Data Streaming Methods for Linear Regression Inference Testing

Colin Smith

Abstract

We investigate the problem of performing linear regression inference tests on large data streams.
An improvement upon traditional methods is required due to the volume of data involved. We
explore three methods to perform a linear regression inference test, in ways that mitigate the
problems that arise from working with Big Data. Our first method treats the data stream as any
other data set. This naive method calculates exact values for the 5 coefficients in the linear model,
and gives the most accurate results in the inference test. Our second method uses sampling to
conduct an inference test that achieves an effect size provided by the user. Our third method
computes inference tests and R? values in a sliding window, in case the slope coefficient changes
over time. With these three solutions in hand, we give a user numerous options to effectively
perform linear regression inference on large data streams. Our code is publicly available, and we
include numerous experiments to demonstrate its application. We also include a word on inference
for multivariable linear regression models.

1 Introduction

Over the course of the past century the volume of data produced every day has increased
exponentially. With this increase it has become infeasible to store all of it at once. In the face
of this problem, new techniques for analyzing these data must be created. One such technique is
the data streaming model. Streaming algorithms are used for a number of applications from large
scale data analysis to database management and optimization [I][2][3][4]. Over the past decade,
much research has been conducted in this field of study, but statistical testing over data streams
has been only a very small subsection of this field.

Statistical inference is one of the pillars of statistics. It is one of the major methods by which
we analyze data to verify and improve our models about the real world. Linear regression inference
tests are among the most common statistical inference tests. A linear regression inference test asks
if the slope, 51, of our regression line y = 81 - « + By is equal or not equal to zero. Given a linear
model, whether this slope is equal to zero or not is equivalent to the question of whether or not
the variables x and y are correlated. Because we do not know the true population we must use
estimators Bl and Bg to figure out if the true §’s within some reasonable error.

In the past, statisticians have had trouble analyzing data sets of extreme size by traditional
methods [5]. This paper consists predominantly of methods for performing a linear regression
inference tests on very large data streams. A data stream is a series of data points that, in the
most interesting applications, is too long to store on the computer processing the data [7]. Either
a data center holds all of the data or the data is being created in real time. This means that either
only a substantially smaller subset of the data stream must be looked at, or the analysis must occur
in real time and no data is stored. For all methods in this paper, the stream is a sequence of (x,y)
data pairs.

Data streams are the setting for algorithms in the field of Big Data. As Big Data becomes more
important in every day life we recognize that it is important to discover efficient methods to process

1

and analyze these streams, in order to make use of all of the data we gather. As with any field of
technological development, there are many problems that arise in the setting of Big Data, which
must be overcome in order to use the advancements Big Data offers. In this paper, we find several
effective algorithms to run linear regression inference tests over data streams, which mitigate such
problems. We then examine the pros and cons of each method for various purposes in the analysis
of data streams.

In computer science, it is standard to analyze algorithms in terms of time and space complexity.
As this pertains to streaming algorithms, we note that linear space is impossible because the entirety
of the stream cannot be stored, so if space were to increase in proportion to the size of the stream,
our algorithm would not be viable. Likewise, time complexity must be near linear, as looking at
all of the data is a very expensive operation. Therefore, we find algorithms that run a number of
operations proportional to only the size of the stream.

In Section 3.1} we analyze a simple, effective approach to the problem of running linear regression
inference tests over data streams. This method is able to find the exact values of BO, Bl, and
SBI, which allow us to perform a linear regression inference test, with only one pass over all
of the data. This solution runs in linear time and requires logarithmic memory with respect
to the length of the data stream. We examine the problems with this approach in Section (3.2
and offer a solution to that problem using uniform random sampling in Section In Section
[we examine a different solution using a sliding window, which has a looser set of required
assumptions. We discuss the potential problems with this solution in Section 4.2] and how we
counteract these problems in Section Section [5| documents a synopsis of the testing we did to
show our algorithm’s effectiveness. Code for all algorithms detailed in this paper can be found on
GitHub at https://github.com/cmsmitty441/LinReg_Stream.

