization L¢(M) is a
also monoidal model category. On the model category level the functor
L¢ is the identity. So when we write L¢ as a functor we shall mean the
composition of derived functors Ho(M) — Ho(L¢(M)) — Ho(M), i.e.
E — L¢(E) is the unit map of the adjunction Ho(M) < Ho(L¢(M)). In
particular, for any E in M, L¢(E) is weakly equivalent to RcQF where
R¢ is a choice of fibrant replacement in L¢(M) and @ is a cofibrant
replacement in M.

Let P be an operad valued in M. Because the objects of L¢(M)
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are the same as the objects of M, P is also valued in L¢(M). Thus,
we may consider P-algebras in both categories and these classes of
objects agree (because the P-algebra action is independent of the model
structure). We denote the categories of P-algebras by P-alg(M) and
P-alg(Lc(M)). These are identical as categories, but in a moment they
will receive different model structures. Inspired by [14], we make the
following definition.

Definition 5.2 Assume that M and L¢(M) are monoidal model cate-
gories, P is an operad valued in M, and U is the forgetful functor from
P-algebras to M. Then L¢ is said to preserve P-algebras if the following
two properties are satisfied.

1 When FE is a P-algebra there is some P-algebra E such that UE is
weakly equivalent in M to the localization L¢(UE) := ReQ(UE),
where R is fibrant replacement in Le (M) and @ is cofibrant replace-
ment in M.

2 In addition, when F is a cofibrant P-algebra, then there is a choice of E
in P-alg(M) with U E local in M, there is a P-algebra homomorphism
rg : E — E, and there is a weak equivalence g : Le(UE) — UE such
that ﬂE o lUE = U”I’E in HO(M)

This definition also appears in [6], where it is compared with other
notions of preservation, e.g., preservation in the homotopy category. The
condition g o lyg = Urg means that rg is a lift of the localization
map lyg : UE — Le¢(UE) to the category of algebras, at least up to
homotopy.

We are ready to prove the main result of this section. Recall that
when we say P-alg(M) inherits a model structure from M we mean that
this model structure is transferred by the free-forgetful adjunction. In
particular, a map of P-algebras f is a weak equivalence (resp. fibration)
if and only if f is a weak equivalence (resp. fibration) in M. A version
of this result for semi-model categories will be proven as Corollary
after semi-model categories are defined. An alternative proof is given in
Theorem 5.2 of [6].

Theorem 5.3 Let M be a monoidal model category such that the
Bousfield localization Le(M) exists and is a monoidal model category.
Let P be an operad valued in M. If the categories of P-algebras in M
and in Lec(M) inherit model structures from M and Le(M) then Le
preserves P-algebras.
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Proof Let Re denote fibrant replacement in L¢(M), let Re p denote
fibrant replacement in P-alg(L¢(M)), let Qp denote cofibrant replace-
ment in P-alg(M), and let @) denote cofibrant replacement in M. We
will prove the first form of preservation and our method of proof will
allow us to deduce the second form of preservation in the special case
where F is a cofibrant P-algebra.

Let E be a P-algebra, and define E= Re pQp(E). First, @ is the left
derived functor of the identity adjunction between M and L¢ (M), and
Rc is the right derived functor of the identity, so L¢(UE) ~ ReQ(UE).
We must therefore show ReQ(UE) ~ URc pQp(E).

The map ¢ : QpE — E is a trivial fibration in P-alg(M), hence Ugq is
a trivial fibration in M. The map QUE — UFE is also a weak equivalence
in M. Consider the following lifting diagram in M:

@ ——>UQpE (5.1)

e i:

QUE —>UE

The lifting axiom gives the map QUE — UQpFE and it is necessarily
a weak equivalence in M by the two out of three property.

Since QpFE is a P-algebra in M it must also be a P-algebra in L¢ (M),
since the monoidal structure of the two categories is the same. We may
therefore apply Rc p to QpE. We next consider the following lift in
L¢ (M), which exists because the left vertical map is a trivial cofibration
in Le(M) and UR¢ pQpE is fibrant in Le(M):

UQpE URc pQpE (5.2)
7
i
ReUQpE ¥

In this diagram the top horizontal map is U applied to a weak equiv-
alence in P-alg(L¢(M)). Because the model category P-alg(L¢(M))
inherits weak equivalences from L¢ (M), this map is a weak equivalence
in Le(M). The left vertical map is also a weak equivalence in L¢(M).
Therefore, by the two out of three property, the lift is a weak equivalence
in Le(M). We make use of this map as the horizontal map in the lower
right corner of the diagram below.

