
Graduate J. Math. 111 (2018), 37 – ??

An overview of schema theory
David White

Abstract

The purpose of this paper is to give an introduction to the field of schema theory written by a mathematician and for mathematicians.
Schema theory exists to provide theoretical justification for the efficacy of genetic algorithms. We discuss the historical development of
the field, highlight areas of mathematical interest, explain the relationships between the different models of schema theory, motivate a
number of generalizations, list some related open problems, and suggest some large-scale projects.

MSC 2010. Primary: 57R20; Secondary: 57R22, 57N16.

1 Introduction

Evolutionary computation began in the 1950s as an attempt to apply the theory of evolution to optimization
problems. The goal of an evolutionary program is to begin with a population of candidate solutions for a given
problem and then evolve an optimal solution over thousands of generations. In order for evolution to occur one
needs external pressure, a method by which genetic material is passed to offspring, and time. Genetic algorithms
are one way to implement evolutionary computation. A genetic algorithm uses a counter to mimic the passage of
time, uses a fitness function to mimic external pressure, and uses reproduction operators to pass genetic material
to offspring.

A genetic algorithm begins with a randomly generated population at time zero. Each iteration of the time
counter yields a new generation. During any generation, the population is referred to as the search space. External
pressure is modeled by a fitness function f that assigns (positive) numerical values to candidate solutions. A
random process called selection determines which solutions survive to the next generation, but solutions with low
fitness values have a lower probability of survival. Reproduction is mimicked via operations by which existing
solutions produce new solutions. Examples include the crossover operator and the mutation operator. Once a
solution evolves whose fitness surpasses some predetermined level, or once a predetermined number of generations
pass, the algorithm halts and returns the best solution.

Throughout this paper we will assume that each individual is represented by a string of length ` taken from
the alphabet {0, 1} (a.k.a. bit-strings). These bits are also referred to as alleles, in analogy with evolutionary
biology. For an individual A let A[i] denote the bit at position i, where the first bit is at A[0]. The fitness function
is therefore a function from the set of bit-strings to the set of real numbers.

Genetic algorithms are often used to provide high quality (but not necessarily optimal), heuristic solutions to
famously hard problems. For example, the Traveling Salesperson Problem considers a list of cities and distances
between them, and seeks to find an optimal route that visits each city and traverses the minimum distance
possible. This problem is NP-complete, and so finding a polynomial time algorithm to construct the optimal
route is equivalent to the P vs. NP problem, the most famous open problem in theoretical computer science.
Heuristic algorithms seek to find good, but not necessarily optimal, routes in polynomial time. A genetic algorithm
would begin with a set of random routes (represented as bit strings), and would evolve new routes over time. The
fitness function would be based on the distance a route travels, and shorter routes would have higher fitness. The
algorithm would terminate when either a route was found to be “good enough” (i.e. to have fitness above some

37

1 Introduction 38

predetermined threshold), or after some fixed number of generations. Genetic algorithms have been successfully
applied to many problems such as this, and often produce very good solutions. Genetic algorithms are non-
deterministic by their nature, and the point of schema theory is to provide a theoretical basis to explain why
genetic algorithms tend to produce such good solutions.

The reproduction operations use bit-strings as input and output. Mutation changes some number of bits at
random. Crossover selects two strings uniformly at random, breaks them into pieces, and rearranges the pieces to
form two new strings. There are many types of mutation and crossover. An example of mutation is bit mutation,
which selects a single bit uniformly at random and swaps its value from 0 to 1 or from 1 to 0. An example of
crossover is one-point crossover, which takes two strings A and B, selects a random number k between 1 and `−2,
and produces new strings A′ = A[0, k]B[k + 1, `− 1] and B′ = B[0, k]A[k + 1, `− 1]. So it simply splits the two
strings at index k and then glues their pieces together.

An example of selection is fitness proportional selection, where the probability of selecting an individual A
to survive to the next generation is f(A)/∑p f(p) where p runs through the population. Another example is
tournament selection, where a predetermined number of individuals are randomly selected and then divided into a
tournament and compared in pairs. A biased coin is flipped, and depending on the outcome the individual which
emerges from the pair is either the more fit or less fit of the two. This process continues until only one individual
is left. To select k individuals requires k tournaments. In this example, selection pressure can be modified by
changing the parameter which represents tournament size or by changing the parameter which represents the
coin’s bias.

