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Abstract

We introduce the notion of a random basic walk on an in�nite graph, give

numerous examples, list potential applications, and provide detailed comparisons

between the random basic walk and existing generalizations of simple random

walks. We de�ne analogues in the setting of random basic walks of the notions of

recurrence and transience in the theory of simple random walks, and we study the

question of which graphs have a cycling random basic walk and which a transient

random basic walk.

We prove that cycles of arbitrary length are possible in any regular graph,

but that they are unlikely. We give upper bounds on the expected number of

vertices a random basic walk will visit on the in�nite graphs studied and on their

�nite analogues of su�ciently large size. We then study random basic walks on

complete graphs, and prove that the class of complete graphs has random basic

walks asymptotically visit a constant fraction of the nodes. We end with numerous

conjectures and problems for future study, as well as ideas for how to approach

these problems.
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CHAPTER 1

Introduction

Many places in computer science it is valuable to represent a system as a

graph and to represent change in the system as a random process on that graph.

For instance, the nodes of the graph might be positions and the edges might be

allowable directions to move, or the nodes might be computers in a network and

the edges might be routes by which information can travel.

The most well-studied random process on a graph is the simple random walk,

where directions to move or routes for information travel are chosen uniformly at

random from the set of possible options. When the graph in question is in�nite,

an important question is whether the simple random walk is recurrent or whether

it is transient (these terms are de�ned in Section 1.1). Numerous generalizations

of simple random walks have been studied over the years, and this question is

always a driving force behind the research into these generalizations.

In recent years researchers have begun to study a random process called the

random basic walk (discussed in Section 1.2), which is related to the simple random

walk. The random basic walk may be applied to both of the examples mentioned

above. Existing literature only studies the random basic walk on �nite graphs,

with a particular focus on grids of the form Gk,n, with k rows and n columns.

1



1. BACKGROUND ON SIMPLE RANDOM WALKS 2

We will study the random basic walk on in�nite grids and then on much more

general in�nite graphs. We �rst de�ne the properties analogous to recurrence and

transience (called cycling and transience respectively) and give several examples

to demonstrate the types of interesting behavior which can occur in a random

basic walk. We then study the question of which graphs have a cyclic random

basic walk and which have a transient random basic walk, focusing in the process

on the dichotomy between graphs of bounded degree and graphs of unbounded

degree. En route we prove that cycles of arbitrary length are possible for regular

graphs, but are unlikely. We end by returning to the question of the random basic

walk on �nite graphs, including new results on complete graphs Kn which were

suggested by our proof methods in the in�nite situation.

1. Background on Simple Random Walks

Simple random walks have been studied since at least 1905 ([59]), and there

are numerous sources which treat them (e.g. [29, 69]). We include the basic

de�nitions here for completeness. Let G be a connected graph with countably

many vertices and edges, and assume G is locally �nite, i.e. every vertex has only

�nitely many neighbors. We now describe a process which creates a path in G.

Select a starting vertex v0. Select a neighbor v1 of v0 uniformly at random, i.e.

the probability a neighbor will be selected is 1/deg(v0). Next, select a neighbor

v2 of v1 uniformly at random, and continue in this way. This process results in

a path v = (v0, v1, v2, . . . ), where for every i, there is an edge vi ∼ vi+1. Let
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Ω = {(v0, v1, . . . ) | ∀i vi ∼ vi+1} be the set of such paths with starting vertex

v0. It is clear from our construction how to compute the probability of any given

�nite path γ:

P (γ = (v0, v1, . . . , vn)) =

(
1

deg(v0)

)(
1

deg(v1)

)
· · ·
(

1

deg(vn−1)

)

There is a σ-algebra a on Ω generated by these �nite paths (i.e. the cylinder

sets). Equivalently, a is given by the Borel subsets of the compact space Ω. This

σ-algebra makes P into a probability measure on Ω. A simple random walk is a

tuple (G,Ω, a, P ) constructed as above. We will sometimes abuse notation and

refer to an individual path v ∈ Ω as a simple random walk, since this is the walk

an individual particle takes.

A simple random walk (v0, v1, . . . ) is recurrent if P (∃ n ≥ 1 | vn = v0) = 1,

i.e. if it returns to the starting vertex at some point. A simple random walk is

transient if it is not recurrent. The term transient is used because at every step

the walk has a non-zero probability of escaping to in�nity (i.e. of never returning).

The following statements are well-known:

Proposition 1.1. (1) Recurrence is equivalent to the statement that with

probability 1 the simple random walk returns to v0 in�nitely many times,

since a simple random walk is Markovian.
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(2) Recurrence is equivalent to the statement that with probability 1 every

vertex is visited in�nitely often, by a Borel-Cantelli argument.

(3) Transience is equivalent to the statement that with probability 1 every

vertex is visited only �nitely often.

(4) A simple random walk on any connected graph is either recurrent or tran-

sient.

In 1921, Georg Pólya [62] famously studied simple random walks on lattices

Zd and characterized when such walks are recurrent and when they are transient:

Theorem 1.2 (Pólya's Theorem). The simple random walk on Zd is recurrent

for d ≤ 2, but transient for all d > 2.

Pólya's original proof proceeded by writing out and bounding the probabilities

of certain paths in Ω. Modern proofs have removed much of this computational

aspect. For example, there is an elegant proof using Martingales in [28], and

there is a very clever proof using the theory of electrical networks in [29]. We will

prove an analogue of this theorem for the random basic walk in Section 4.1, and

the proof will be more along the lines of Pólya's original proof, except that the

bounds will be much easier to compute.

Simple random walks are also studied on �nite graphs (see [52]), and the main

questions there regard cover time, hitting time, mixing time, and load balancing.

The cover time is the expected amount of time it takes a simple random walk
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to visit all vertices. The partial cover time is the expected amount of time it

takes to visit a constant fraction of the nodes. The edge cover time measures

the expected number of steps until all edges have been traversed. The analogues

for these three concepts on random basic walks will be studied in Chapter 5.

The hitting time is the expected time of �rst return to the starting vertex. This

concept does not appear to have a natural generalization to random basic walks,

since they need not ever return to the starting vertex, even on a �nite graph. The

mixing time measures how quickly the simple random walk converges to its limit

distribution. This concept has not been studied at all for the random basic walk.

Load balancing refers to how many times an individual node is visited relative to

the number of times other nodes are visited. This concept has not been studied

for the random basic walk.

The �nite analogue of Z2 is the graph [n]× [n] where [n] = {1, 2, . . . , n}. We

will discuss this graph more in the next section, but for now we simply record that

the hitting time of a simple random walk on [n]× [n] is O(|V | log2(|V |)) according

to Section 11.3.2 of [50]. For general graphs, the cover time has been bounded by

O(|V ||E|) in [5]. For regular graphs this has been improved to O(|V |2) in [32].

For regular expander graphs this has been improved to Θ(|V | log |V |) in [16]. For

an arbitrary graph, a general lower bound of (1−o(1))|V | ln |V | has been obtained

in [31]. The edge cover time has been proven to be at least Ω(|E| log |E|) and at

most O(|V ||E|) in [72, 73]. See also: [4, 18, 21, 46, 47, 55].
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2. Background on Basic Walks

A common problem in computer science is that of graph exploration by a

mobile entity. For example, software moving on a network of computers or a web-

crawler moving on the internet graph. An example which we will carry with us

throughout this document is that of a robot exploring an unknown terrain. This

problem has been studied for many years, and several deterministic answers have

been proposed. However, many of these solutions depend on sophisticated sensors

to guide the robot or depend on sophisticated algorithms to direct the robot's

movement. In practice, these solutions can be infeasible if one cannot a�ord the

expensive sensors (e.g. GPS, infrared sensors, ultrasound sensors), if time and

space constraints inside the robot make the algorithms infeasible, or if the area

to be explored is quite large. For this reason, attention has shifted recently to

solutions making use of randomness. Random solutions often give suboptimal

performance, but with signi�cant savings on time and space requirements.

In recent years a robot vacuum cleaner called the iRobot Roomba has become

popular, but these robots sometimes get trapped in corners or behind furniture.

Makers of the Roomba wish it to explore the entire room without getting trapped

and without covering the same ground too many times. A discrete approximation

to the continuous setting of the room is a graph, where the vertices are allowable

positions of the robot and edges are allowable directions to move. Since most
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rooms are rectangular-shaped, it is natural to study this process on a two dimen-

sional grid Gk,n with k rows and n columns, as is done for instance in [37]. Letting

k and n go to in�nity yields the graph Z2 and lattices Zd more generally. Research

on these graphs answers asymptotic questions on Gk,n and also a better approxi-

mation to the continuous situation via taking a �ner and �ner mesh on [n]× [n].

The graphs Gk,n and Z2 represent empty rooms. To study graph exploration in

the presence of furniture and other obstacles one must study more general graphs.

The question remains of how the robot chooses which edge to follow from a

given vertex. If the robot make a choice of direction uniformly at random from

the set of possible directions, then the path of the robot will be a simple random

walk. However, this decision scheme does not make use of the existence of memory

in robots, so it is natural to wonder if one can do better. Many di�erent decision

models have been proposed, e.g. in [3, 8, 9, 11, 12, 19, 13, 25, 26, 30, 33, 35,

58]. We will focus on the model considered in [24, 37, 44], which helps the robot

by placing pointers on all edges and which makes use of only a constant number

of bits of robot memory. In this model G is a directed graph such that whenever

there is an arc v → w there is also an arc w → v.

We now describe this model. At every vertex v order and label the outgoing

arcs {e1, e2, . . . , edeg(v)} by consecutive integers 1, 2, . . . , deg(v). When the robot

enters v by an arc labeled i it will exit by the arc labeled (i mod deg(v)) + 1.

Denote the label of ei by L(ei). The collection of labels is sometimes referred to
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as the port numbers at v, and the con�guration of outgoing arcs and labels is the

port orientation at v. The collection of port orientations at all vertices is called

a labeling on the graph G. It is worth noting that the labels on arcs v → w and

w → v need not match. Once a labeling has been assigned a robot is placed on

the graph, i.e. given a starting location v and a starting port i. The path of the

robot is called a basic walk. The basic walk can be thought of as an automaton,

with states (v, i) where v is the current position and i is the next port to use. The

transition function takes (v, i) to (w, j) where w is the vertex which i points to

and j is (i mod deg(w)) + 1.