The top horizontal map QUE — UQpE in the following diagram is
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the first map we constructed, which was proven to be a weak equivalence
in M. The square in the diagram below is then obtained by applying R¢
to that map. In particular, ReQUE — RcUQpFE is a weak equivalence
in Le(M):

QUE —— > UQpE (5.3)

L

RcQUE —— RcUQpE —— URc pQpE

We have shown that both of the bottom horizontal maps are weak
equivalences in L¢(M). Thus, by the two out of three property, their
composite ReQUE — URc pQpE is a weak equivalence in L¢(M). All
the objects in the bottom row are fibrant in L¢ (M), so these C-local
equivalences are actually weak equivalences in M.

As E was a P-algebra and @ p and R¢ p are endofunctors on categories
of P-algebras, it is clear that R¢ pQpF is a P-algebra. We have just
shown that L¢(UFE) is weakly equivalent to this P-algebra, so we are
done.

When F is assumed to be a cofibrant P-algebra. We have seen that
there is an M-weak equivalence ReQUE — UR¢ pQ pE, and above we
took Re p@QpE in M as our representative for Le(UE) in Ho(M). Since
E is a cofibrant P-algebra, there are weak equivalences F < Qp(FE)
in P-alg(L¢(M)). This is because all cofibrant replacements of a given
object are weakly equivalent, e.g. by diagram . So passage to Qp(E)
is unnecessary when E is cofibrant, and we take E = Re pE as our
representative for L¢ (E). Observe that U E is local as the model structure
on P-algebras is transferred. The P-algebra morphism rg : E — Eis
just the fibrant replacement map R¢ p, and lifts the localization map
UE — L¢(UE) in Ho(M). The comparison fg is the following lift in
Le(M):

UE UE (5.4)

~c .
. BE
Lc(UE) —> %k
The two out of three property guarantees that Sg is a weak equivalence

(again using that the model structure on P-algebras is transferred), and
the diagram above demonstrates that g olyg = Urg in Ho(M). O
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This theorem alone would not be a satisfactory answer to the question
of when L¢ preserves P-algebras, because there is no clear way to check
the hypotheses. For this reason, in the coming sections we will discuss
conditions on M and P so that P-algebras inherit model structures, and
then we will discuss which localizations L¢ preserve these conditions (so
that P-alg(Lc(M)) inherits a model structure from L¢(M)). One such
condition on M is the monoid axiom. In Section we discuss which
localizations L¢ preserve the monoid axiom. However, it will turn out that
the monoid axiom is not necessary in order for our preservation results
to apply. This is because the work in [33] and [53] produces semi-model
structures on P-algebras and these will be enough for our proof above to
go through.

Observe that in the proof above we only used formal properties of
fibrant and cofibrant replacement functors, and the fact that the model
structures on P-algebras were inherited from M and L¢(M). So the
same proof works when P-algebras only form semi-model categories, a
notion we define presently. The motivating example is when D = P-alg
is obtained from M via the general transfer principle for transferring a
model structure across an adjunction (see Lemma 2.3 in [50] or Theorem
12.1.4 in |23]) when not all the conditions needed to get a full model
structure are satisfied. The following definition is taken from [8] and [7],
and is distilled from the definitions in [3] and [53]. Recall that, for a set
of morphisms S, inj S refers to the class of morphisms having the right
lifting property with respect to S.

Definition 5.4 A semi-model structure on a category D consists of
classes of weak equivalences W, fibrations ¥, and cofibrations Q satisfying
the following axioms:

M1 Fibrations are closed under pullback.
M2 The class W is closed under the two out of three property.
M3 W, F,Q are all closed under retracts.
M4 i Cofibrations have the left lifting property with respect to trivial
fibrations.
ii Trivial cofibrations whose domain is cofibrant have the left lifting
property with respect to fibrations.
M5 i Every map in D can be functorially factored into a cofibration
followed by a trivial fibration.
ii Every map whose domain is cofibrant can be functorially factored
into a trivial cofibration followed by a fibration.
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If, in addition, D is bicomplete, then we call D a semi-model category.
D is said to be cofibrantly generated if there are sets of morphisms I’
and J' in D such that inj I’ is the class of trivial fibrations, injJ’ is the
class of fibrations in D, the domains of I’ are small relative to I’-cell,
and the domains of J' are small relative to maps in J’-cell whose domain
is cofibrant.

In practice, there is often an adjunction F': M < D : U where M is
a model category, U is a forgetful functor, the weak equivalences and
fibrations in D are maps that forget to weak equivalences and fibrations
in M, and the generating (trivial) cofibrations of D are maps of the form
F(I) and F(J) where F': M — D is the free algebra functor and I and
J are the generating (trivial) cofibrations of M.