The success of a genetic algorithm often depends on choices made by the programmer. The programmer
selects the probability with which crossover or mutation take place in each generation. For example, a selection
procedure which is too random may destroy good solutions (i.e. solutions of high fitness) and allow bad solutions
to percolate. A selection procedure which is not random enough may encourage the algorithm to evolve an overly
naive solution to the optimization problem, i.e. to take the easy way out. Most search heuristics which employ
randomness face similar trade-offs, since randomization can always lead to better or worse answers. A more subtle
question is to determine how different choices for the fitness function, crossover, and mutation affect the success
of the algorithm. To address such questions, and to create more effective genetic algorithms, it is instructive to
consider how evolution works from generation to generation rather than as a process spread over thousands of
generations.

A first attempt to explain the phenomenon of evolution is the Building Block Hypothesis, which states that
crossover combines building blocks (blocks of nearby alleles which endow high fitness) hierarchically into a final
solution. Formalizing this statement was the starting point for schema theory. Schema theory was developed in
1975 by John Henry Holland [?], to give a theoretical justification for the efficacy of the field of genetic algorithms.
Definition 1.1. A schema is a string of length ` from the alphabet {0, 1, ∗}.

The ∗ is taken to be a symbol for “don’t care" so that one schema corresponds to multiple strings in the search
space. The indices where the schema has a 0 or 1 are called the fixed positions. The number of fixed positions is
the order of the schema. When a string matches the schema on the fixed positions it is called an instance of the
schema, and we say the string matches the schema. Thus, a schema is equivalent to a hyperplane in the search
space, and we will sometimes use these terms interchangeably. Crossover and mutation can disrupt the schema
if they result in a change to one of the fixed positions. A change to one of the ∗ indices results in a different
individual in the same schema. We will use the word schema for an individual schema, i.e. a single hyperplane.
We will use the word schemata for the plural of schema.

Returning to the example of the Traveling Salesperson Problem (say, on 100 cities), an example of a schema
would be a partial solution, i.e. a partial route (e.g. Chicago to Indianapolis to Columbus). Via the ∗ symbols,
many routes can include the partial route, and evaluating the fitness of one route R implicitly gives information
about the fitness of all partial routes in R.

More generally, Holland realized [?] that when the genetic algorithm evaluates the fitness of an individual in
the population it is actually evaluating the fitness of many schemata in an implicitly parallel fashion. Hence, each
generation of the algorithm is doing far more work than it appears at first blush. This helps explain the speed and
effectiveness of genetic algorithms in practice. Schema theory studies how schema percolate in the population and
how they relate to the process by which high fitness solutions are evolved over time. The framework of schema
theory allows for a definition of a building block and a formal statement of the building block hypothesis:
Definition 1.2. A building block is a short, low order schema with above average fitness.
Hypothesis 1.3 (Building Block Hypothesis). Good genetic algorithms combine building blocks to form better
solutions.

1 Introduction 39

Returning to the example of the Traveling Salesperson Problem, it is easy to imagine a genetic algorithm
identifying good partial routes (building blocks) at various places in the map, and then combining those partial
routes together over subsequent generations to form an optimal complete route. However, it is important in
practice not to guess at what schema or building blocks should be, but rather to let the algorithm identify them
over time. Discussion of this important point, and refutation of certain criticisms of the Building Block Hypothesis
based on prescribed building blocks, appears in [?].

There is a much stronger version of the building block hypothesis which has at times been called the building
block hypothesis in the literature, especially literature which is critical of the building block hypothesis. We state
it now under a different name to avoid confusion.
Hypothesis 1.4 (Static Building Block Hypothesis). Given any schema partition, a genetic algorithm is expected
to converge to the class with the best static average fitness.

Readers with a background in biology will recognize that this hypothesis is far too strong. Evolution is far too
random of a process for a statement like this to be possible, and indeed empirical studies have demonstrated that
the static building block hypothesis is unlikely to be true. See, for instance, [?, ?, ?, ?].

The building block hypothesis, on the other hand, is sufficiently vague that it has potentially true interpreta-
tions. The author believes that the best way to resolve this debate would be to study a genetic algorithm as a
dynamical system. Then the building block hypothesis can be given a mathematical interpretation and proven or
disproven conclusively. Preliminary work in this direction has been accomplished [?].

The controversial nature of the building block hypothesis has led to some unjust criticism of schema theory as a
whole. In this paper we hope to convince the reader that schema theory is a useful and interesting study. Towards
this end we highlight several open problems and suggested solutions. The author believes that an interested
mathematician can make serious headway in this field and in so doing can help to develop the theory behind
genetic algorithms and behind evolution in general.