One immediate observation about the basic walk is that when vertices are

visited multiple times it is possible for the robot to get trapped in a cycle (see

Example 3.1). In [24] and [37] the authors address the question of how to �nd a

good labeling on a �nite graph so that all nodes are visited in a periodic manner.

They model the robot as a �nite state automaton and therefore [17] shows that

there are labelings which cause the robot to fail to visit all vertices. The main

result of [24] is an algorithm to set the port orientations at all vertices to create

a period of O(3.5 ∗ |V |) with which the robot explores the graph, an improvement

over the simple random walk's cover time. However, this paper requires the port

numbers to be updated while the walk is occurring and thus forces the individual

nodes in the graph to do computation, provide memory storage, and give the

robot much more information than simply the local port orientation.
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One way to reduce the amount of computation above is to set the port numbers

uniformly at random before the walk starts, i.e. select label L(e1) uniformly at

random from {1, 2, . . . , deg(v)}, then select L(e2) from {1, 2, . . . , deg(v)}−{L(e1)},

and continue in this way until all arcs are labeled. With this labeling the path

of the robot is called a random basic walk, and was �rst considered in [20]. It

does not appear that this process has been studied when a distribution other than

the uniform distribution is used to select the labels. Note that once the labels,

starting vertex, and starting port are �xed, the random basic walk is completely

determined because the robot's transition function is completely deterministic.

The randomness only comes into play with the choice of labels on the arcs. Thus,

probabilistic statements are made with respect to the labeling process, and we

often consider certain port orientations which occur with some probability.

In [20] the authors consider the analogue of cover time for the random basic

walk. Due to the existence of traps, the correct question to ask in this context

is how much of the graph one can expect the robot to explore before becoming

trapped, rather than how long it will take to explore the entire graph. The authors

prove that for the class of graphs Gk,n with k �xed and n → ∞, the expected

length of the longest tour is Θ(log n). They then give experimental evidence that

on Gn,n the expected maximum length of a cycle is 1.2701 · |V |1.8891. The existence

of such a supersize tour is surprising because the preponderance of small cycles

discovered in Section 4.1 suggests that a robot would need to be very lucky to
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explore this much of the graph. There are many questions still open about �nite

graphs, e.g. the expected average length of a cycle, the expected maximum length

of a cycle, and the expected number of vertices visited before a cycle is hit.

Another natural question to ask about the random basic walk regards recurrence-

transience behavior on lattices, since Z2 is the in�nite analogue of the graphs

[n] × [n] above. In light of the ability of the robot to be trapped, Pólya's origi-

nal notions of recurrence and transience must be tweaked. A walk which hits a

cycle may never return to its origin, but this walk still has the same �avor as a

recurrent simple random walk. In this case we say that the random basic walk

cycles. If a random basic walk does not cycle, then we say it is transient, i.e.

it visits in�nitely many vertices but never visits the same vertex in�nitely many

times. The pigeonhole principle guarantees that a basic walk which visits a vertex

v more than deg(v) times must leave by the same arc more than once, forcing a

cycle. Our notion of transience matches Pólya's, i.e. for each vertex v, Pr(Xn = v

for in�nitely many n) = 0. In Chapter 4 we will prove an analogue of Pólya's

Theorem for a large class of in�nite graphs.

Before progressing, we wish to note that for any graph G, the way in which

labels are placed on arcs may be changed. Rather than labeling every arc simul-

taneously at the start, we may de�ne just one new label at each step. Suppose the

robot enters vertex v by port i (for the starting vertex an initial port is provided,

which we will assume is 1 in our examples). If v has an outgoing arc labeled by (i
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mod d(v)) + 1 already then the robot will follow this arc and no labeling will be

done. If v does not have such an arc, then there must be a non-empty set of arcs

leaving v with no label. Choose one of these arcs uniformly at random and assign

it the label (i mod d(v)) + 1. It is easy to see that the walks possible in this

de�nition exactly match the walks possible in the old de�nition. Furthermore, a

given walk will have the same probability in each de�nition. It will be easier to

state and prove results thinking with the new de�nition. One could also de�ne

a third way to assign labels, where the port orientation at a given vertex v is

assigned uniformly at random when v is �rst entered, but we will not need this

formulation.

We sketch an argument that the formulations above are equivalent. If all port

numbers at v are assigned simultaneously, then each outgoing arc has probability

1/d(v) of receiving a �xed port number i. We claim that if the port numbers are

assigned one at a time, only as needed by the robot, then the same probabilities

are achieved. For the �rst outgoing arc, the probability of receiving any given port

number i1 is obviously 1/d(v). For the second arc to be labeled, the probability

is d(v)−1
d(v)

∗ 1
d(v)−1 = 1

d(v)
because we must �rst know that the port number chosen

is not i1, and then we have d(v) − 1 choices for which i2 will be chosen of the

d(v) − 1 possibilities remaining. For the k-th arc to be labeled, we must �rst

know that i1, i2, . . . , ik−1 are not chosen and then there are d(v) − k possibilities

remaining. So the probability is d(v)−k
d(v)
∗ 1

d(v)−k = 1
d(v)

. This proves the two random



3. APPLICATIONS 12

processes are the same, so we are free to think of the assignment of port numbers

as occurring one assignment per step of the robot. This viewpoint will make our

theorems and proofs much easier to understand.

3. Applications

Simple random walks have found numerous applications in computer science,

and it is natural to wonder if the random basic walk could be applied in simi-

lar situations. The most famous application of simple random walks is probably

the Markov Chain Monte Carlo algorithm for solving combinatorial optimization

problems ([45]). Unfortunately, this application has no hope of a random basic

walk generalization because the random basic walk is not Markovian. However,

there are many other applications of simple random walks including network rout-

ing, rumor routing, searching and query processing on distributed networks, load

balancing and self-stabilization of such networks as a way to counteract transmis-

sion failure, energy savings on large networks, image processing, exploration of

unknown terrain, and clustering.

Many of these applications discussed above rely on simple random walks be-

cause of their simplicity of implementation, savings on time and memory, and

local nature. The random basic walk shares many of these features, and this

section discusses several applications where the random basic walk could also be

applied. Furthermore, because both the simple random walk and random basic

walk rely on randomness, both should give robust applications, i.e. applications
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which can survive structural changes caused by failures, sleep modes, etc. As

many of these applications make use of facts about cover time and load balancing

from the theory of simple random walks, the analogous notions for the random

basic walk would need to be developed before one could determine the utility of

applying random basic walks in a similar way.

Many of these applications above are discussed in [7] as potential applications

of the simple random walk with choice (RWC) which those authors introduce.

The RWC makes use of a small amount of local memory to choose its next direc-

tion based on which neighbor has been visited the least. The RWC shares some

properties with the random basic walk: randomness, use of local memory, local

decision rule, and favoritism for visiting new nodes (which the basic walk has

before cycling occurs). Thus, one can hope that problems for which RWC leads

to good applications will also admit applications of the random basic walk.

Due to the increasing number of monitoring applications which make use of

a large network of small, smart sensors, there is great demand for search and

distribution algorithms with small overhead. Several such algorithms make use

of random walks. One famous algorithm for searching the internet is PageRank

(see [15]). Another is topic-sensitive PageRank, which computes the stationary

probability distribution coming from a simple random walk on websites (see [41]).

Another application of random walks to sensor networks is [6], which focuses on

robust query processing. This paper suggests an application of the random basic
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walk because only a constant fraction of the sensor network needs to be visited.

Similarly, [14] considers algorithms for routing on a sensor network. It introduces

rumor routing, which is a compromise between �ooding queries and �ooding event

noti�cations on a network. Rumor routing works by creating paths which lead to

each event, so queries move on the network via a simple random walk to �nd the

event path to the correct event.

Peer-to-peer networks are more general than sensor networks or the internet

network. Algorithms for searching peer-to-peer networks are proposed in [64] and

[53], and make use of k simultaneous simple random walks to �nd the necessary

data. In this setting, the query is the random walker, and making use of random-

ness leads to savings on bandwidth and energy consumption. [2] also considers

the problem of saving energy during distributed computation. In this paper, the

simple random walk is used to control when transmitting nodes are activated.

Further work in [39] quanti�es the e�ectiveness of simple random walk methods

for searching peer-to-peer networks.

Another paper which is concerned with saving energy during distributed com-

putation is [66]. Like [2], this paper allows nodes to switch from active to inactive

and vice versa at random times, and it studies routing in this context via con-

strained random walks on dynamic graphs. As with the random basic walk, these

algorithms do not require nodes to maintain state information. This paper goes

beyond [2] in that load balancing is also studied as a way to save on energy. In
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order to apply the random basic walk to the dynamic system, one would need to

develop a notion of constrained random basic walks. The �rst step in this direc-

tion is the equivalent formulation of the random basic walk discussed in Section

1.2.

Another type of network is an ad-hoc network, which relies on wireless links

between entities rather than infrastructure such as telephone lines. Due to partial

transmission failure, failure of communication links, and noisy transmission, this

is a �eld where algorithms which can stabilize themselves after a failure are highly

valued. In [27] the authors use simple random walks to create an algorithm for

self-stabilizing communication in ad-hoc networks.

When one studies networks, it is often advantageous to arrange the nodes

in a certain way so as to make use of the topology in algorithms. [48] focuses

on the problem of constructing good topologies on distributed networks, with a

focus on networks satisfying certain expander properties. It makes use of simple

random walks to deal with where to put new nodes to maintain the properties of

the topology. This comes down to using the simple random walk as a sampling

algorithm to sample potential places the new node could be put.

Simple random walks are also applied beyond the study of networks. For exam-

ple, [40] and [57] apply simple random walks to segmentation in image processing.

In particular, both use hitting time computations: the former to determine which
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labels should be associated to which pixels, the latter to determine how to as-

sign a keyword/classi�cation to an image as a whole. Another example is [71],

which uses the connection between simple random walks and electrical networks

discussed in [29] to give a method for exploring a continuous planar domain which

contains very few sensors. This paper relates the cover time to the electrical re-

sistance in the domain. Finally, [1] applies simple random walks to the problem

of graph clustering via de�ning a cluster to be the set of vertices visited by a sim-

ple random walk before some stopping criterion has been met. This paper uses

multiple simultaneous simple random walks for the same purpose.