2 Related Works

Linear regression is a powerful and well-studied tool for statistical analysis. While inference
testing of linear regressions has not been explored before in streaming context, linear regression
on its own has been. The general case for linear regression involves not just a pair of variables,
dependent and independent, but has an arbitrary number of variables. A streaming algorithm
to fit an ordinary least squares linear regression model has been done in [8]. While this solution
is effective for finding linear regression coefficients ﬂAZ in a stream, it does not suit our purposes,
because the sampling method used in [§] inflates the standard error in the B’S, and hence leads
to incorrect confidence intervals and p-values. Briefly, the algorithm in [8] creates a sketch (i.e.
a sample from the stream) chosen in a way to bias in favor of large leverage points, and hence
increases variability. Mathematical details on leverage and its connection to variance may be found
in [9]. Streaming algorithms for other important statistical tools such as the x? test [10] and the
Kolmogorov-Smirnov test [11] have also been discovered.

Because linear regression is such a well-studied topic, there are a number of well-known and very
sophisticated ways to calculate a number of important statistical measures. The most important
of these is Welford’s method. Welford’s method allows us to calculate the variance and covariance
without error in a cumulative fashion. Typically, this calculation would have to be done in two
passes, as it normally requires a pre-calculated mean. But, by the formulas given in [12], we can
update the variance and covariance in only one pass over the data stream, which allows linear
regression to be exactly calculated in a very efficient manner.

In order to do our statistical inference test, we include a fast algorithm to compute p-values for
t-distributions and normal distributions. Luckily, this is a well-researched topic, and our algorithm
makes use of the relationship between the gamma function and these distributions [13]. In order to
use the normal distribution for our p-value computation, in Section [3| we assume the classic linear
regression assumptions [14]:

https://github.com/cmsmitty441/LinReg_Stream

1. the data represents a simple random sample (of size n) from some unknown population (in
particular, pairs of data points (z;,y;) and (x;,y;) are independent),

2. the data exhibits a linear relationship y = £y + f1x + €, for fixed constants By, 81, and an
error term e,

3. homoskedasticity, i.e. the standard deviation of the error term e does not depend on x, and

4. the error terms are distributed according to a normal distribution with mean 0 and standard
deviation o.

We note that the normality assumption is not strictly necessary for our results, since the Central
Limit Theorem guarantees our slope estimate Bl will be approximately normally distributed for
large n [14].

In Section we relax the assumption that 8y and 5 are constant over the entire stream, and we
allow for the possibility that these quantities are changing over time. This means that for certain
windows of time, we can have a statistically significant relationship between x and y, while at other
times the relationship can fail to be statistically significant (i.e. 81 = 0).

3 Testing Over an Entire Data Stream

In this section we provide an algorithm which utilizes all of the data in the data stream to
calculate the linear regression coefficients, Bo and Bl, as well as the standard error in Bl, S 5
We then use these values to calculate a p-value with which we can reject or fail to reject the null
hypothesis, Hy. The data stream represents the totality of our simple random sample for the
purposes of statistics. This has a few drawbacks related to the volume of data and how it affects
our interpretation of the statistics. The first of these solutions has been dubbed the basic approach,
wherein each data point in the data stream updates our relevant variables. The second method is
to take a random sample as an estimate of the data. This solves a number of the problems from
the basic solution.

3.1 The Basic Approach

The most basic solution is simply to look at each data point as it streams in, and use an update
algorithm to update all of the values that we need to keep track of in order to compute the 41 and
its standard error. Because our stream has no limit to its size, an algorithm for these values that
has to look at stream elements multiple times is not particularly useful.

The values we are concerned with for calculating the beta coefficients are S,, the variance in
the dependent variable x, and Sy, the covariance in the dependent and independent variables x
and y. In order to calculate these values we will need running variables for the mean values of x
and y as well as a count of the number of items which have passed in the data stream. In order
to calculate the standard error in the beta coefficients we also have to keep track of the mean of
the values x - y and y?. The following recursive formula keeps a running mean for the sequence
{q1,¢2, ..., qn}; to begin the iteration gy = 0. We represent the mean of all values of ¢ up to the nt*
value as @,.

1
Qn = Qn—-1 + E(Qn - Cﬁz—l) (1)

We use this to keep mean values for x, y, = -y, and y?, by setting g, equal to the values x,, yn,
Ty, - Yn, and 32 respectively for all such values.