Note that the only difference between a semi-model structure and
a model structure is that one of the lifting properties and one of the
factorization properties requires the domain of the map in question to be
cofibrant. Because fibrant and cofibrant replacements are constructed via
factorization, (4) implies that every object has a cofibrant replacement
and that cofibrant objects have fibrant replacements. So one could con-
struct a fibrant replacement functor that first does cofibrant replacement
and then does fibrant replacement. These functors behave as they would
in the presence of a full model structure.

We are now prepared to state our preservation result in the presence
of only a semi-model structure on P-algebras. When we say P-algebras
inherit a semi-model structure we mean with weak equivalences and
fibrations reflected and preserved by the forgetful functor. We state this
as a corollary because its proof is so similar to that of Theorem [5.3

Corollary 5.5 Let M be a monoidal model category such that the
Bousfield localization Le(M) exists and is a monoidal model category.
Let P be an operad valued in M. If the categories of P-algebras in M
and in Lc(M) inherit transferred semi-model structures from M and
Le(M) then Le preserves P-algebras.

Proof The proof proceeds exactly as the proof of Theorem We high-
light where care must be taken in the presence of semi-model categories.
As remarked above, the cofibrant replacement QQp in the semi-model
category P-alg(M) exists and the cofibrant replacement map QpFE — E
is a weak equivalence in P-alg(M), hence in M, because the semi-model
structure is transferred. Diagram is a lifting diagram in M, so still
yields a weak equivalence QUE — UQpFE.
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Next, the fibrant replacement RcUQpFE is a replacement in the model
category L¢(M). The fibrant replacement QpE — Re pQpE is a fi-
brant replacement in the semi-model category P-alg(L¢(M)), and ex-
ists because QpF is cofibrant in P-alg(Lc(M)). The resulting object
Re pQpE is fibrant in P-alg(L¢(M)) hence in Le (M), since the semi-
model structure is transferred. The lift in is a lift in L¢ (M), and
again by the two out of three property in L¢(M) the diagonal map
RcUQpE — URc pQpE is a C-local equivalence.

Next, the map ReQUE — RcUQpE in is a fibrant replace-
ment of the map QUE — UQpE in the model category L¢(M), and
so the argument that ReQUE — RcUQpFE is a C-local equivalence re-
mains unchanged. The composite across the bottom of , RcQUE —
URc.pQpE is a weak equivalence between fibrant objects in L¢ (M) and
so is a weak equivalence in M, as in the proof of Theorem

Finally, for the case of F cofibrant in the semi-model category P-
alg(M), note that the localization map E — L¢(E) is again fibrant
replacement £ — Re pE in P-alg(L¢(M)). This exists because the
domain is cofibrant by assumption. By construction, this map is a P-
algebra morphism, as desired. The lift defining § in occurs in
L¢ (M), and the rest of the proof only uses that weak equivalences and
fibrations in P-alg(L¢(M)) forget to weak equivalences and fibrations in
Le(M). O

Remark 5.6 Corollary[5.5/has been generalized to algebras over colored
operads in [62], and to right Bousfield localization in [59]. It has been
applied to localizations of Smith ideals in [61].

5.4 Monoidal Bousfield Localizations

In both Theorem and Corollary we assumed that L¢(M) is a
monoidal model category. In this section we provide conditions on M
and C so that this occurs. First, we provide an example demonstrating
that the pushout product axiom can fail for L¢ (M), even if it holds for
M. The author learned this example from Mark Hovey.

Example 5.7 It is not true that every Bousfield localization of a
monoidal model category is a monoidal model category. Let R = Fy[X3].
An R module is simply an Fs vector space with an action of the symmetric
group 3. Because R is a Frobenius ring, we may pass from R-mod to
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the stable module category StMod(R) by identifying any two morphisms
whose difference factors through a projective module.

Section 2.2 of [34] introduces a model category M of R-modules whose
homotopy category is StMod(R), then proves M is a finitely generated,
combinatorial, stable model category in which all objects are cofibrant
(hence, M is also left proper). Proposition 4.2.15 of [34] proves that for
R = F5[33], this model category is a monoidal model category because
R is a Hopf algebra over Fs. The monoidal product of two R-modules is
M ®g, N where R acts via its diagonal R — R ®, R.

We now check that cofibrant objects are flat in M. By the pushout
product axiom, X ® — is left Quillen. Since all objects are cofibrant, all
weak equivalences are weak equivalences between cofibrant objects. So
Ken Brown’s lemma implies X ® — preserves weak equivalences.