It is the author's hope that the random basic walk will be useful for some

applications similar to those discussed above. Already [37] and [24] have shown

that (non-random) basic walks can improve over simple random walks. The bene�t

of random basic walks over non-random basic walks is savings on overhead and on

the memory and computations required by individual nodes. It is likely that more

theory will need to be developed before random basic walks can �nd applications

like those above�especially theory related to �nite graphs.

4. Outline of Thesis

Chapter 2 is devoted to studying the existing literature and previous work

on this question. In particular, we include a comparison of the random basic

walk with other types of random walks and quasirandom processes. In Chapter

3 we give numerous examples to better understand how the basic walk works.
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These examples will be cited throughout the rest of the paper. In Chapter 4

we prove an analog of Pólya's theorem for the random basic walk on lattices Zd,

and discuss consequences for the expected maximum number of vertices visited

and for the expected number of vertices visited. We then extend this result to

arbitrary graphs of bounded degree, and we also provide an example that proves

the bounded degree hypothesis is necessary.

An in�nite grid is an approximation to a continuous situation, e.g. a robotic

vacuum cleaner vacuuming a room. Thus, we feel the results in Chapter 4 have

the potential to be very useful for applications. However, the random basic walk

was �rst considered on �nite graphs, and so in Chapter 5 we also consider �nite

graphs. In [20] the authors conjectured that [n] × [n] was an in�nite family of

graphs on which the random basic walk can be expected to visit a large fraction of

the nodes before becoming trapped. This conjecture is still open, but in Chapter

5 we prove that the complete graphs Kn are such a family of graphs. We end with

several new conjectures and directions for future study.



CHAPTER 2

Related Random Processes

In this chapter we seek to develop an intuition and a historical context for the

random basic walk by considering related random processes. There are two key

properties of the random basic walk: it has the ability to get trapped, and it's

de�ned via local labels at each vertex. Certain generalizations of random walks

have had each of these features before, but none seem to have both features at

once. The most notable generalization of the simple random walk which allows

the walker to become trapped is the self-avoiding random walk. We'll discuss

this random process in the Section 2.1 and summarize a few of its key properties.

Related to the self-avoiding random walk are reinforced random walks, which we'll

also discuss. The most notable random process which is based on local orientations

and labels on arcs is the rotor router model discussed in Section 2.3. We'll de�ne

this model, list some of its properties, and explain how it is di�erent from the

random basic walk.

We will not require knowledge of self-avoiding random walks, reinforced ran-

dom walks, or rotor routers in future chapters, so readers who are interested only

in new results should skip to the next chapter. The only other novel work in this

chapter is in Section 2.3, where we propose a random rotor router which is related

18
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to the rotor routers in exactly the same way that the random basic walk is related

to the basic walk. We hope that this notion is of interest to those studying rotor

routers and we hope that the methods of Chapter 4 prove useful to that study.

We will discover in Chapter 4 that the random basic walk has di�erent cycling

and transience properties than the random processes considered here, i.e. the

intuition for in�nite graphs is wrong. Nevertheless, we will discuss the recurrence

question for all of these random processes to show how it has driven their study

and to demonstrate that this is an important question for any random process

which generalizes a random walk. Furthermore, the intuition from this chapter

on �nite graphs might prove useful for solving the open problems of Chapters 5

and 6, even though it was not useful for in�nite graphs.

1. Self Avoiding Random Walks

A vertex self-avoiding random walk is a sequence of vertices (v0, v1, . . . ) where

no vi is repeated, i.e. a path without self intersections. One way to make this rigor-

ous is to de�ne an n-step vertex self-avoiding walk as a map ω : {0, 1, . . . , n} → Zd

such that |ω(i+ 1)− ω(i)| = 1 and ω(i) 6= ω(j) for all i 6= j. Vertex self-avoiding

random walks can be constructed as simple random walk with a constraint (i.e.

conditioned on the event of having no self intersections). Because of this con-

straint, vertex self-avoiding random walks are not Markovian. As with the basic

walk, traps are possible in this model, since a path can terminate in a vertex
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whose neighbors have all been visited before. A nice exposition of the theory of

vertex self-avoiding random walks is given in [67].

Pólya's original proof of Theorem 1.2 proceeded by counting the number of

walks of length n which were recurrent, dividing this by the total number of

walks of length n, and taking the limit as n → ∞. There were many reasons for

introducing self-avoiding random walks�most notably their connection to chain-

like entities in chemistry ([34])�but one of the most interesting mathematically

is that for self-avoiding random walks the problem of counting paths is highly

nontrivial. One of the driving questions in the �eld is how fast the set of non-

intersecting paths of length n grows in various graphs. Another interesting reason

to study self-avoiding random walks is for their connection to load balancing and

cover time. If the walk is forbidden to reuse any vertex, then this is optimal for

load balancing. However, this restriction may make it impossible to cover all of

the graph, which is far from optimal for cover time.

Because the vertex self-avoiding walk is disallowed from returning to the origin,

one cannot frame the recurrence question in exactly the same way as for the simple

random walk. If the individual vertex self-avoiding random walks are the object of

study, then none are recurrent. One could attempt to de�ne a transience-cycling

dichotomy as we did in Section 1.2, i.e. de�ne a vertex self-avoiding walk to

be transient if the probability of the walk getting arbitrarily far away from the

origin is nonzero, but it is unclear what the correct measure should be. The main
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problem here is that a simple random walk will almost surely have intersections,

so one cannot get a useful measure on the set of in�nite self-avoiding paths by

conditioning in�nite simple random walks. Furthermore, the set of trapped paths

on Zd is countable, but the set of paths which escape to in�nity is uncountable

when d > 1. Thus, the question of cycling vs. transience is not the right question

for the vertex self-avoiding random walk.

If one wishes to study vertex self-avoiding walks using simple random walks,

then one must know the probability of two simple random walks intersecting. On

Z2, with probability one, any two simple random walks (x0, x1, . . . ) and (y0, y1, . . . )

will have in�nitely many n with xn = yn. This is because the di�erence sequence

(x0 − y0, x1 − y1, . . . ) is a simple random walk and so must hit 0 in�nitely many

times by Pólya's Theorem. It is known that on Zd for d > 4 the probability of two

independent simple random walks of length n intersecting is bounded away from

0 as n→∞ (see [49]). Thus, vertex self-avoiding random walks are much easier

to understand in high dimension than in low dimension because in high dimension

there is enough space to avoid traps. In particular, it is shown in [68] that for

d > 4 the vertex self-avoiding random walk behaves like the simple random walk

in the sense that it weakly converges to Brownian motion. The situation is much

more complicated for d = 3 and d = 4, and is an active area of research.

There is another way in which a random walk can avoid itself. An edge self-

avoiding random walk is a sequence of vertices (v0, v1, . . . ) where no edge (vi, vi+1)
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is repeated, but vertices may be repeated. From the facts above it is easy to see

that on Z2, with probability one, any two simple random walks will share an edge

(xn, xn+1) = (yn, yn+1) in�nitely many times, simply because there are in�nitely

many xn = yn and a nonzero probability each time that xn+1 = yn+1. Similarly,

on Zd for d > 4 the probability of two independent simple random walks of length

n sharing an edge is bounded away from 0 as n → ∞ since sharing an edge

requires sharing vertices. Again, the situation for d = 3 and d = 4 is much more

complicated.

In the random basic walk, the path of the robot is not a simple random walk

but behaves like one at vertices which have never been visited before, since all

outgoing arcs are equally likely. At vertices which have been visited before, the

random basic walk can act in two di�erent ways. If the robot enters by the same

port which was used to enter this vertex previously, then the robot will be in a

cycle, i.e. the rest of the walk is completely determined. If the robot enters by

a new label, then it cannot exit by the same arc it exited by previously, so the

robot moves as a particle in an edge self-avoiding random walk. The facts above

might lead one to the intuition that for the random basic walk there should be

some critical dimension d such that one expects the robot to get stuck in a cycle

on Zs for s < d but one expects the robot to escape on Zt for t > d. We will see

in Chapter 4 that this intuition is incorrect.
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We end this section with a note on how the random basic walk can also be

understood to be analogous to a vertex self-avoiding random walk. Given a basic

walk on a graph G one can de�ne a new walk, which will contain exactly the same

information. Consider the directed graph Ĝ whose vertices are the arcs from G,

and where we draw an arc from e1 to e2 if the target v of e1 is the source of e2

and if the label L(e2) = (L(e1) mod d(v)) + 1. Label this arc in Ĝ by L(e2). A

basic walk on G immediately de�nes a walk on Ĝ. If a vertex of Ĝ is ever visited

twice, this means a directed arc in G is traversed twice, i.e. there is a cycle in

G. Thus, until the random basic walk cycles, the walk on Ĝ behaves like a vertex

self-avoiding random walk.

2. Reinforced Random Walks

Because self-avoiding random walks do not have a good recurrence-transience

problem, one might consider a random walk which simply makes reusing a vertex

or edge less likely rather than completely disallowed. This leads to the notion

of reinforced random walks: a continuous family of probability distributions (de-

pending on a parameter β) such that self-avoiding walks are obtained in the limit

as β → 0. Because no edge in a reinforced random walk is ever disallowed from

use, there is no notion of trapping for these types of random walks. Unfortu-

nately, reinforced random walks appear to be even harder to understand than

self-avoiding random walks. We now discuss reinforced random walks in more

detail.
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The edge reinforced random walk, originally introduced in [23], is de�ned simi-

larly to the simple random walk, but the probability of moving from a vertex vn to

a neighbor vn+1 depends on how many times each edge out of vn has been crossed.

Let Gn be the σ-�eld σ(v0, . . . , vn), i.e. the history of the walk up to vertex vn.

Let N(x, y) denote the number of times the edge {x, y} has been traversed (in

either direction) at the moment when the walker is at vn. Then

P (vn+1 = w | Gn) =
1 +N(w, vn)∑

y∼vn(1 +N(y, vn))

Unpacking this de�nition, we see that the edge reinforced random walker

prefers edges it has walked on before. Similarly, the vertex reinforced random

walk (�rst introduced in [60]) makes use of conditional probabilities, but weights

P (vn+1 = w | Gn) by the number of times the vertices neighboring vn have been

visited. This number can be di�erent from the number of times {vn, z} has been

crossed, since the vertex z could have been visited via edges which did not involve

vn. A comprehensive treatment of these two processes is given in [61], and that

is where the de�nition above comes from.