The following two equations are used to keep a running value for the variance in the dataset
{Z1,...,xn}, Sz n, and the covariance in the dataset {(x1,y1),..., (Zn,Yn)}, which we dentote Syyn

3

[6][12].
S:BTL =

)

(= Zn-1) - (x — ZTn) — Sx,n—1> (2)

Szy,n - ((l’ - 'fn—l) ’ (y - gn) - S:vy,n—l) (3)

S|— 3|+

The algorithm to update these values is shown in Algorithm 1 (below).

Algorithm 1: The Update Algorithm

1 INPUT: the data stream

2 set count, meanX, meanY, meanXY, MeanY?, variance, and covariance to 0;
3 for each (x,y) in stream do

4 count+4+;

5 M, j—1 = meanX;

6 meanX += (x - meanX)/count;

7 My 1,—1 = meanY;

8 meanY += (y - meanY)/count;

9 variance += ((x - My ,—1)-(x - meanX) - variance)/count;

10 covariance += ((x - My ;—1)-(y - meanY) - covariance)/count;
11 meanXY += (x-y - meanXY)/count;

12 meanY? += (y? - meanY?)/count;
13 end

OUTPUT: count, meanX, meanY, meanXY, MeanY?, variance, and covariance

[a=y
N

Once we have run this algorithm over the data stream we determine our Bl by the typical
formula: By = <ariance@y) onq By with By = § — 412 [15]. We can then find the standard error of

variance(z)

Bi, S 5,> using the following formulas [15]:

szni2 [Z?/?ﬁozyzﬁlzfzyz] (4)
i=1 i=1 i=1
n

né:l:v? — (zn: :vi>2

i=1

S, =5 (5)

Through a short bit of manipulation we can convert the unwieldy equations above into more
useful forms. First we distribute 7 through our formula for S2.

§2 = = [v? - oy - Br77 (6)

Then, by the definition of variance, 02, we can see the following [15]:

o? ==L - (7)
Yot (L)
-5 ®
nia}?— ixz i

Therefore we can rewrite the formula for S 4

(10)

Because we have our S 4 in terms of variables that we have kept running values of, we know we can
calculate it after our update algorithm has been run on all items in the data stream. We use the
quantities Bl and S 5, to conduct our hypothesis test. Recall that the null hypothesis, Hy, assumes
£1 = 0, while the alternative hypothesis is that 81 # 0. Because we are dealing with a huge number
of data points, the Central Limit Theorem implies that the statistic BI is approximately normally
distributed with mean (; and standard deviation S 4, Thus, we can use a normal distribution

to determine our z-score and p-value. The z-score is Bl/ S 4 and the p-value is calculated using a
p-value calculator. This is the main output of our algorithm: using the p-value we can reject or fail
to reject the null hypothesis Hy. The output is 1 if we rejected and 0 if we failed to reject.

This algorithm suffers from having to look at every item in the stream, which for extremely
large data streams is a problem. Even though the update algorithm can run extremely quickly,
with so many data points, it will still take an unfeasible amount of time to run through the largest
of data sets. The algorithm does benefit, however, from having constant memory for almost all of
it’s variables.

It is standard to report the asymptotic time complexity (resp. space complexity) of an algorithm
using Big O notation. We remind the reader that this notation represents the asymptotic number
of operations (resp. bits)[16]. This means that as we increase the size of the input, the behavior
of the algorithm approximates the form given in the notation. For example, counting may require
O(loga(n)) bits because we can use n bits to represent 2" unique numbers. A more formal definition
for this notation can be found on page 36 of [16].

Because of our assumption that the population has a true 3 and o2, which do not grow with the
size of the stream, the only variable that is dependent on the size of the data stream is the count.
This value requires O(log(n)) bits where n is the size of the stream. We can use fewer bits by using
approximate counting, but this will introduce an error into the variables as the count will not be
100% accurate. An example of approximate counting would be to use Morris counting, which can
keep an approximate count using only O(log(log(n))) bits [17].