In the next several sections we will summarize the work which has been done in schema theory, beginning in
Section ??. In this section we also discuss the criticisms of schema theory. The resolution of these criticisms leads
into the following sections. The main result of Section ?? is the Schema Theorem for genetic algorithms. This
theorem gives a lower bound on the expect number of instances of a schema. The bound can be turned into an
equality, and this is the subject of Section ??. The generalizations and strengthenings of the Schema Theorem are
phrased in the language of genetic programs and contain the genetic algorithm Schema Theorem as a special case.
We choose to begin with the simplest version first so that the reader can become accustomed to the definitions.

In Section ?? we introduce genetic programming, a specialization of genetic algorithms. We discuss how to
define schema in this setting, and we give a Schema Theorem regarding the expected number of instances of a
given schema. In Section ?? we state the various Exact Schema Theorems which improve the inequality to an
equality. These sections form the heart of the paper, and afterwards the reader could safely skip to the final
section, which includes a list of open problems.

The development of schema theory saw a large number of definitions and varied approaches, some of which are
cataloged in Section ??. Most approaches faced stiff criticism and needed to be tweaked over subsequent years.
For this reason it may be hard for an outsider to determine the current status of the field. This paper is meant
to provide a unified treatment of the development and current state of the field, to clearly state the definitions
which appear to have been most successful, to list a number of applications of the field which have been spread
across several papers, and to highlight directions for future work.

Readers interested in developing more advanced applications of probability theory to schema theory may be
interested in Sections ??, ??, and ??, as these will help the reader find the boundaries of the field. In Section
?? we discuss applications of the schema theory developed in the earlier sections. Finally, a large list of open
problems can be found in Section ??, and the author hopes this will lead to more development of this beautiful
field.

We conclude with a word on the style of this paper. Nothing beyond basic probability theory is assumed of
the reader, and for this reason we write in a fairly informal style. Because the mathematics behind the theorems
in schema theory is relatively elementary, we focus more on the motivation and philosophy. Many of these
results have been proven elsewhere, so this paper is designed to serve a primarily expository role. We attempt
to cast known results in a new light, which makes the suggested future directions natural. For this reason, we
devote a substantial amount of time to the history of the field. We hope that this exposition will entice some
mathematicians to do research in this area, that it will serve as a road map for researchers new to the field, and
that it will help explain how schema theory developed. Furthermore, we hope that the results collected in this
document will serve as a useful reference. Finally, as far as the author knows, the questions raised in the final

2 The Schema Theorem for Genetic Algorithms 40

section are new.

2 The Schema Theorem for Genetic Algorithms

There are a number of important functions related to a schema, and we list here the standard notation which will
be used throughout the paper:
Notation 2.1. For a fixed schema H:

• The order o(H) is the number of fixed positions in the string.
• The defining length d(H) is the distance between the first and last fixed positions, i.e. the number of places
where crossover can disrupt the schema.

• The fragility of the schema is the number d(H)
`−1 , i.e. the proportion of places where the schema can be

disrupted.
• The fitness f(H, t) of a schema is the average fitness of all strings in the population matching schema H at
generation t. Let f(t) denote the average of the f(−, t) values. Let f denote the average fitness of the whole
population at time t.

Compact schema are those with small defining length. These are the schema which are less likely to be
disrupted by crossover. The maximum number of compact schema is 2`−o(H). Note that not every subset of the
search space can be described as a schema since there are 3` possible schemata but 22` possible subsets of the
search space. A population of n strings has instances of between 2` and n · 2` different schemata. A string of
length ` can match up to 2` schemata.

In the language of schema theory, Holland’s implicit parallelism is a statement about the number of hyperplanes
sampled by a single string. In this way, evaluating the fitness of a string gives information on all the schemata
which the string matches.
Proposition 2.2 (Implicit Parallelism). A population of size n can process Ω(n3) schemata per generation, i.e.
these schemata will not be disrupted by crossover or mutation.

This result holds when 64 ≤ n ≤ 220 and ` ≥ 64. Let φ be the number of instances of H in the population
needed to say we’ve “sampled" H. This is a parameter which a statistician would set based on the certainty level
desired in the statistical analysis. Let θ be the highest order of hyperplane which is represented by H in the
population. Then θ = log2(n/φ) and some basic combinatorics shows that the number of schemata of order θ in
the population is 2θ ·

(`
θ

)
≥ n3. Considerations such as these demonstrate potential applications of the methods

of statistics and combinatorics to the analysis of genetic algorithms. We can see that it is valuable to be able to
count instances of a given schema in the population.