The recurrence question for vertex reinforced random walks is partially re-

solved in [70], where it is shown that for almost all graphs the walk will visit

only �nitely many vertices with positive probability. Furthermore, for all trees of

bounded degree the walk will visit only �nitely many vertices with probability 1.

This result is conjectured for all graphs of bounded degree, but is not proven.
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The recurrence question for edge reinforced random walks is settled for trees in

Theorem 5.2 of [61]. However, it is still open for most graphs and in particular for

all lattices Zd. This unfortunate gap in knowledge makes it impossible to apply

the theory of edge reinforced random walks to random basic walks.

A simpler version of the edge reinforced random walk is the once-reinforced

random walk, where we only retain the information of whether an edge has been

crossed or not, rather than the information of how many times it has been crossed.

One change to the model from [23] is to allow a parameter β > 0 governing how

much the walker cares about traversing an edge it has already traversed. In this

model, we allow our graph edges to have weights, and we begin with all edges

weighted 1. Every time an edge with weight 1 is crossed the weight is changed to

β. The probability that the walker will cross an edge e out of a vertex v is

weight(e)∑
w∼v weight({w, v})

Note that each of these weights depends on the walk leading up to v, just as

in the model from [23]. If β < 1 then the walker prefers to move along edges it

has never traveled before. If β > 1 then the walker prefers to retrace its steps.

It is clear that in the limit as β → 0 we recover the self-avoiding random walk.

The question of recurrence vs. transience on once-reinforced random walks is

addressed in [65] and the walk is proven to be recurrent on Z and on {0, 1} × Z

for all β. The question is still open on {0, 1, 2} × Z and on Zd for d > 1.



3. QUASIRANDOM PROCESSES 26

There are numerous other generalizations of random walks in this vein, includ-

ing reinforced random walks of sequence type, reinforced random walk of matrix

type, vertex reinforced jump processes, weakly reinforced random walks, weakly

self-avoiding walks, loop erased random walks, multi-agent random walks, random

walks with restarts, and directionally reinforced random walks, and recurrence

questions have been studied on all of them.

3. Quasirandom processes

The second main trait of the random basic walk, after its ability to get trapped,

is the fact that there are pointers on all vertices and a local deterministic rule by

which the robot decides which direction to move next. This is reminiscent of the

rotor router model popularized in recent years by Jim Propp, and we now discuss

this model. Because the rotor router model is a model of quasirandom processes,

we must �rst de�ne some very general terms.

A random process is a sequence of random variables describing a processes

whose outcomes are controlled by probability distributions rather than a deter-

ministic pattern, e.g. simple random walks are random processes describing the

motion of the walker. A pseudorandom process is a deterministically generated

process whose behavior is designed to exhibit statistical randomness, e.g. random

number generators. A quasirandom analogue of a random process X is a deter-

ministic process designed to give the same limiting behavior as X but with faster

convergence. Quasirandom processes usually fail to exhibit statistical randomness
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but do capture information like recurrence. The quasirandom analogue of simple

random walks on directed graphs is the rotor router model.

The rotor router model consists of the following data. At every vertex v �x

a cyclic ordering on the outgoing arcs e1, e2, . . . , ed where d is the out-degree

of v. From this ordering, create an in�nite periodic sequence of period d via

e1, e2, . . . , ed, e1, e2, . . . ). This sequence is called the rotor pattern at v. Next, a

rotor is placed at each v�initially pointing in the direction e1�and a particle is

started at some initial vertex v0. The rotor router model can be understood as

an automaton, with states (v, `) where v ∈ G is the position of the particle and

` is the direction of the rotor at v. The transition rule is as follows: when v is

�rst visited, the rotor rotates to e2 and then the particle exits by e1. When v is

next visited, the rotor rotates to e3 and then the particle exits by e2, etc. Thus,

the direction of the rotor determines which vertex a particle visiting v visits next.

The collection of rotor patterns over all vertices is called the rotor con�guration.

The path of the particle is called a rotor walk.

Rotor routers were �rst introduced in [63] as an o�shoot of the abelian sandpile

model of [10] which studies self-organized criticality. They have been heavily

studied by Jim Propp (e.g. [38, 42, 43]) and are claimed to �better than random�

because the central limit theorem behavior is achieved immediately, rather than

requiring a large number of time steps. For instance, if one iterates a rotor router

on Z starting at any vertex 0 < v < n and stopping when either 0 or n is reached,
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then exactly half the particles will reach 0 before n. In particular, subsequent

runs will alternate which of these two options occurs, and this holds for any rotor

con�guration. The Central Limit Theorem predicts this behavior, but would

require many more time steps to conclude that the proportion of particles reaching

0 before n is 1/2. Similarly, for any target vertex t, iterated rotor walks will hit t

with the same frequencies as one would expect from a simple random walk.

Rotor routers have found numerous applications, including load balancing for

parallel processing, protocol broadcasts on networks, mergesort, and internal dif-

fusion limited aggregation ([36]). A nice reference for facts about rotor routers is

[51]. Unlike the random basic walk or the simple random walk, a rotor walk is

completely deterministic. It does not appear that any papers have studied what

happens when the rotor patterns are chosen according to a random process as is

done in the random basic walk. We now pause to formalize this idea.

Let G be a directed graph. For every vertex v, let Cv denote the set of cyclic

orderings on the set of arcs going out of v. Let Xv be a probability distribution

on this set and choose a cyclic ordering based on Xv. The rotor pattern selected

is the random rotor pattern at v with respect to Xv. The collection of random

rotor patterns over all v ∈ G is the random rotor con�guration on G with respect

to {Xv | v ∈ G}. Placing a rotor on each vertex, selecting an initial vertex v0,

and starting a particle from v0 with the transition rule of the rotor rotor model
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de�nes the random rotor router model as an automaton with states (v, `) just like

the rotor router model. The path of the particle is called a random rotor path.

The random rotor router model is most analogous to the random basic walk

when all the probability distributions above are uniform distributions. Because

this notion has not appeared in the literature, very little is known about the

random rotor router model, and there are numerous interesting questions. Some

results are known (the theorem below, for instance) because some of the results in

the literature for rotor routers do not depend on the rotor con�guration. However,

many of the papers on rotor routers require the rotor con�guration to satisfy

certain properties, and it would be interesting to know whether the results of

these papers are also true for random rotor routers.

There are several other di�erences between rotor walks (even random rotor

walks) and the random basic walk. For instance, no matter which direction a

vertex v is entered from, the rotor will determine the exit direction. This leads

to rotor walks bouncing around between a small number of vertices until rotors

have rotated su�ciently to allow the walker to escape the cluster. Furthermore,

the rotor walk can never become trapped. This is not immediately clear, but is a

consequence of the following theorem of Cooper and Spencer ([22]):

Theorem 2.1 (Cooper-Spencer Theorem). Suppose one begins with a set of

particles on vertices of Zd with even distance from the origin, and that all particles

undergo simultaneous rotor walks for n steps. Let RR(v) denote the number of
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particles at v at the conclusion of this process. Let RW (v) denote the expected

number of particles at v if the particles moved via simple random walks rather

than rotor walks. Then there is a constant Cd depending on d but not on the rotor

con�gurations, the time n, or the initial placement of particles such that for all v

|RR(v)−RW (v)| < Cd

Furthermore, the constant Cd is known for d = 1 and d = 2

This theorem also answers the recurrence question for rotor routers and ran-

dom rotor routers. In particular, it says that if we start a particle at the origin

and allow a rotor walk to run for in�nitely many steps then in Z2 we expect all

vertices to be visited but in Zd for d > 2 it is possible some vertices will not

be visited. Thus, the (random) rotor walk behaves in a recurrent manner on Z2

and in a transient manner on Zd for d > 2, though the notions of recurrence and

transience of rotor routers do not appear to be in the literature. This result is

another di�erence between the (random) rotor walk and the random basic walk,

as can be seen from Theorem 4.2.



CHAPTER 3

Examples

In this chapter we will consider several examples of the basic walk, both to

gain a better understanding of how it works and because these examples will be

used again in the proofs of Chapter 4. The starting vertex will always be denoted

by v, and the port orientations are given in the �gures. If there is a label ` on

an arc into v then the reader should start the basic walk from v with the label

` + 1 and follow arcs of increasing port number step by step until the pattern is

understood. If there is no label, then the reader should start with the arc leaving

v with label 1, and should try di�erent initial labels until they see the pattern.

1. Trapping Con�gurations

Example 3.1. The following port orientations near vertex v ∈ Z2 force the

robot to be trapped:

v
1
// •

2
��

•
i+2

// v

i+1

yy

i+3

// •

i

xx

•

4

OO

•
3

oo •

i
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The second can be rotated to yield four con�gurations, where v is entered either

from the north, south, east, or west. We will refer to any of these four port

orientations (with any entering port i) as a trapping con�guration T . In a random

31
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basic walk, the con�guration T occurs with probability c = (1/4)3 · (1/3) since the

probability of the edge labeled i + 1 receiving that label is 1/4, the probability of

i + 2 is 1/4, the probability of i + 3 is 1/3, and the probability of i is 1/4. This

con�guration T and the fact that it occurs with probability c > 0 will be used in

the proof of Theorem 4.1.

It is easy to generalize T to hold in Zd, using the fact that Zd is 2d-regular so

a node only needs d neighbors to form a trap. Rather than 3 collinear vertices,

the trap will be made up of a central vertex v and d neighbors all living on some

hyperplane of dimension d − 1 in Zd. Call such con�gurations Td. They exist

because the hyperplane is 2(d − 1)-regular and 2d − 2 ≥ d for all d ≥ 2. These

examples will be used in Chapter 4 to understand how random basic walks on Zd

behave.

Graphs other than Zd can also have traps. For instance, let G be the hexagonal

lattice. Often when considering questions on in�nite lattices it is easier to work

with the hexagonal lattice, but the random basic walk is one interesting place

where it is harder. The reason is that the hexagonal lattice is 3-regular but

triangle free. This means that a cycle must use at least 6 arcs, so a trap at a

vertex v cannot consist entirely of neighbors of v which have not been visited by

the robot yet.
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Example 3.2. The following con�gurations can trap the robot on the hexagonal

lattice above.
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The left-hand trap is a star-shaped trap which consists of the central vertex

v, two neighbors a and b which have not been visited yet by the robot, and the

neighbor w from which the robot entered v. This trap requires the use of a vertex
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the robot has visited before, however only the arc from v back to w is needed for

the trap to exist, so the existence of the trap is independent from the walk leading

up to v, as long as v, a, and b have not been visited yet. We refer to this trap as

a star V .