Let f: 0 — Fg, where the codomain has the trivial X3 action. We’ll
show that the Bousfield localization with respect to f cannot be a
monoidal Bousfield localization. First observe that if an object is f-locally
trivial then it has no ¥3-fixed points, i.e., fails to admit Y3-equivariant
maps from Fo (the non-identity element would need to be taken to a
Y3-fixed point because the Y3-action on Fy is trivial).

If the pushout product axiom held in L;(M) then the pushout product
of two f-locally trivial cofibrations g, h would have to be f-locally trivial.
We will now demonstrate an f-locally trivial object IV for which N ®g, N
is not f-locally trivial, so (& — N)O (& — N) is not a trivial cofibration
in Lf (M)

Define N 2 Fy @ F5 where the element (12) sends a = (1,0) to b = (0,1)
and the element (123) sends a to b and b to ¢ = a + b. The reader can
check that (12)(123) acts the same as (123)%(12), so that this is a well-
defined ¥s-action. This object N is f-locally trivial, since localization
by f kills both factors of Fa. However, N ®g, IV is not f-locally trivial
because N ®r, N does admit any map from Fs taking the non-identity
element of Fy to the X3-invariant element a ® a + b ® b + ¢ ® ¢. Thus,
L(M) is not a monoidal model category.

There are two ways to get around examples such as the above. One can
change the mapping space used to define the localization, e.g., using the
derived internal hom rather than a homotopy function complex (as in [3]
Definition 4.45]), or one can place hypotheses on the set of morphisms C
that we are inverting, to ensure that the C-local equivalences play nicely
with the monoidal product. These two approaches are, in fact, equivalent.

A similar program, which amounts to a condition on the set of mor-



194 D. White

phisms C, was conducted in [14], in order to guarantee that localizations
of stable model categories commute with suspension. Similarly, a condi-
tion on a stable localization to ensure that it is additionally monoidal
was given in Definition 6.2 of [2] and the same condition appeared in
Theorem 4.46 of [3]. This condition states that C O I is contained in the
C-local equivalences.

Remark 5.8 The counterexample above fails to satisfy the condition
that C O I is contained in the C-local equivalences. If this condition were
satisfied then I would be contained in the f-local equivalences and this
would imply all cofibrant objects (hence all objects) are f-locally trivial.
But 0 = N ®g, N is not f-locally trivial. Thus, this counterexample has
no bearing on the work of [2] or [3].

Remark 5.9 The counterexample demonstrates a general principle
that we now highlight. In any G-equivariant world, there are multiple
spheres due to the different group actions. In the example above, one can
suspend by representations of the symmetric group X,,, i.e. copies of F on
which ¥,, acts. The 1-point compactification of such an object is a sphere
S™ on which ¥, acts. A localization that kills a representation sphere
should not be expected to respect the monoidal structure, because not
all acyclic cofibrant objects can be built from one of the representation
spheres alone. In particular, N ® N will not be in the smallest thick
subcategory generated by Fo. The point is that the homotopy categories
of stable model categories in an equivariant context are not monogenic
axiomatic stable homotopy categories in the sense of [37].

Note that this example also demonstrates that the monoid axiom can
fail on Le(M). The author does not know an example of a model category
satisfying the pushout product axiom but failing the monoid axiom.

In our applications we will need to know that L¢(M) satisfies the
pushout product axiom, the unit axiom, and the axiom that cofibrant
objects are flat. We therefore give a name to such localizations, and then
we characterize them. The reader is advised to keep Convention [5.1]in
mind.

Definition 5.10 A Bousfield localization L¢ is said to be a monoidal
Bousfield localization if Le(M) satisfies the pushout product axiom, the
unit axiom, and the axiom that cofibrant objects are flat.

Theorem 5.11  Suppose that M is a cofibrantly generated monoidal
model category in which cofibrant objects are flat and the domains of
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the generating cofibrations are cofibrant. Let I denote the generating
cofibrations of M. Then L¢ is a monoidal Bousfield localization if and
only if every map of the form f®idy, where f is in C and K is a domain
or codomain of a map in I, is a C-local equivalence.

Theorem 5.12 Suppose M is a cofibrantly generated monoidal model
category in which cofibrant objects are flat. Then L¢ is a monoidal
Bousfield localization if and only if every map of the form f ®idy, where
fisin C and K is cofibrant, is a C-local equivalence.