Assume now that the genetic algorithm is using one-point crossover and bit mutation with probability pc and
pm, respectively (i.e. these are the probabilities with which the operator is used in a given generation). The first
attempt to count the number of instances of a fixed schema in a genetic program led to the Schema Theorem.
The version stated below is slightly more general than Holland’s original version because it factors in mutation
fully rather than assuming pm is approximately zero.
Theorem 2.3 (Schema Theorem). Let m(H, t) is the number of instances of H in the population in generation
t, and let f denote the fitness as in Notation ??. Then

E(m(H, t+ 1)) ≥ f(H, t)
f(t)

·m(H, t)
(

1− pc
d(H)
`− 1

)
(1− pm)o(H)

The proof is an exercise in elementary probability. The result is an inequality because Holland only factored
in the destructive effects of crossover, and assumed that every time crossover occurred within the defining length,
that it destroyed the schema. In Section ?? we will state the Exact Schema Theorem, which obtains an equality
by factoring in constructive effects as well.

The Schema Theorem can be interpreted to mean that building blocks will have exponentially many instances
evaluated. This does not directly support the building block hypothesis because there is no mention of crossover
or how these building blocks are used in the creation of a final solution.

2 The Schema Theorem for Genetic Algorithms 41

There are many applications of schema theory to both the theoretical study of genetic algorithm and the
practical use of genetic algorithm. One of the first was Holland’s principle of minimal alphabets, which gave
an argument based on the Schema Theorem for why a binary encoding is optimal. Unfortunately, this was an
informal argument, and it led to some criticism of the emerging field of schema theory as a whole.

2.1 History of Schema Theory

After Holland’s work was republished in 1992, there was a strong interest in schema theory from the computer
science community. The principle of minimal alphabets was hotly debated and detractors produced convincing
arguments for why larger alphabets are optimal for certain problems. Various computer scientists created versions
of the Schema Theorem which held with different crossover, mutation, and selection. Riccardo Poli and others
took up the challenge of generalizing the Schema Theorem for genetic programming and this brought the debate
over the usefulness of the Schema Theorem to the fore. The following quote nicely sums up the world of schema
theory as it existed in the mid 1990s:

“Some researchers have overinterpreted these approximate schema models, leading to the formulation of hy-
potheses on how genetic algorithms work, first highly celebrated and later disproved or shown to be only first
order approximations. Other researchers have just incorrectly interpreted such models, while still others have
understood and correctly criticized them for their limitations. All this has led to the perception that schema
theories are intrinsically inferior to other models and that they are basically only a thing of the past to be either
criticized to death or just be swept under the carpet." [?]

Poli first published on the Schema Theorem in 1997 [?] and subsequently published numerous papers on
schema theory every year until 2001. During this time comparatively few others were publishing in the field. Poli
successfully defended the Schema Theorem against every attack this author has found, and he deserves a great
deal of credit for the existence of the field today. Some of Poli’s later work on schema theory is summarized in
Section ??.

2.2 Criticisms of Schema Theory

When Poli began, schema theory was a fairly unpopular field. The most common criticisms of the Schema
Theorem, as exposited by Whitley [?], follow. First, the Schema Theorem is only useful to look one generation
into the future, due to its reliance on the expectation operator and the fact that it is an inequality. Too much
information is lost by not considering the constructive effects of crossover. Second, because selection becomes
biased as the population evolves, the observed fitness of a schema changes radically. Thus, the average fitness
of a schema is only relevant in the first few generations of a run. Thus, the Schema Theorem cannot be used
recursively. Third, schema have no useful applications.

One response to the first criticism is to let the population size approach infinity so that we can remove the
expectation operator via the Law of Large Numbers. Although arbitrarily large population sizes are impractical,
letting n → ∞ has become a common response in theoretical computer science and especially in the asymptotic
analysis of algorithms. If Whitley’s criticism of schema theory is accepted then it extends to a criticism of much of
modern computer science. A different approach is to use Chebychev’s inequality from probability theory to remove
the need for the expectation operator. For more on this see Section ??. However, as is the case with classical
probability theory, using Chebychev’s inequality involves a loss of information. For this reason, the author prefers
the other responses to the first criticism.

The second criticism was resolved in [?], and [?] in the more general setting of genetic programming. A
particularly strong version of the Schema Theorem is the Recursive Conditional Schema Theorem, and this resolves
the second criticism very completely. The goal of reaching this theorem serves as motivation for our introduction
of this language in Section ??. This work requires the use of more tools from probability theory than the Schema
Theorem above. At several points during the development of schema theory, new ideas from probability theory
propelled the field forward. Examples can be found in Sections ??, ?? and ??. These developments required
studying genetic programs microscopically rather than macroscopically, the use of conditional probability, and
the use of methods from the theory of Markov chains. For future development in this vein, the author suggests
looking to the theory of dynamical systems for more tools which may be used here.