The right-hand trap consists of three vertices which have not been visited

before and a path between them which will trap the robot forever between these

three vertices and v. We refer to this trap as a spire S. In a random basic walk,

both V and S occur with constant probability.

2. Non-regular graphs

On a regular graph G of degree d, one knows that the basic walk will take a

step labeled t mod d in time step t, i.e. there is a global clock controlling which

label to use. This is not true on non-regular graphs:

Example 3.3. Consider the star graph, where the port numbers shown are for

v, and all port numbers coming into v are 1, since all nodes other than v have

degree 1. • • w

• v

2
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•

• • •

If the basic walk was controlled by a global clock then this would suggest the

robot follows the 1 arc out of v, then returns, then follows the 3 arc, then returns,
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then follows the 5 arc, etc. However, what actually occurs is that no matter which

arc the robot follows out of v it returns by an arc labeled 1. Thus, it must leave

v by the arc labeled 2. It is now trapped between that vertex w and v forever.

3. Interesting labelings on Z2

A nice property of simple random walks is that they are guaranteed to visit

every vertex in Z2 with probability 1 if left to run for enough steps. It will be

shown in Chapter 4 that this property fails for the random basic walk. However,

given the initial vertex and port number in Z2 it is possible to produce in�nitely

many labelings such that the basic walk will explore the whole graph.

Example 3.4. Fix an initial vertex v0 and an initial direction i. Then there is

an in�nite family of labelings on Z2 starting from v0 and direction i which explore

the whole plane. This is obtained by spirals with east-west stretch factor k ∈ Z>0.

The cases shown are k = 1 and k = 2:
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One should avoid the assumption that the starting vertex and port are �xed

before the labeling is chosen, since in practice a robot could be placed anywhere
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by its owner and expected to explore its surroundings. Without the assumption

of a �xed starting place and initial port, the author does not know if there is a

labeling such that the basic walk visits every vertex. However, there are labelings

such that the basic walk from any vertex and with any initial port is transient.

In this �gure, each edge represents arcs going in both directions, and the label on

the edge is the label on both of the two arcs.

Example 3.5. A labeling in Z2 where any basic walk escapes to in�nity:
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Every starting vertex v and port i leads to an in�nite staircase moving in the

directions speci�ed by i and i+ 1 which gets further away from v with every step.

This example generalizes to Zd with a staircase consisting of a sequence of moves,
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one in each of the d directions. This example yields an in�nite family of examples

where the basic walk escapes to in�nity from any starting vertex and any initial

label: simply add in blocks of 4 columns which act like plateaus for the robot to

move east or west for 4n steps between a given north-south step on the staircase.

The case above is n = 0; the case below is n = 1, with dotted lines to distinguish

the block of new columns. For n > 1 one must simply insert n copies of this block:

Example 3.6. An in�nite family of labelings where all basic walks escape to

in�nity:
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A basic walk which begins outside the block will either move away from it by

a staircase or will move towards and eventually connect with the new columns.
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At that point, the robot will enter by a port 4 and will cross without moving

north or south. On the other end, the staircase will continue and the robot will

escape. A basic walk which begins inside will always exit and then move away via

a staircase. If the initial port used takes the robot east or west, then the robot

will cross through the block and move away by a staircase. If the initial port

used takes the robot north or south, then it is clear that the robot can move by

at most two rows before turning and exiting on an east-west path. This example

demonstrates that Theorem 4.2 only holds for almost all labelings.



CHAPTER 4

Random Basic Walks on In�nite Graphs

This chapter addresses the question of transience vs. cycling on in�nite graphs

G, where the assumptions of connectedness, countability, and local �niteness are

always implicit. The question is resolved for lattices Zd in Section 1, for regular

graphs in Section 2, and for graphs of bounded degree in Section 3, where also an

example is given to show the hypothesis of bounded degree cannot be dropped.

In Section 2, a proposition is proven which shows that there are arbitrarily long

paths and cycles on any regular graph, but the random basic walk is unlikely to

hit them.

1. Transience and Cycling on Integral Lattices

Recall the con�gurations T from Example 3.1. Such T could occur any time

the random basic walk on Z2 visits the center vertex of three collinear vertices

where none has been visited before. If any of the vertices have been visited before,

then T may be impossible, since it could be the case that the one of the labels

T requires has already been assigned to a di�erent arc by a previous step of

the robot. There are other ways for the robot to be trapped, but we need only

consider a speci�c instance of T for Theorem 4.1. A transient random basic walk

39
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must avoid T in�nitely many times, but this is impossible, since T occurs with

constant, nonzero probability.

Theorem 4.1. In Z2, the random basic walk cycles with probability 1.

Shells Method. Let v0 denote the starting vertex. We'll prove that the

probability of cycling is 1, i.e. the probability of escaping to in�nity is zero. Once

we have this fact, the probability of a transient basic walk will be Pr(∃ vertex x

which the walk can escape to in�nity from) = 0 because it's a countable union of

events, each of probability zero. Consider the following picture:

...

• • • S3 • • •

• • • S2 • • •

• • • S1 • • •

. . . • • • v0 • • • . . .

• • • • • • •

• • • • • • •

• • • • • • •
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Here the Sn are concentric squares (a.k.a. shells) of side length 2n centered at

v0. For the random basic walk to be transient, the robot must pass Sn for all n,

since any basic walk on a �nite graph trivially cycles. If the robot reaches Sn, then

denote by vn the �rst vertex reached on Sn. Because Sn is a square, vn cannot be

a corner as there is no arc from the interior of Sn to a corner. This means vn is

the center of three collinear vertices on Sn, none of which have been visited, i.e.

there is a constant, non-zero probability c that the con�guration T will occur at

v. Indeed, c = (1/4)3 · (1/3) as discussed in Example 3.1. Let En be the event

that the walk reaches Sn and the �rst time it does so (i.e. at vn) is not a trapping

con�guration.

Let E be the event that the robot gets in�nitely far from v0, i.e. the basic

walk is transient. Clearly E =
⋂
En because in order to get distance greater than

n from v0 the robot must pass Sn and must not be caught in a trap. For the basic

walk to be transient, this must occur for all n. Conversely, if the robot passes

each Sn then the walk is clearly transient.

Note that E1 ⊃ E2 ⊃ E3 . . . , since the robot reaching Sn implies it reached

Sn−1 (and didn't get trapped) but there are other ways to reach Sn−1. This means

Pr(E) =
∏

n∈N Pr(En | En−1). To bound Pr(En | En−1) note that the probability

of a path from Sn−1 to Sn existing is ≤ 1 and the probability that the �rst vertex

visited on Sn is not a trap is ≤ 1− c, which is strictly less than 1 because c > 0.

Thus, Pr(En | En−1) ≤ 1∗(1−c) for all n. This implies Pr(E) ≤
∏

n∈N(1−c) = 0.
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�

As usual for in�nite random processes, the theorem only holds almost every-

where, as demonstrated by Example 3.5. This theorem is not so surprising, since

the analogous fact about recurrence on Z2 holds in the simple random walk and

all its generalizations discussed in Chapter 2. More surprising is that the same

proof idea generalizes to show the following result:

Theorem 4.2. For any d, the random basic walk on Zd cycles with probability

1.

Proof. For d = 1, it is easy to see that most labelings cause traps of size

2. Any time a pair of adjacent vertices has both arcs between them with non-

equal labels, the robot will move back and forth between the two forever. Thus,

in order for a random basic walk on Z to be transient, the labels must alternate

. . . , 1, 2, 1, 2, 1, 2, . . . . This occurs with probability 0 = limn→∞(1/2)n, so the

random basic walk cycles with probability 1.

For d > 2, the proof uses the same ideas as in Theorem 4.1, but with the

trapping con�gurations Td instead of T and with shells Sn which are d-dimensional

hypercubes of side length 2n centered at v0. The con�guration Td is de�ned such

that the robot moves to a neighbor, then returns to v, then moves to a di�erent

neighbor, etc until 2d arcs have been traversed. At this point the port numbers

at v force the robot to retrace these same 2d steps ad in�nitum. As above, let vn
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be the �rst vertex visited on Sn. The con�gurations Td can occur on any d − 1

dimensional face of Sn since the neighbors of vn will have no port numbers assigned

when vn is �rst visited (as in the d = 2 case).

The con�guration Td occurs with constant probability cd = (1/2d)d·(1/2d)(1/(2d−

1)) . . . (1/(d+1)) because of the d port numbers at v and the individual port num-

ber which must be assigned at each of the d neighbors of v used in the trap. Clearly

cd > 0 so 1−cd < 1. De�ne events En and E as in the d = 2 case. The same proof

(using cd instead of c) proves that Pr(E) =
∏

n∈N(1 − cd) = 0, i.e. the random

basic walk on Zd cycles. �

The fact that the random basic walk continues to cycle as d grows, rather than

becoming transient at some d, proves that the random basic walk is very di�erent

from types of random walks studied previously. The proof of Theorem 4.2 will

generalize to any class of graphs on which shells can be formed and on which the

number of neighbors on a shell is larger than the number needed to form a trap,

i.e. a class of graphs satisfying certain expander properties.

The method of proof above actually gives a bit more than just the statement

of the theorem�it can be used to get a bound on the expected number of vertices

visited by the random basic walk. For instance, in Z2 we have c = 1/192. If the

robot only moves in one direction, say east, then every step reaches a new Sn and

has a chance of yielding a trap. The event of trapping is then described by a

geometric distribution, and the expected number of vertices visited before a trap
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is reached is 192. Including the trapping vertices boosts this overall number to

194.

The maximum number of vertices visited is obtained by the spiral of Example

3.4. With this labeling the robot could visit all vertices inside Sn before reaching

Sn+1. By the argument above the robot is expected to reach 192 shells, so this

means the robot visits 1922 + 2 = 36866 vertices. Hence, E(vertices visited) ≤

36866 for the random basic walk in Z2, and this bound also holds for the graphs

Gk,n for k, n ≥ 192. Consideration of more ways to trap than just the con�guration

T would boost the probability of trapping and thereby give a better bound than

36866.