3.2 The Effect Size Problem

The aforementioned solution has another major flaw. As the size of the data stream grows ever
larger, the effect size of the inference test grows ever smaller. We can see this from the equation
for effect size:

(11)

where z, is the z value for a given confidence level (often 1.96 in statistics), S is the standard
deviation of the sample (in this case, S = 54), and n is the sample size.

This means that given enough data we will reject the null hypothesis under almost any circum-
stances. So, with these astronomical volumes of data we need to make a determination between
what is statistically significant and what is practically significant. Imagine the case that you are
testing the correlation between weight and salary in a large population. In your model, you may
expect that the correlation coefficient is such that a person makes $100 less for each pound heavier
they are, so 8 = —100 . But, perhaps the true value of 3 is -$100.001. This is a difference of less
than a penny, so your estimate of $100 is certainly good enough; however, given a large enough
sample size we expect the sample estimate to be extremely close to the true value, -$100.001. For

5

large n then, the effect size becomes extremely small as z,, is constant and S does not increase with
the sample size. So, while the user believes that being less than a penny off is not a significant
deviation from the model, with a large enough sample size, we will reject a null hypothesis on the
basis of less than a single penny!

3.3 Uniform Random Sampling

To mitigate the effect size problem, we can take a random sample of the data stream instead of
looking at the whole thing. In order to find the sample size, we ask the user for the desired effect
size. This allows the user to determine the cutoff for what they find to be practically significant.
Our test then rejects the null hypothesis if and only if the effect is practically significant, according
to the user.

The z value, z,, is calculated from the significance level, «, using an inverse normal distribution
calculator. We estimate 531 from the first 50 data points in the stream. This value will be
recalculated after our sample, but due to our assumption of homoskedasticity, it is appropriate to
use the first 50 data points for an estimation of S 5, as we expect the value of S 5, Dot to change
greatly over time. We calculate the desired sample size using this formula:

n—mam{(za 5531)2,30} (12)

This gives us the sample size such that the test will reject the null hypothesis if and only if the
detected effect size is larger than FE. We force the value n to be > 30 because the Central Limit
Theorem’s guarantee of normality may not hold below that value, which means that we could not
make our assumption of normality. We anticipate that such a situation would almost never arise
in practice.

In order to get an unbiased estimator of S 5, We use reservoir sampling [I8]. This method of
sampling works for uniformly randomly sampling streams of unknown size, which is what we need
as we often will not have an exact count of items in the stream. We do note that reservoir sampling
does take O(nm — m?) time for a sample size of m. Once the sample is done our algorithm from
Section can run through the sample in O(m) time.

It is not often that statisticians have too much data. Generally in statistics we have a sample
of some population. But, in this case because of the sheer volume of data we are forced to take a
sample of a sample. While our method is effective, this down-sampling loses a lot of information.
The amount of information discarded is exactly the difference between a result that is practically
significant and one that is statistically significant (but not practically significant). As long as the
value of f; is constant over the whole stream, our method (of uniform sampling and then testing
the hypothesis) will yield a correct result, with the usual caveat that Type 1 and Type 2 errors are
possible [14].

If the value of 31 does change over time, for instance, we would see changes in the value of
B as it streams in. This would be a major problem for random sampling as every collection time
would be equally likely to be sampled and different times may be mixed together. This sampling
also must be used on a data set that is not generating data in real time. The way that this form
of the algorithm works is that it takes the sample while the stream comes in and then, once it has
the sample, it runs the linear regression inference test on that sample. The time to run a linear
regression on this sample is negligible as the sample size is much less than the stream size. In the
next section we look at a way to deal with more dynamic data sets and avoid losing any valuable
information.

4 Using a Sliding Window

A solution to the effect size problem and to the dynamic data set problem is to use a sliding
window. A sliding window looks at a small continuous piece of the data stream, and as new data
streams in, old data is dropped from the window. Instead of looking at the whole data stream
and outputting a single boolean response, we now output a stream of boolean responses. This
stream tells us at any given time, based on the current window, if we reject or fail to reject the null
hypothesis.