The third criticism can again be taken as a criticism of all of theoretical computer science. As is often the
case, applications of schema theory did eventually arise, and these are cataloged in Section ??. One of the nicest
applications of the ideas in this section came not from the schema theory of genetic algorithms, but rather from
the version for genetic programs. We address this version in the next section.

3 Schema Theory for Genetic Programming 42

3 Schema Theory for Genetic Programming

A genetic program is a special type of genetic algorithm in which each individual in the population is now a
computer program. An optimal solution is therefore an optimal algorithm for completing a predetermined task,
and so the theory of genetic programming falls under the umbrella of machine learning. The types of considerations
that go into genetic programming are related to those of genetic algorithms, but more complicated because
individuals are now more naturally represented as parse trees rather than strings. For this reason, crossover and
mutation are now operations on trees and there are numerous ways to define these operations, each with their own
advantages and disadvantages. Unlike genetic algorithms, the size of individuals in genetic programming cannot
be restricted. Trees are therefore allowed to grow arbitrarily large as the number of generations grows, and this
phenomenon (called bloat) is common. The interested reader is encouraged to consult [?, ?] for further details.

Because the tree-representations required for the analysis of genetic programs subsume the linear representa-
tions used in genetic algorithms, all schema theorems for the former apply to the latter. Indeed, in [?] it was shown
that these theorems in fact apply to genetic algorithm with variable length bit-string representation. Much of
Poli’s work is phrased in terms of genetic programs, and that is our motivation for introducing them. A summary
is provided in [?]. The relationship between genetic programs and genetic algorithms is discussed further at the
end of the section.

The notion of a schema for genetic programming was studied by several authors in the 1990s, and numerous
non-equivalent definitions arose [?, ?, ?, ?]. These papers all used representations for genetic programs which did
not include positional information and which thus allowed numerous instances of a schema in one program. By
way of analogy, the genetic algorithm schema could be defined as a set of pairs {(c1, i1), (c2, i2), . . . } where the
cj are blocks of bit-strings with no breaks and the ij are positions for the cj . Thus, the position of a schema
instance is implicit in the genetic algorithm situation. Removing this positional information can lead to the
number of strings belonging to a given schema not being equal to the number of instantiations of the schema in
the population. Without positional information, counting the number of schemata, and dealing with even the
simplest quantities in the genetic algorithm schema theorem, becomes much harder.

In [?], the authors considered all existing definitions of genetic program schema and then created their own.
Their definition simplified the calculations and allowed for the first non-trivial genetic programming schema
theorem. As motivation for Poli-Langdon schema, we will record the historical definitions here.

3.1 Koza’s Definition

Koza [?] defined a schema as a subspace of trees containing a predefined set of subtrees. O’Reilly and Oppacher’s
definition [?] was a formalization of Koza’s with “tree fragments" which are trees with at least one leaf that is a
“don’t care" symbol, represented by #. These symbols could be matched by any subtree. With this definition,
one schema can appear multiple times in the same program. It’s clear how to define the order and defining length
for one instance, but because it depends on which instance is chosen, these quantities are not well-defined for the
schema. Still, O’Reilly and Oppacher were able to craft a schema theorem for genetic programming using this
definition when fitness proportional selection is used. Before stating this theorem, we record our notation for the
section
Notation 3.1. For a fixed genetic programming schema H:

1. m(H, t) is the number of instances of H at generation t.
2. Pdc(H, h, t) is the probability of disruption due to crossover of schema H in program h in generation t. Taking

the average over all h yields P dc(H, t). Analogously we obtain Pdm for mutation.

3. The notation for f and f is the same as in Notation ??.

We now state O’Reilly and Oppacher’s theorem [?], using the notation above

E(m(H, t+ 1)) ≥ m(H, t)f(H, t)
f(t)

(
1− pc · max

h∈Pop(t)
Pd(H, h, t)

)

O’Reilly and Oppacher state the genetic programming building block hypothesis as: “genetic programs combine
building blocks, the low order, compact highly fit partial solutions of past samplings, to compose individuals
which, over generations, improve in fitness."

3 Schema Theory for Genetic Programming 43

They observe that a schema instance can change in a generation even when the schema instance is not disrupted.
They use this to question the existence of building blocks in genetic programming. They also attack the usefulness
of schema theory with the same arguments used in [?]. They gave two criticisms of schema theory: first, that
it could never be correctly applied to genetic programming because genetic programs exhibit time dependent
behavior similar to a stochastic processes. Second, that genetic programming exerts no control over program size
but program size matters quite a bit to performance. These issues were not resolved until [?] and [?].