Determining the expected number of vertices visited precisely appears to be

a non-trivial problem. We will return to this question in Chapter 6. We remark

here that the question of the expected maximum length of a cycle is much simpler.

Proposition 4.6 shows that there are cycles of arbitrarily large size which the robot

can fall into, but in practice the random basic walk will most likely become trapped

in a small cycle. Note that there is a labeling where every vertex is in a 4-cycle,

but this labeling occurs with probability zero, so does not contradict Proposition

4.6.

2. Transience and Cycling on Regular Graphs

Robots should be able to explore regions which are not square-shaped, so this

leads to consideration of graphs other than Zd. For regular graphs of degree d, the
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random basic walk requires at least d+1 vertices to form a trap, due to the global

clock mentioned in Example 3.3. This global clock can tell any vertex which label

to use based solely on how many steps have been taken so far. The reason is that

all vertices can agree on how to get from a global time t to a permissible label

i�namely, set i = t mod d and if this value is 0 then set i = d.

Recall that the proof of Theorem 4.2 generalizes to prove some class of ex-

pander graphs have cycling random basic walk. Unfortunately, this class of graphs

does not contain all regular graphs. In particular, it does not contain the hexag-

onal lattice, due to the considerations in Example 3.2 regarding the fact that this

graph is triangle free. Thus, a new proof method is needed to prove the random

basic walk cycles on the hexagonal lattice, and this proof method will generalize to

arbitrary regular graphs (where G is always assumed to be countable, connected,

and locally �nite).

Theorem 4.3. On the hexagonal lattice, the random basic walk cycles with

probability 1.

Spires Method. Recall the spires from Example 3.2. Denote the starting

location of the random basic walk by v0. Let Sn = {v | d(v0, v) = 4n} and let

Dn = {v | d(v0, v) ≤ 4n}. Let En be the event that the robot reaches Sn and

that the �rst vertex where that occurs (call it vn) does not have a spire in the

region between Dn and Sn+1. Note that spires consist of 3 vertices past vn, but

the number of vertices between Dn and Sn+1 is 4, so the spire will be completely



2. TRANSIENCE AND CYCLING ON REGULAR GRAPHS 46

contained in the region between Dn and Sn+1. Spires in this region are guaranteed

to consist of vertices which have not been visited by the robot before, i.e. the port

orientations are independent of the history of the random basic walk.

Independence of port orientations guarantees that the probability of a spire

from vn towards Sn+1 is a constant probability c > 0. For the spire drawn in

Example 3.2, the probability is c = (1/3)3(1/2)3 because of the six arcs used.

The probability of getting from Sn to Sn+1 without re-entering Dn is ≤ 1. Thus,

Pr(E) =
∏

n∈N Pr(En | En−1) ≤
∏

n∈N (1− c) = 0, proving that the random basic

walk cycles with probability 1. �

It is likely that analogues for Example 3.5 exist for the hexagonal lattice, i.e.

that it is possible to have a transient labeling. The author does not know if there

is a way to place such a labeling on an arbitrary regular graph G.

Note that the proof above generalizes for any regular graph G of degree d > 2.

The case for d = 2 is analogous to the argument for Z in the previous section.

For d > 2, replace the 4n in the de�nition of Sn and Dn by (d + 1) ∗ n and

de�ne a spire to be vn followed by d other vertices between Dn and Sn+1. These

spires will occur with constant, non-zero probability, so the same computation as

above proves Pr(E) = 0, i.e. the random basic walk cycles with probability 1.

Summarizing:

Theorem 4.4. On any locally �nite, d−regular graph G, the random basic

walk cycles with probability 1.
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An interesting corollary is that a random basic walk on the bi-in�nite binary

tree must cycle. In the binary tree the probability of going up at any given vertex

is 1/3 while the probability of going down is 2/3. It is tempting to compare the

random basic walk on this vertex with a biased random walk on Z and conclude

that the robot escapes to the downwards in�nity. However, the spires argument

demonstrates that this intuition is o� the mark, since a walk on the binary tree

must cycle.

As in the case of Theorem 4.2, this proof method gives an upper bound on the

expected number of vertices visited, though not necessarily the expected maximum

number (for a longest tour). If one considers more spires, e.g. spires which are

jagged in a di�erent way than the one shown in Example 3.2, then the probability

of trapping via a spire is greater than c, so the upper bound can be improved.

Furthermore, using the traps V from Example 3.2 will also give a proof and will

vastly reduce the upper bound on the expected number of vertices visited because

the shells will only need one layer of vertices between them rather than the 3

layers required for spires.

We conclude this section with a result that shows the question of expected

maximum length of a cycle is unbounded. This surprising fact gives the opposite

intuition about the random basic walk on regular graphs than the theorem above,

but does not contradict the theorem because these cycles are very rare.
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Proposition 4.5. Let G be a locally �nite, d-regular graph with port orienta-

tions selected uniformly at random as in Section 1.2. Then the following statement

holds with probability 1: for all n ∈ N there are in�nitely many pairs (v, `) such

that a random basic walk starting at v with initial port ` will visit n vertices.

Proof. Fix n and let v be an arbitrary vertex. Because G is in�nite, there

must be some path in G of length n which always moves away from v in the graph

metric. Let Pn,v be the event that one such path has the appropriate labels so

that a random basic walk starting at v with initial port ` will move directly away

from v along the path for n steps. The probability of Pn,v is a constant, non-zero

number cn = (1/d)n which does not depend on v. Select a sequence of vertices

(v1, v2, . . . ) which are all distance at least 2n away from each other, so the events

Pn,vi are independent from each other. Then the probability that none of the

events Pn,vi occur is (1 − cn) ∗ (1 − cn) ∗ (1 − cn) ∗ · · · = 0. This proves there is

some vj which has a path of length n going out.

Let w1 = vj. Removing vj from the list (v1, v2, . . . ), one can repeat the same

argument and conclude that some other vk must have a path of length n going

out, since the probability of not having such a vk is (1 − cn) ∗ (1 − cn) ∗ · · · = 0.

Set w2 = vk. Repeating this ad in�nitum proves that there is an in�nite sequence

(w1, w2, . . . ) each of which has a path of length n going out. �

Note that the random basic walk starting at a random vertex v0 is unlikely to

visit any of the wi. Extracting bounds from Theorem 4.4 on the expected length
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of the random basic walk shows that the random basic walk is unlikely to visit

a large number of the vertices vi. The probability that a given vi has a path

of length n going out is (1/d)n, and the random basic walk will most likely not

visit anywhere near dn many of the vi. From the proposition above that there are

paths of arbitrary length, it is easy to conclude that there must also be cycles of

arbitrary length.

Proposition 4.6. Let G be a locally �nite, d-regular graph with d > 2 and

with port orientations selected uniformly at random as in Section 1.2. Then the

following statement holds with probability 1: for all n ∈ N there is some vertex v

which is contained in a cycle of length greater than n. Indeed, there are in�nitely

many such v.

Proof. Fix n ∈ N and let M denote the �rst multiple of d which is greater

than n. By Proposition 4.5 there is an in�nite sequence of vertices (w1, w2, . . . )

each having a path of lengthM going out. For each wi there is a constant, nonzero

probability kn that this path is actually a spire, i.e. that the random basic walk

will move out to the end of this path, then turn around and return to wi. Because

d divides the length of the path, this spire will be a cycle using M vertices, i.e.

the random basic walk will traverse it back and forth forever. Note that d > 2 is

needed in order for the random basic walk to return along the spire rather than

getting trapped in a cycle on the �nal two vertices of the spire.
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The probability that none of the paths from Proposition 4.5 are spires is (1−

kn) ∗ (1− kn) ∗ · · · = 0. Thus, there must be some wi which is the �rst vertex in

a cycle of length greater than n. Set z1 = wi and remove wi from the sequence

(w1, w2, . . . ). Repeating the argument above proves that there is some z2 = wj 6=

wi which is the �rst vertex in a cycle of length greater than n. Continuing forever

gives an in�nite sequence (z1, z2, . . . ) where each zi is the �rst vertex in a cycle of

length greater than n. �

These propositions prove that there is no bound on the maximum length of

a path or cycle which the random basic walk could hit. They do not give the

expected average length of a cycle or even a bound for it. We return to this

questions in Chapter 6.

3. Transience and Cycling on Locally Finite Graphs

We conclude this chapter with a theorem which subsumes the previous theo-

rems and for which the hypotheses cannot be weakened further. In particular, we

shall no longer assume G is regular, though we retain our standing assumptions

that G is connected, countable, and locally �nite. Note that the spires argument

does not generalize to non-regular graphs because there is no guarantee that such

a spire at a vertex v can be used to make a trap. For instance, if v has degree

at least 4 but the only neighbors of v have degree 2 then there is no assignment

of port numbers to the vertices on the spire which will force a cycle, because it
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is impossible to enter v by an arc labeled 3 or 4. To make the spires argument

generalize would require an assumption of a strong expander property on G.

Rather than placing such an assumption, we seek di�erent types of trapping

con�gurations. The solution is to generalize con�guration V given in Example

3.2. For a �xed vertex v of degree d(v) which is visited on the random basic

walk by a port i from v−1 → v, consider the following con�guration Cv: any port

orientation at v is acceptable as long as the arc from v → v−1 is labeled by i− 1.

Furthermore, for every neighbor w 6= v−1, if the arc from v to w is labeled by j,

then the arc from w to v must be labeled by j′ = (j mod d(w)) + 1.

The con�guration Cv forces a trap at v because it is impossible for a random

basic walk to get distance 2 away from v once reaching v. However, this con�gu-

ration may be impossible for some v. Several things can go wrong, all having to

do with independence of the occurrence of Cv from the random basic walk leading

up to v. One problem is that a neighbor w may have been visited before and the

port number j′ out of w may have already been assigned. Indeed, the probability

that the correct port number is on the arc w → v is only 1/d(w).

Another problem is that v−1 might have degree larger than d(v) + 1. If this

occurs, and if i > d(v) + 1 then the arc from v to v−1 cannot have the label i− 1

required, because i − 1 > d(v). If d(v−1) ≤ d(v) then Cv occurs with probability

pv = (1/d(v)) ∗
∏

1/d(w) where this product is over all neighbors w 6= v−1. To

see this, it is best to view the random basic walk as only labeling one arc per
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step, as discussed in Section 1.2. In order to guarantee that the con�gurations Cv

will occur, the assumption needed on G is that there is a constant D such that

d(v) < D for all v (i.e. G has bounded degree).