While this could be done by running traditional linear regression algorithms over the window,
we found significantly more efficient method of calculation. We keep certain values of running sums
in the window and modify our update equations from the previous section to work in the context
of the sliding window. This running sum is dealt with by keeping a list of each item in the window
and each time a new point streams in we subtract out the oldest item, in a sense we shift the
window along the data stream. This “shift” method takes the form:

Shift = qf < qr — f(s0) + f(s) (13)

where ¢y is a value getting updated, f is a function on a group of data, s is new data, sy is old
data. For example, if f((z,y)) = 2y, ¢zy would be the sum of the values of zy for all x and y in
the window.

We use this to update our values for all relevant functions f, keeping previous values in a
queue so that we can always have sg. The queue uses two functions, push() and pop(). The push()
function adds a value at the end of the queue. The pop() function removes an item from the front
of the queue and returns that value. When we calculate the p-value, we then divide by the window
size to get our means, variance, etc. Because we only keep a fixed number of data points and
variables, the space complexity of this algorithm is O(k) memory for an instance with a window

size of k.

Algorithm 2: Sliding Window Algorithm

1 INPUT: o = desired significance value

2 run Algorithm 1 until count equals your desired window size, keeping a queue Q of each

3 (x,y, My k1, meanX, and meanY) tuple;

4 (sumX, sumY, sumXY, sumY?, sumV, sumC) = (meanX, meanY, meanXY, MeanY?,
variance, and covariance) - count;

windowSize = count;

for each remaining (z,y) in stream do

(%0, Yo, ImeanXyp, meanXg, meanYy) = Q.pop();

ImeanX = sumX/windowSize;

Run Shift on the values sumX, sumY, sumXY, and sumY? with f = x, y, x-y, and y?
respectively.

10 (meanX, meanY) = (sumX, sumY)/windowSize;

11 Run Shift on sumV and sumC with f = (x - ImeanX)-(x - meanX) and (x - lmeanX)-(y

- meanY) respectively.

12 Q.push((x, y, ImeanX, meanX, meanY)));

13 B = sumC/sumV;

© 0w N & O«

14 BO = meany - Bl‘ meanX;

15 SB1 = (Windovaize-(sumY2 - Bg- sumY - 31- sumXY)-W)%;

16 calculate p-value with z = Bl/SAI;

17 OUTPUT True if p-value < « else False;

18 each time a unique window is reached, we use the current S 4 to update our window

size using the formula expressed in section if n < 30 then set n to 30;
19 end

4.1 Finding Window Size

In order to find the window size, we ask the user for the desired effect size and use the methods
described in Section [3.3] Even though we are not as stringent with our assumptions as before, we
still use the method of calculating S 5 with the first 50 data points, as we still assume the data to be
locally homoskedastic, i.e. the data will have large regions that are homoskedastic, but may change
over long periods of time. We also re-calculate the window periodically, to make sure that our
effect size stays where the user wants it, as we can no longer assume that .S) will remain constant
over the whole stream. As such, we also must warn the user if the window size would fall below 30.
We cannot let n fall below 30, however, as it would prevent us from using our assumptions about
normality of 31. While we have loosened our restraints with some of the assumptions we made in
the previous sections, normality must remain if we are to have a useful linear regression inference
test. We note, however, that it would be simple to appeal to a t-test, with n— 1 degrees of freedom,
to find p-values, even if n < 30 did occur.

4.2 The Type I Error Problem

A problem arises with this method concerning type I error. In the case of many independent
tests on data where there is truly no correlation, we would expect to see false positives proportional
to our significance level (often 5% or av = 0.05 in statistics). This is due to the nature of statistical
inference. Because we are testing to see if the probability of the data occurring naturally falls below
our significance value, the chance of a false positive is equal to the significance value by definition
of significance value. This is a problem for us, because over a large stream we are conducting many
different statistical tests, and because in the worst case, we can consider non-overlapping windows

8

to be independent tests. This means that the number of false positives is proportional to the
size of our data stream, which is unbounded. There is a solution for taking multiple independent
inference tests called the Bonferroni correction [I5]. This correction, however, is to divide the
significance value by the number of independent tests. Because our number of tests is unbounded,
this correction would yield arbitrarily small p-values, so we cannot use the Bonferroni correction.