3.2 Whigham’s Definition

Whigham’s paper addresses context free grammars [?], which are generalizations of genetic programs. Context
free grammars may be thought of as derivation trees that explicitly tell how to apply rewrite rules coming from
a pre-defined grammar Σ to a starting symbol S. The result of this application is the program. A derivation
tree has internal nodes, that may be thought of as rewrite rules, and terminals, that may be thought of as the
functions and terminals used in the program. Whigham’s schemata are partial derivation trees rooted in some
non-terminal node. Formally, a schema is a derivation tree x⇒ α where x is in the set of non-terminals N , and
α ∈ {N ∪ Σ}∗. Thus, one schema represents all programs that can be obtained by adding rules to the leaves of
the schema until only terminal symbols are present. As with [?] and [?], one schema can occur multiple times in
the derivation tree of the same program. Whigham is able to obtain a schema theorem in the presence of fitness
proportionate reproduction. We state this theorem, again using Notation ??, and our usual notation regarding
probabilities pc and pm of crossover and mutation:

E(m(H, t+ 1)) ≥ m(H, t)f(H, t)
f(t)

· ((1− pmP dm(H, t))(1− pcP dc(H, t)))

The definitions for mutation are similar. Whigham also has an equivalent statement of the theorem using only
probabilistic quantities [?]. He uses his theorem as a possible explanation for the well-known problem of bloat in
genetic programming, but does not rigorously show anything to this effect. He does show, however, that his notion
of schema, and his schema theorem, applies to fixed-length binary genetic algorithms under one-point crossover
and to genetic programming under standard crossover.

3.3 Altenberg’s Definition

Altenberg focused on emergent phenomena, meaning “behaviors that are not described in the specification of the
system, but which become evident in its dynamics" [?]. An example of such a behavior is bloat. Altenberg defines
soft-brood selection in order to avoid producing offspring of low fitness. This selection method is very similar to
tournament selection, but there is no probability that the tournament winner will be selected randomly, and there
is a probability that no recombination will occur. Let xi be the frequency of program i in the population, P be
the space of programs, S be the space of subexpressions that recombination can obtain from programs in P ,
C(s ← k) be the probability that recombination obtains s from program k, and P (i ← j, s) be the probability
that recombination on subexpression s and program j produces program i. Then without soft-brood selection,
Altenberg proves the following schema theorem:

xi+1 = (1− α)f(i)
f(t)

xi + α
∑
j,k∈P

f(j)f(k)
f(t)2 xjxk

∑
s∈S

P (i← j, s)C(s← k)

Altenberg uses this to create a schema theorem for genetic programming in the situation of an infinite popu-
lation. Suppose vs is the marginal fitness of subexpression s obtained from averaging weighted sums of C(s← i).
Suppose us(t) is the weighted sum ∑

i∈P C(s← i)xi in generation t. Then

us(t+ 1) ≥ (1− α) · vsus(t)
f(t)

Altenberg next factors in soft-brood selection and analyzes how it changes the situation. His schemata are the
subexpressions s and as with the definitions above, each schema lacks positional data and so can appear multiple
times in a given program i. One of Altenberg’s models is an exact microscopic model (i.e. the constructive effects
of crossover are taken into account), but it fails to be a theorem about schemata as sets. Such a model did not
exist in Poli’s work until 2001 [?]. A comparison with Poli-Langdon schema may be found in [?].

3 Schema Theory for Genetic Programming 44

3.4 Rosca’s Definition

Justinian Rosca [?] published a new definition of genetic program schema at the same time as Poli and Langdon [?].
Rosca’s definition of a schema is a rooted contiguous tree fragment. These schemata divide the space of programs
into subspaces containing programs of different sizes and shapes. The order o(H) is the number of defining
symbols (non-# nodes) H contains. This definition uses positional information and does not allow multiple copies
of one schema in a given program. This makes the calculations needed for a schema theorem much nicer but also
restricts what is meant by a “good" block of genetic material. The pros and cons will be discussed more in the
conclusion. His work yields this schema theorem:

E(m(H, t+ 1)) ≥ m(H, t)f(H, t)
f(t)

·

1− (pm + pc) ·
∑

h∈H∩Pop(t)

o(H)f(h)
N(h) · ∑

h∈H∩Pop(t)
f(h)


Here N(h) is the size of a program h matching H.