Theorem 4.7. On any graph G with all vertex degrees bounded by a constant

D, the random basic walk cycles with probability 1.

Star Method. The pigeonhole principle guarantees us that there are in-

�nitely many vertices v with a neighbor w of degree d(w) ≥ d(v). This is because

every time a vertex v only has neighbors of smaller degree, all those neighbors

have a neighbor (namely, v) with larger degree. If the random basic walk is to

have any chance of escaping to in�nity, then it must be the case that in�nitely

often the robot moves from a vertex v to a vertex w such that d(v) ≥ d(w). This

uses the hypothesis of bounded degree, since the robot cannot move along a chain

from a vertex of degree 1, to one of degree 2, to one of degree 3, etc. Such a chain

would eventually hit a vertex of degree D and then need to move to one of degree

≤ D.

Label the steps of the robot which move from larger degree to smaller degree

by w1 → v1, w2 → v2, . . . , where wi = wj is allowed but vi 6= vj for i 6= j is

disallowed by removing the pairs (wi, vi) where vi has appeared in the list before.

Clearly removing pairs with repeated second coordinate will not change the fact

that there are in�nitely many such pairs.
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Whenever the random basic walk takes a step wi → vi from the list above, let

Ei be the event that the con�guration Cvi is achieved. Let N denote the set of

neighbors of vi which are not wi. Because d(vi) < D, it is clear that |N | < D.

Furthermore, d(x) < D for all x ∈ N , so

Pr(Ei) =
1

d(v)
∗
∏

x∈N(v)

1

d(x)
>

1

D
∗
(

1

D

)D

Denote the number on the right by c, and note that this number is strictly

greater than 0. In order for the random basic walk to escape to in�nity, the event

Ei must be avoided for in�nitely many vi. So the probability p that the random

basic walk escapes to in�nity satis�es p ≤ (1− c) ∗ (1− c) ∗ · · · = 0, proving that

the random basic walk cycles with probability 1.

�

It is worth noting that achieving Cv may be more than is necessary, since not

every neighbor of v needs to be used in a cycle (see Example 3.3). For this reason,

an upper bound on the expected number of vertices visited created from the proof

method above could be quite bad. Some graphs do require all the neighbors of v

to be involved in a trap, as discussed further in Chapter 5.

The �nal question we consider in this chapter is whether or not the hypotheses

of the theorem can be weakened. The hypothesis of local �niteness is necessary in

order to de�ne the labeling, since arcs out of vertices of in�nite degree could not

be given labels in the same way. Furthermore, the following example proves that
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the hypothesis of bounded degree cannot be dropped. This graph has unbounded

degree and the probability of a path to in�nity is strictly greater than zero.

Theorem 4.8. Let T be the tree where every vertex in level n has 2n children.

As usual, the root is in level 0.

•

•

• •

...
...

...
...

...
...

...
...

Then the random basic walk on T is transient, i.e. has nonzero probability of

escaping to ∞.

Proof. A random basic walk on T will always have a higher probability of

going downwards than of going upwards. It is clear that the random basic walk

starting at the root will be more likely to cycle than a random basic walk starting

at a vertex lower down on T , since the probability of returning will always be

higher near the root. Thus, we will focus on the case where the initial vertex is

the root. From the root, the initial step is determined because the root has degree

1.
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De�ne an event P to be �for each i, the robot is distance i away from the root

at step i� i.e. �all steps are away from the root.� Note that Pr(escape) ≥ Pr(P )

since P is a way for the robot to escape. De�ne events Pi to be �at step i the

robot is distance i from the root.� Clearly, P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ P =
⋂
Pi, so

Pr(P ) =
∏
Pr(Pn | Pn−1). Because each vertex has only one arc pointing back at

the root, Pr(P0) = Pr(P1) = 1,Pr(P2 | P1) = 1− 1
3
≥ 1− 1

2
,Pr(P3 | P2) = 1− 1

5
≥

1− 1
4
, and in general

Pr(Pm | Pm−1) = 1− 1

2m−1 + 1
≥ 1− 1

2m−1 . Thus: Pr(P ) ≥
∞∏

m=2

1− 1

2m−1

=
∞∏
n=1

1− 1

2n
and taking logs yields ln(Pr(P )) ≥

∞∑
n=1

ln

(
1− 1

2n

)

Note that the inequality is preserved after applying ln because ln is an increas-

ing function. Proving Pr(P ) > 0 is equivalent to proving this sum is greater than

−∞. Recall the Taylor Series expansion of ln(1− x) around 0:

ln(1− x) = −x− x2

2
− x3

3
− . . . for − 1 ≤ x < 1

Because −1 ≤ 1/2n ≤ 1 for n ≥ 1, this equality holds. Thus:

ln(Pr(P )) ≥ −
∞∑
n=1

1

2n
− 1

2

∞∑
n=1

1

22n
− 1

3

∞∑
n=1

1

23n
− · · · − 1

k

∞∑
n=1

1

2kn
− · · · ≥
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∞∑
n=1

−1

2n
+
∞∑
n=1

−1

22n
+
∞∑
n=1

−1

23n
· · · = −1/2

1− 1/2
+
−1/22

1− 1/22
+
−1/23

1− 1/23
· · · ≥

∞∑
n=0

−1

2n
= −2

To show 2−k/(1 − 2−k) ≤ 2−k+1 as needed in the last inequality, note that

1− 2−k ≥ 1/2 so that 2−k/(1− 2−k) ≤ 2−k/(2−1) = 2−k+1.

Undoing the log shows that Pr(escape)≥ Pr(P ) ≥ eln(Pr(P )) ≥ e−2 > 0. This

proves there is a positive chance that the robot escapes, i.e. the random basic

walk is transient. �



CHAPTER 5

Random Basic Walks on Finite Graphs

In this chapter we return to the question of �nite graphs which originally

motivated the random basic walk in [20]. In that paper, the authors hoped that

in a random basic walk the robot would do a good job exploring the �nite graph

Gk,n, i.e. would cover a constant fraction of the nodes. In light of the theorems

in Chapter 4 this seems unlikely, as the robot does a very poor job of exploring

in�nite graphs. Still, in [20], experimental evidence is given which suggests that

the random basic walk on [n]× [n] visits 1.2701 · |G|1.8891 of the nodes.

This experimental evidence does not appear to be the same as c ∗ |G| so in

this chapter we prove that K = {Kn} is an in�nite class of graphs where the

random basic walk is asymptotically expected to explore a constant fraction of

the nodes. Furthermore, K is useful in practice because it is a class of graphs

where the robot is given more freedom of movement than on square lattices, i.e.

it may more closely mimic some real world applications.

Theorem 5.1. As n→∞, a random basic walk on Kn is expected to visit at

least (1− 1/e) ∗ n nodes.

Proof. We prove a stronger statement, namely that (1−1/e)∗n of the nodes

are expected to be visited within just the �rst n− 1 steps. Restricting to the �rst
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n − 1 steps guarantees that cycles are impossible, since any cycle in a d-regular

graph a cycle requires at least d arcs. Label the vertices 0, 1, 2, . . . , n − 1 and

assume that the starting vertex v0 is labeled by 0. Consider the sequence of vertex

numbers (v0, v1, v2, . . . ) visited by the robot. This sequence cannot have adjacent

numbers equal, since Kn has no loops. Furthermore, this sequence cannot have a

pair of adjacent numbers occur twice, since acyclicity implies no arc is traversed

twice.

Let v 6= v0 be a vertex chosen at random. We will prove that the probability

that v is visited is ≥ 1 − 1/e. The probability that v is visited on step 1 of the

robot is Pr(v = v1) = 1/(n − 1), since there are n − 1 possible steps the robot

could take after v0. If v is not visited in step 1, then the probability that v is

visited on step 2 of the robot is Pr(v = v2 | v 6= v1) = 1/(n − 1). Step 3 is more

complicated, because it is possible that v2 = v0, in which case the arc v2 → v1

already has a label. So there are two ways to get v = v3 given that v has not been

visited previously:

Pr(v = v3) = Pr(v = v3 | v2 = v0)∗Pr(v2 = v0)+Pr(v = v3 | v2 6= v0)∗Pr(v2 6=

v0)

=
1

n− 1
∗ 1

n− 2
+

1

n− 1
∗ n− 2

n− 1
>

1

n− 1
∗ 1

n− 1
+
n− 2

n− 1
∗ 1

n− 1
=

1

n− 1

The cases for v4, v5, . . . get even more complicated, but the point remains that

1/(n− 1) is always a lower bound on the probability that v is �rst visited in step

i + 1. This is because if vi has been visited k times before, then the existence of
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these previous visits rules out more of the possible arcs the robot could follow.

This can only increase the probability that the next vertex to be visited is one

the robot has not visited before (e.g. v), and this makes the messy computations

summations which factor in the entire path of the robot unnecessary. Formally,

the probability that v is �rst visited on the i + 1-st step given that vi has been

visited k times previously will be 1/(n − k) ≥ 1/(n − 1). This proves that Pr(v

not visited on i-th step) ≤ 1− 1/(n− 1) for all i, which implies

Pr(v not visited in �rst n− 1 steps) =
n−1∏
i=1

Pr(vi 6= v) ≤
(

1− 1

n− 1

)n−1

As n→∞, this bound tends to 1/e, so the probability that v is visited in the

�rst n− 1 steps is at least 1− 1/e. Thus, the expected number of vertices missed

is ≤ n/e and the expected number of vertices visited is ≥ (1− 1/e) ∗ n. �

Note that the method of proof above mimics the proof that the cover time

for a simple random walk on Kn is O(n log n) (see e.g. [52]). The theorems in

Chapter 4 are evidence that the random basic walk is more constrained than the

simple random walk. This fact also means that the random basic walk is better

than a simple random walk when it comes to exploring Kn in the �rst n − 1

steps. However, the random basic walk can get stuck in a cycle and fail to visit

every vertex whereas the simple random walk is guaranteed to visit every vertex

with probability 1, so the improvement of the random basic walk over the simple
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random walk comes with a price. The following example shows that the random

basic walk can fail to visit every vertex, even on Kn:

Example 5.2. The following is a K10, where only 10 edges are shown and

these 10 edges form a cycle. The basic walk only visits half the vertices.
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Having considered how the random basic walk on Kn visits vertices, we shift

our attention to how it samples from the set of labeled arcs. A cycle occurs exactly

when an arc is traversed in the same direction for the second time, and we would

like to know how many arcs we can expect the robot will traverse before this

occurs. Experimental evidence privately communicated by Sunil Shende suggests

the following conjecture:

Conjecture 5.3. The expected number of arcs traversed by a random basic

walk on Kn is 1.8 ∗ n as n→∞.