4.3 Output Stream Analysis

In order to remedy the type I error problem, we have designed a solution wherein we can analyze
the output stream and determine if it is likely that the positives we return are true positives. We
know that the frequency of type I errors we expect is equal to our significance level. For this
example say « is 0.05. We would expect about 5% of our results to be false positives. Therefore we
keep a percentage of the positive values that are output by the stream. This way, if the percentage
of positives is near the significance level we can warn the user of the fact that we are returning
positives with about the frequency of expected false positives. But, if the percentage of positives is
much greater than 5% we would tell the user that the number of positives far exceeds the expected
number of false positives. This does require an addition to our space complexity. The best way
in which we can keep this running percentage is by using equation (1) to keep a running average
of the bits. This average is the percentage of 1’s that have appeared in the output stream. So, if
this running percentage is too close to the significance level, we warn the user that the times the
output stream rejects Hy may be false positives. This requires us to have a count of our outputs
which, as we discussed earlier, requires O(log(n)) bits using a counter.

We also are able to calculate the R? value in this sliding window format by just adding a few
variables to be stored in the queue. The definition of R? is as follows [15]:

_ SSR

2
R - SST

(14)

where SSR is the variability in y that is explained by the model, and SST is the total variability
in y. Another value which is related to these two is the value SSFE which is the difference between
SST and SSR . These have the following definitions [15]:

SSR =" (i — 1)
SSE = (yi — i)
SST =SSR+ SSE

= Z(yi —7)?

Our linear regression model says §; = By + 31 - @5, so once we make that replacement in [16] we can
keep track of SSR and SST in sliding window fashion. Because both SSR and SST are sums, we
use our Shift operation - equation (13) - with the functions as

f=(9:—9)* for SSR (19)
f=(yi—9)* for SST (20)

R? is a value which we can output in order to give the user information that is not affected by
the type I error problem. Specifically, R? represents the percentage of the variability in y that is

9

explained by z, and is another way to measure the association between = and y [15]. Users can use
this value to discover false positives or false negatives yielded by the inference test. When there is
a very low R? value, but the inference test rejects Hy, we can expect that this is a false positive.
A similar analysis is made for high R? values being used to find false negatives.

5 Experiments

In order to see how well our algorithms work, we ran a number of tests on the various methods
discussed in Sections[3.1] 3.3} and @ For these tests we used data generated by a linear model with
normally distributed residuals. In the first graph, we show that the basic approach discussed in
Section runs in linear time with respect to the stream size.

Completion Time vs Stream Size for Basic
Approach Code

0.0035
0.003
0.0025
0.002
0.0015

0.001

Completion Time (s)

0.0005

0 500 1000 1500 2000 2500

Stream Size

Likewise, we show that for the reservoir sampling method, the time varies as O(nm —m?) with the
sample size m. For this the steam size was held constant (n = 10000 data points) and the sample
size was varied between m = 100 and m = 10000.

Completion Time vs Sample Size for Reservoir
Sampling Code

o
w

o
~

Completion Time (s)
o ©
N w

=
o

(=]

] 2000 4000 6000 8000 10000 12000

Sample Size

We note that for the case of m << n, O(nm —m?) is approximately O(nm), and for our purposes
in streaming m << n will always be the case. For the case where we look at 100 < m < 1000 we
get the following graph:

10

Completion Time vs Sample Size for Reservoir
Sampling Code

0.004

0 200 400 600 800 1000 1200

Sample Size

which show a near linear relation between sample size and completion time. Next, we tested our
uniform random sampling method and found the difference between the true value of § for our
generated data and the § found by the method.

Sample Size vs |1 - p1]

0.0018 -

0.0016 - \1

0.0014 \

0.0012 4 \\“\

0.00101 L\/\‘/\

0.0008

0.0006 M

0.0004 1

Difference between Beta and Beta Hat

0 20 40 60 80 100 120
Reservoir Sample Size

It seems natural that the difference between Bl and the true 8y decreases as the sample size goes
up.

In the following graph, we look at data where the relation between x and y changes over time.
RZ Over Time in a Varying Data Stream
1.0002

1.0001

0.9999

RZ

0.99938

0.9997

0.9996

0.9995
0 5000 10000 15000 20000 25000 30000

Number of Data Points That Have Streamed in

11

These data are simulated such that every 2000 data points it switches between there being a strong
correlation between z and y and no correlation between x and y. As you can see the R? value is
close to 1 while the data are correlated, and further from 1 while they are not.