3.5 Poli and Langdon’s Definition

Poli and Langdon [?] similarly defined schema using positional data to avoid the problem of multiple instances
of a schema appearing in the same individual. We highlight their definition, as it will be the one used for the
remainder of the paper.
Definition 3.2. A genetic program schema is a rooted tree composed of nodes from the set F ∪ T ∪ {=} where
F and T are the function and terminal sets, and = is a “don’t care" symbol which can be any arity needed.

With this definition, schemata partition the program space into subspaces of programs of fixed size and shape.
Furthermore, the effect of genetic operators on schemata are now much easier to evaluate.
Notation 3.3. For a fixed genetic programming schema H:

1. m(H, t) is the number of instances of H at generation t.
2. The order o(H) is the number of non-= symbols.
3. The length N(H) is the total number of nodes in the schema.
4. The defining length L(H) is the number of links in the minimum tree fragment containing all non-wild-card

symbols (i.e. all symbols other than =).
5. N(H) is the number of nodes of the individual.
6. pd(t) is the fragility of H in generation t.
7. G(H) is the zeroth order schema with the same structure as H but all nodes being = symbols.
8. Pdc(H, h, t) is the probability of disruption due to crossover of schema H in program h in generation t. Taking

the average over all h yields P dc(H, t). Analogously we obtain Pdm for mutation.

9. The notation for f and f is the same as in Notation ??.

These quantities are independent of the shape and size of the programs. This definition is lower level than
Rosca’s definition above [?] in that a smaller number of trees can be represented by schemata. Still, the trees
represented by any other schema can be represented by collections of genetic programming schemata, and the
converse is not true. Using this notation, we obtain:
Theorem 3.4 (Genetic Programming Schema Theorem). In a generational genetic program with fitness propor-
tional selection, one-point crossover, and point mutation,

E(m(H, t+ 1)) ≥ m(H, t)f(H, t)
f(t)

(1− pm)o(H)×

(
1− pc

(
pd(t)

(
1− m(G(H), t)f(G(H), t)

n · f(t)

)
+ d(H)m(G(H), t)f(G(H), t)−m(H, t)f(H, t))

(N(H)− 1)(n · f(t)

))

3 Schema Theory for Genetic Programming 45

Point mutation works by substituting a function node with another of the same arity, or a terminal with
another terminal. One-point crossover is defined as follows. First, identify the parts of both trees with the same
topology (i.e. same arity nodes in the same places). Call this set of nodes the common region. Then select a
random crossover point and create the offspring with the part of parent 2 from below the crossover point and
the rest from parent 1 above the crossover point. For the purposes of schema theory this crossover is better than
standard genetic programming crossover (where a point is chosen randomly in each parent and crossover does not
worry about the topology).

Note that one-point crossover yields children whose depth is no greater than that of the parents. This has the
potential to help prevent bloat, though the author does not know whether this idea was ever explored. In [?] the
authors also defined uniform crossover where “the offspring is created by independently swapping the nodes in
the common region with a uniform probability." For function nodes on the boundary of the common region, the
nodes below them are also swapped. These two crossovers were motivated completely by schema theory but have
become popular in their own right to practitioners since their creation. The problem of genetic programming for
standard crossover was too hard to solve at this time, and was not solved till [?] and [?], which gave a Genetic
Programming Schema Theorem for all homologous crossovers. The notion of a common region was not truly
formalized until [?].

The Genetic Programming Schema Theorem is proven using basic probability theory applied to the four cases
depending on whether the parents are both in G(H), both not in G(H), or only one is in G(H). Analysis of
the Genetic Programming Schema Theorem shows that the probability of schema disruption is very high at the
beginning of a run. Furthermore, diversity of shapes and sizes will decrease over time, and so a schema H with
above average fitness and short defining length will tend to survive better than other schemata.

If all programs have the same structure then a genetic program with one-point crossover is nothing more
than a genetic algorithm. In this situation, the theory of genetic programming limits to the theory of genetic
algorithms as t→∞. Perhaps most important is the observation that two competitions are occurring in genetic
programming. First, there is competition among programs with different G(H). Then, once only a few such
hyperspaces are left, there is competition within those hyperspaces on the basis of defining length. It is in the
second phase that a genetic program acts like a genetic algorithm.

The definition of a genetic program schema was generalized twice more. The first generalization occurred in
[?] with the notion of a hyperschema.
Definition 3.5. A hyperschema is a rooted tree composed of nodes from the set F ∪ T ∪ {=,#} where F and
T are the function and terminal sets, the symbol = means “don’t care" for exactly one node, and # means any
valid subtree. The special symbols can take any arity needed.