Before remarking on how one might prove this conjecture, we discuss a di�erent

way to prove Theorem 5.1. First, consider the following process X to create a

sequence (xn):

• x1 = 1
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• Choose x2 uniformly at random from {2, . . . , n} = [n]− {x1}

• Choose x3 uniformly at random from [n]− {x2}

• Choose x4 uniformly at random from [n]− {x3}

• Continue in this way, stopping at xn

This process is very related to the process which creates the sequence (vn), i.e.

the sequence obtained by following the random basic walk and writing down labels

for vertices visited. This is because when the robot �rst reaches xk (entering by

label ik), there are n−1 neighbors and all are equally likely to have arc xk → xk+1

be labeled by (ik mod n) + 1. Let Vi be the number of vertices visited after the

i-th step, i.e. the number of unique integers appearing in (v1, . . . , vi). Let Xi be

the number of unique integers appearing in (x1, . . . , xi).

The Occupancy Problem states that the expected value of Xn is (1− 1/e) ∗n.

The di�erence between the random basic walk process and X is that if the random

basic walk has visited xk before, then the probabilities are di�erent because now

at least one of the arcs leaving xk cannot receive the new label. Because these

probabilities are not very di�erent, Pr(Vk = c) and Pr(Xk = c) only di�er by a

small amount. It is possible that a coupling argument can be used to show that

the expected value of Vn = (1 − 1/e) ∗ n. Basic information about coupling can

be found in Chapters 4 and 5 of [50]. The �rst step if one wished to pursue

this method would be to compute the total variation distance between the two

distributions.
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We now return to the conjecture, which concerns the sequence ((v1, `1), (v2, `2), . . . )

of vertices and ports. The data of a pair (vi, `i) is exactly the data of a labeled

arc. One way to �nd the �rst instance of a repeated (vi, `i) pair, is via a coupling

argument with the following process Z from elementary probability theory:

• Select an integer r1 uniformly at random from [n] and set z1 = (1, r1)

• Select an integer r2 uniformly at random from [n] and set z2 = (2, r2)

• Continue in this way all the way up to zn = (n, rn)

• Select an integer rn+1 uniformly at random from [n] and set zn+1 =

(1, rn+1)

• Continue in this way up to z2n = (n, r2n)

• Keep going until some zk has already appeared in the list, then stop.

This process Z is similar to the Birthday Problem if it were being run in n

di�erent rooms with stopping criterion given by a match in any room. In the

�rst n steps there are no chances for repetition, because of the �rst coordinate

in each zi. Between step n + 1 and step 2n, every step brings a probability of

1/n of a repetition. After step 2n (if the walk gets that far), each step brings a

probability of 2/n of a repetition. The distribution Z is something like a sequence

of geometric distributions where the probabilities of repetition change every n

steps. A recursion discovered by Danny Krizanc and Sunil Shende proves that the

expected k such that Z terminates is exactly the number 1.8 ∗n suggested by the

experiments on Kn (up to 10 digits). To formalize the connection between the
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process Z and the process given by the random basic walk, a coupling argument

should be used.



CHAPTER 6

Conclusion

We have introduced the notion of a random basic walk of [20] to in�nite graphs

G, have introduced an equivalent formulation of how the labeling is done in the

random basic walk so that it is allowed to set labels one at a time rather than

all at once, have catalogued potential applications of the random basic walk, and

have provided detailed comparisons between the random basic walk and existing

generalizations of simple random walks. Furthermore, we have introduced the

notion of a random rotor router, and have discussed notions of transience for

rotor routers and self-avoiding random walks which do not seem to appear in the

literature elsewhere.

We have de�ned analogues in the setting of random basic walks of the recur-

rence and transience properties of simple random walks, have proven a theorem

which states that any graph of bounded degree has a cycling random basic walk,

and have shown that these hypotheses cannot be removed. We have studied nu-

merous examples of the type of behavior which can occur, and have demonstrated

that the cycling and transience results only hold with probability 1. From the the-

orems above, we have extracted upper bounds on the expected number of vertices
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a random basic walk will visit on G, and these bounds will apply to the graphs

Gk,n of [20] for k and n su�ciently large.

We have also extended the knowledge about random basic walks on �nite

graphs, in particular proving that {Kn | n ∈ N} is an in�nite class of graphs on

which random basic walks asymptotically visit a constant fraction of the nodes.

We have stated a conjecture based on experimental evidence which regards the

asymptotic expected number of arcs traversed in {Kn | n ∈ N}, and have sketched

how a proof of this conjecture might proceed. We end now by stating several

problems regarding the random basic walk on �nite graphs which are still open,

and discussing why these questions are interesting.

Question 6.1. In Z2, what is the expected length of time (i.e. the expected

number of steps taken) before the random basic walk hits a cycle? What is the

expected size of a cycle? What about these questions on Gk,n? What about the

expected maximum length of a random basic walk on Gk,n?

If the �rst two questions could be answered, then we would also know the

expected number of vertices visited, and potentially the expected number of arcs

used. An interesting invariant to study for the random basic walk might be the

expected number of arcs used per vertex visited. These same questions are of

course also interesting on Gk,n, and the answers should be related as k, n → ∞.

Indeed, the values for Gk,n are already bounded from above by the proof method

of Theorem 4.1.
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Proposition 4.5 and Proposition 4.6 show that results on Z2 cannot be used to

answer the �nal question above or even to give a nontrivial bound. However, for

�xed k, the theory of percolation may be useful as a way of proving n is a lower

bound on the expected maximum distance the random basic walk will travel on

Gk,n. The theory of percolation discusses when a particle will be able to move

from the left-most column to the right-most column, which requires at least n

steps. Currently, no nontrivial bounds are known.

One way to proceed on the �rst two problems is to �nd the probability that a

given vertex v (with starting port i) is part of a cycle, i.e. a random basic walk

out of v will return to v along an arc labeled i − 1. Due to the symmetry in Z2

this number p will be the same for every v. One way to compute p is to look at

all possible walks using just three vertices and cycling, then all using four vertices

and cycling, etc. The author hopes that there will be a pattern after enough small

examples are worked out, and suspects that Young tableaux will be of use.

If one can compute the probabilities pi of traps using i vertices, then the

expected length of a cycle is
∑
k ∗ pk as k runs through N. Furthermore, p =

∑
pi

and knowledge of p can be used to �nd the expected length of a walk before the

random basic walk falls into a cycle, i.e. before a vertex v is reached via a label

which causes a cycle at v. The step of the walk before reaching v is a step w → v

such that w will never be visited again, but v will be visited in�nitely many times.

The goal of understanding cycles better leads to the following two questions:
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Question 6.2. How does punching large holes in the graph Z2 a�ect the ex-

pectations above?

This question is of interest because it relates to the initial motivation for

considering the random basic walk, i.e. a robot vacuuming a room. The large

holes will represent furniture which the robot must move around. Furthermore, it

is expected that having holes in the graph might lead to long cycles which move

around those holes.

Problem 6.3. Study the random basic walk with the constraint that there are

no vertices which have two di�erent incoming arcs with the same label.

This problem is interesting because the basic walk falls into a cycle at v if

and only if v has the property disallowed above. If such labelings are disallowed

then the basic walk can never fall into a cycle, but cycles are still possible if the

initial vertex v0 with the initial label is part of a cycle. The constrained random

basic walk has never been studied, and questions of cycling and transience are

completely open.

Problem 6.4. Determine whether or not there is a graph G, analogous to

the Rado graph, such that every �nite graph with local orientations sits inside G

in the same way that �nite graphs sit inside the Rado graph, i.e. such that any

automorphism of a �nite graph with labeling extends to an automorphism of G.

Determine whether or not G is unique up to isomorphism.
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In order for this problem to be solved, a good notion of graph homomorphism

for graphs with local orientations would need to be developed. The Rado graph is

constructed as a Fraïssé Limit, and this construction might also work to construct

G, but the details would need to be checked.

The next three problems are motivated by the theory of simple random walks

on �nite graphs, as discussed in Section 1.1.

Problem 6.5. Create and study an analogue of the hitting time for the random

basic walk.

The author suggests the following: either the probability pv1 of reaching a given

vertex v before returning to the starting vertex or the probability pv2 of reaching

v at all. For simple random walks, computation of hitting time it is often related

to the Dirichlet problem for harmonic functions, and this relationship is used to

give a bound on the hitting time in [56]. Related to the problem above are the

following two problems:

Problem 6.6. Create and study an analogue of the mixing time for the random

basic walk.

Problem 6.7. Create and study an analogue of load balancing for the random

basic walk.

The second problem seems more tractable and should be related to the number

of vertices a random basic walk is expected to visit.
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Several questions were mentioned in the main body of the thesis, and we repeat

them here for completeness.

Question 6.8. Is there a labeling on Z2 such that the basic walk from any

initial v0 and any initial port will visit every vertex? Is there an in�nite family of

such labelings? What about for Zd with d > 2?

This question was originally mentioned in Section 3.3. Another question which

arose in Section 4.2 was to �nd analogues of the labelings given for Zd which work

on the hexagonal lattice:

Question 6.9. On the hexagonal lattice, are there labelings which allow the

basic walk to escape to in�nity from any starting vertex and with any initial port?

Are there labelings such that the basic walk visits every vertex regardless of where

it starts? Is there a method of constructing such examples for general graphs G?

It is likely the desired labelings can be found for the hexagonal lattice, espe-

cially the �rst one asked for above. It seems unlikely there is any construction

which will hold for general graphs G. The following is the last question from the

main body of the thesis, which appeared in Section 2.3:

Problem 6.10. Study random rotor routers and determine if they bear any

resemblance to the random basic walk.

We hope that at least some of these questions and problems will be pursued

and will yield interesting answers.
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