Note that the condition C O I C C-local equivalences, from [2] [3],
implies the condition from these theorems. In fact, one can prove it is
equivalent to L¢ (M) being a monoidal model category, because C can be
taken to be a set of C-local trivial cofibrations. However, the condition
stated in the theorems above is easier to check. We shall prove Theorem
in Subsection and we shall prove Theorem in Subsection
5.4.2] These theorems demonstrate precisely what must be done if one
wishes to invert a given set of morphisms C and ensure that the resulting
model structure is a monoidal model structure.

Definition 5.13 Suppose M is left proper, is either cellular or combi-
natorial, and that the domains of the generating cofibrations are cofibrant.
The smallest monoidal Bousfield localization which inverts a given set
of morphisms C is the Bousfield localization with respect to the set
C' = {C ®idk} where K runs through the domains and codomains of
the generating cofibrations I.

This notion has already been used in [39]. The reason for the hypothesis
on the domains of the generating cofibrations is to ensure that C’ is a
set. Requiring left properness and either cellularity or combinatoriality
ensures that Les exists. The smallest Bousfield localization has a universal
property, that we now highlight.

Proposition 5.14 Suppose C' is the smallest monoidal Bousfield lo-
calization inverting C, and let j : M — Le/(M) be the left Quillen
functor realizing the localization. Suppose N is a monoidal model cat-
egory with cofibrant objects flat. Suppose F : M — N is a monoidal
left Quillen functor such that LF takes the images of C in Ho(M) to
isomorphisms in Ho(N). Then there is a unique monoidal left Quillen
functor § : LetM — N such that §5 = F.

Proof Suppose F : M — N is a monoidal left Quillen functor, that A/
has cofibrant objects flat, and that LF takes the images of C in Ho(M)
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to isomorphisms in Ho(N'). Then F also takes the images of maps in C’
to isomorphisms in Ho(N\), because for any f € C and any cofibrant K,
F(f® K) 2 F(f)® F(K) is a weak equivalence in . This is because
F(K) is cofibrant in A (as F' is left Quillen), cofibrant objects are flat
in M, and F(f) is a weak equivalence in A/ by hypothesis.

The universal property of the localization L¢s then provides a unique
left Quillen functor § : Ler M — N that is the same as F' on objects and
morphisms (Theorem 3.3.18 and Theorem 3.3.19 in [32]). In particular, &
is a monoidal functor and dg = Fq : F(QS) — F(95) is a weak equivalence
in NV because the cofibrant replacement QS — S is the same in L¢/ (M)
as in M. So 4 is a unique monoidal left Quillen functor as required, and
the commutativity §j = F follows immediately from the definition of
J. O

5.4.1 Proof of Theorem [5.11

In this section we will prove Theorem [5.11. We first prove that under
the hypotheses of Theorem cofibrant objects are flat in L¢(M).

Proposition 5.15 Let M be a cofibrantly generated monoidal model
category in which cofibrant objects are flat and the domains of the gener-
ating cofibrations are cofibrant. Let I denote the generating cofibrations
of M. Suppose that every map of the form f ® idy, where f is in C and
K is a domain or codomain of a map in I, is a C-local equivalence. Then
cofibrant objects are flat in Le(M).

Proof We must prove that the class of maps {g ® X | g is a C-local
equivalence and X is a cofibrant object} is contained in the C-local
equivalences. Let X be a cofibrant object in L¢ (M) (equivalently, in M).
Let g : A — B be a C-local equivalence. To prove —® X preserves C-local
equivalences, it suffices to show that it takes L¢ (M) trivial cofibrations
between cofibrant objects to weak equivalences. This is because we can
always do cofibrant replacement on g to get Qg : QA — QB. While
Qg need not be a cofibration in general, we can always factor it into
QA —Z 5 @ B. By abuse of notation we will continue to use the symbol
@B to denote Z, and we will rename the cofibration QA — Z as Qg
since Z is cofibrant and maps via a trivial fibration to B. Smashing with
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X gives:

QA®X —=QB® X

.

AR X ——=B® X

If we prove that Qg ® X is a C-local equivalence, then g ® X must also
be by the two out of three property, since the vertical maps are weak
equivalences in M due to X being cofibrant and cofibrant objects being
flat in M. So we may assume that g is an L¢(M) trivial cofibration
between cofibrant objects. Since X is built as a transfinite composition
of pushouts of maps in I, we proceed by transfinite induction. For the
rest of the proof, let K, K7, and K5 denote domains/codomains of maps
in I. These objects are cofibrant in M by hypothesis, so they are also
cofibrant in L¢(M).

For the base case X = K we appeal to Theorem 3.3.18 in [32]. The
composition FF = ido K ® — : M — M — L¢(M) is left Quillen
because K is cofibrant. F' takes maps in C to weak equivalences by
hypothesis. So Theorem 3.3.1