6 Multivariable Linear Regression

We conclude with a brief discussion of how the problem of linear regression inference testing
can be extended to more than two variables, the case of multivariable regression. In general, a
linear regression inference test can be performed on a model involving any number of independent
variables. In this case the linear model is not y = Bg+ 51 -x, but rather y = So+ 81 -x1+...+ BT +e€.
Because the equations for solving for the A coefficients become increasingly more complex as k grows,
matrix computation is employed to find Bo, Bl, ey Bk

In the context of multivariable linear regression, there are two types of statistical inference
tests, that are discussed in [I5]. One tests the null hypothesis Hy : 1 = f2 = -+ = [= 0, with
the alternative hypothesis, H,, that some ; is not equal to zero. This test determines if the entire
model is useful. The test statistic for this test is F' which is defined as follows:

SST
k—1

F=—=F (21)
n—=k

Assuming the errors € are normally distributed (which we can assume for sufficiently large sample
size), this test statistic is distributed according to an F-distribution with degrees of freedom k —
1,n — k. The other inference test for multivariable linear regression tests the null hypothesis
Hy : B; = 0, with an alternative hypothesis H, : 5; # 0. This test determines if x; is correlated
with y. The test statistic is z, defined as follows.

z=Bi/S; (22)

The z-statistic is normally distributed so long as the sample size is sufficiently large. Once these
test statistics are computed, a p-value calculator [13] can be used to determine p-values associated
with the test statistics. These p-values can be used to reject or fail to reject Hy.

A method mentioned in [8] can be used to estimate the A3 coefficients for the multivariable
linear regression model, and requires O(n-k-log(n)) time for a stream of size n. While this method
accurately estimates the 3 coefficients, it is not usable for our purposes as the sampling involved
has a bias toward points in the data with more leverage. This increases the variability in the
5 coefficients, and therefore increases the value of S R Because of how important S 4 is to the
inference test, we cannot use this sampling method.

Instead we look to an algorithm to based on the Givens Rotation [19], that can be used to
solve for the 3 coefficients in O(n?k), where n is the size of the data stream [19]. So, we can use
uniform random sampling to get an unbiased estimate of S £ and then run the Givens Rotation

based algorithm on that sample. For a sample of size m, this gives us a time complexity of O(m?k),
which works well as the sample size is defined by the user, not the stream.

The Givens Rotation based algorithm is what is known as an online algorithm. This type of
algorithm takes in data one tuple, (y, zo, 21, ..., k), at a time and updates its value accordingly.
Because of this property, we can use the Givens Rotation method in the context of a sliding window
by both adding in data and removing data. We would then have a sliding window method, that
runs in O(m?2k) time per element of the stream, for a window size of m, giving a time complexity
of O(nm?2k) time overall. Because m and k are constant, this is linear with respect to the stream
size, meaning that it is effective for our purposes.

12

We also note that the space complexity for these algorithms is O(mk), which is sublinear relative
to the size of the stream. All methods mentioned use a type of sampling or a sliding window, and
thus must store m data points for sample size m (in the sliding window case, m is the window
size). The space complexity, however, is also dependent on the number of B coefficients, as each
new /3’ coefficient adds another column to the matrices used in these methods. Because of this,
the space complexity for all of these methods is O(mk). These general approaches work well for
a linear regression inference test with any number of variables. But, in simple case (k = 1), the
algorithms shown in Section [3]and [4] are the best approach, as they offer the same or better time and
space complexity, without the computational expense and mathematical complexity of algorithms
involving matrix manipulation.

7 Conclusion

Linear regression inference testing is an important piece of statistics, that presents a number
of problems when scaled to the large sizes presented by data streams. Because the volume of data
produced is ever growing, we must seek to bypass these problems using streaming techniques. We
have developed three such solutions, that mitigate certain problems involved with running linear
regression inference tests on large data sets. Each of these methods presents a solution for specific
problems a statistician may face when performing linear regression inference. If an exact solution
is of extreme importance, such that the effect size of the test can approach extremely small values,
we present the basic approach (Section as it gives an exact solution in a usable amount of
time. In the case that the user is okay with using only a fraction of the available information in
the interest of finding an approximate solution more quickly, the sampling method (Section is
the appropriate solution. Finally, in the case that the user cannot make the assumptions required
of the first two solutions, the sliding window (Section [4)) presents the opportunity to run a linear
regression inference test which is more adaptable to data stream of pairs (z,y) where the linear
regression slope (q varies over time.

A problem that presents itself as a natural extension upon this work is the discovery of an
approximate solution for the case of multivariable linear regression can be done in a time similar to
the O(n-k-log(n)) time found in [8], without negatively affecting S5 . Such a solution is required to
perform linear regression inference. We believe that this should be possible based on the methods
used in [§], but as of this writing it has not yet been shown.

8 Acknowledgments

We thank the Anderson Scholarship fund for funding this research and Dr. Ashwin Lall of
Denison University for his help in examining early drafts of the paper, as well as his insight and
expertise in this field of research.

13

References

1]

[10]

[11]

[18]

[19]

A. Noga, Y. Matias, and M. Szegedy. “The Space Complexity of Approximating the
Frequency Moments.” Proceedings of the Twenty-Fighth Annual ACM Symposium on
Theory of Computing - STOC 96, 1996, doi:10.1145/237814.237823.

Aggarwal, Charu C., and Chandan K. Reddy. Data Clustering: Algorithms and Appli-
cations. Chapman and Hall/CRC, 2014.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. ACM PODS, 2002, 1-16.

A. Chakrabarti, K. D. Ba, and S. Muthukrishnan. “Estimating Entropy and En-
tropy Norm on Data Streams.” Internet Mathematics, vol. 3, no. 1, 2006, pp. 63-78.,
doi:10.1080/15427951.2006.10129117.

D. A. Nolan, and T. Speed. Stat Labs: Mathematical Statistics through Applications.
Springer, 2001.

D. E. Knuth, The Art of Computer Programming Volume. 2: Seminumerical Algo-
rithms. Addison-Wesley, 1998.

J. Leskovec, A. Rajaraman, and J. Ullman. Mining of Massive Datasets. Cambridge
University Press, 2014.

P. Drineas, M. Mahoney, and S. Muthukrishnan. “Sampling Algorithms for /> Regres-
sion and Applications.” Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm - SODA ’06, 2006, doi:10.1145/1109557.1109682.

J. Neter, M. Kutner, C. Nachtsheim, and W. Wasserman Applied Linear Regression
Models. Third Edition, McGraw-Hill, 1996.

E. Farrow, et al. “Accessible Streaming Algorithms for the Chi-Square Test.” 2017.
Denison University, student paper.

A. TLall. “Data Streaming Algorithms for the Kolmogorov-Smirnov Test.”
2015 IEEE International Conference on Big Data (Big Data), 2015,
doi:10.1109/bigdata.2015.7363746.

B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares
and Products.” Technometrics, vol. 4, no. 3, 1962, pp. 419-420. JSTOR,
www.jstor.org/stable/1266577.

W. Press, and W. T. Vetterling. Numerical Recipes. Cambridge Univ. Press, 2007.
R. V. Hogg and E. A. Tanis. Probability and Statistical Inference. Pearson, 2010.

Akritas, Micheal G., Probability & Statistics with R for Engineers and Scientists. Pear-
son, 2016.

J. Kleinberg, E. Tardos, Algorithm Design. Addison-Wesley, 2006.

Morris, Robert. “Counting Large Numbers of Events in Small Registers.” Communica-
tions of the ACM, vol. 21, no. 10, 1978, pp. 840-842., doi:10.1145/359619.359627.

J. Vitter, “Random sampling with a reservoir,” ACM Transactions on Mathematical
Software 11:1, pp. 37-57, 1985.

J. H. Maindonald, Statistical Computation. J. Wiley & Sons, 1984.

14

	Introduction
	Related Works
	Testing Over an Entire Data Stream
	The Basic Approach
	The Effect Size Problem
	Uniform Random Sampling

	Using a Sliding Window
	Finding Window Size
	The Type I Error Problem
	Output Stream Analysis

	Experiments
	Multivariable Linear Regression
	Conclusion
	Acknowledgments