This definition generalizes both the definition of a genetic program schema and Rosca’s definition [?]. Using this
definition, Poli [?] generalized all his previous versions of the schema theorem (addressed below) and obtained
cleaner statements, tighter bounds, and better proofs. Additionally, Poli used these results to argue for the
existence of building blocks in genetic programming. A further discussion of hyperschema generation, matching,
and propagation (including a detailed empirical analysis) may be found in [?].

The final generalization was in [?] with the notion of a variable arity hyperschema. There are also versions of
schema theory in this context, and we leave it to the interested reader to investigate.
Definition 3.6. A variable arity hyperschema is a rooted tree composed of internal nodes from the set F ∪{=,#}
and leaves from T ∪ {=,#} where the symbol = means “don’t care" for exactly one node, the leaf # stands for
any valid subtree, and the function # stands for a function with unspecified arguments which can be any valid
subtree and arity ≥ the number of subtrees connected to it.

In [?], extensive experiments were performed on a genetic program to record all schema in the population,
their average fitnesses, the population average fitness, the number of programs sampling a schema, the length,
order, and defining length of schema, and schema diversity. The results confirmed a several conjectures. First,
schema disruption is frequent at the beginning of a run before crossover counteracts the effects of selection. If only
selection is acting, then schema with below average fitness disappear. Second, without mutation the population
will start converging quickly and short schemata with above average fitness will have low disruption probability.
Third, the average deviation in fitness of high-order schemata is larger than that for low-order schemata.

More surprisingly, this experiment points to the conclusion that building blocks do not grow exponentially.
Rather, the growth function was not at all monotonic. The authors suggest that genetic drift and a small
population size may have led to this conclusion. They suggested that to obtain achieve a better understanding
of the genetic programming building blocks it may be necessary to study the propagation of structures which are
functionally equivalent as programs but which are structurally different (now called “phenotypical schemata").

4 Exact Schema Theory 46

It was found that, initially, one-point crossover is as disruptive as standard genetic programming crossover,
but as the run progresses it becomes much less disruptive. The disruption probability varies greatly from one
generation to the next and therefore should be considered as a random variable (necessitating the conditional
schema theorems of Section ??). Finally, the genetic program does indeed asymptotically tend to a genetic
algorithm, so nothing is lost by working in the setting of genetic programs for the rest of the paper.

4 Exact Schema Theory

Exact schema theory was originally created by Stevens and Waelbroeck in 1999 [?]. Poli expanded their work
to create exact versions of the Genetic Programming Schema Theorem [?, ?, ?, ?, ?]. The goal of exact schema
theory is to obtain an equality rather than an inequality in the Schema Theorem by factoring the constructive
forces of crossover, as explained in [?]. The Exact Schema Theorem applies to both genetic programming and
variable length genetic algorithms and so it answers the first major criticism of schema theory.

Before continuing, let us fix some terms. Amicroscopic quantity will mean a property of single strings/programs.
A macroscopic quantity will mean a property of a larger set of individuals such as average fitness. Resolving the
criticisms of schema theory required Poli to produce tighter bounds on the expected values in the various schema
theorems. This was his motivation for considering microscopic quantities. One of Poli’s major focuses during
this time (e.g. [?, ?]) was expressing schema theorems in terms of purely microscopic quantities and then trans-
lating these statements so they involve only macroscopic quantities. This had the desired effect of producing
exact schema theorems and also provided useful tools for future researchers interested in this area. The ability to
express expected properties of a schema H in terms of only properties of lower order schemata will be valuable if
the connection between schema and genetic program efficacy is ever to be fully understood.

The macroscopic versions of schema theorems tend to be more approximate but also much simpler and easier
to analyze. The microscopic versions are more exact but there are many more parameters and degrees of freedom.
The resulting exact models are typically huge and hard to manage computationally but more mathematically
sound. The key to the exact schema theory is comparing genetic algorithm models based on whether they are
approximate or exact, whether the predicted quantities are microscopic or macroscopic, and whether the predicting
quantities are microscopic or macroscopic. As always, we pause to introduce notation, building upon Notation
??:
Notation 4.1. For a genetic algorithm schema H in a population of strings of length `:

1. Let α(H, t) be the probability that a newly created individual will sample H. Call this the total transmission
probability for H in generation t.

2. Let p(H, t) be the selection probability of H at generation t.
3. Let L(H, i) be the schema obtained from H by replacing all elements from position i+ 1 to position ` with
∗.

4. Let R(H, i) be the schema obtained from H by replacing all elements from position ` to position i with ∗.

The reason for considering the truncations L(H, i) and R(H, i) will become clear in the statement of the
theorem:
Theorem 4.2 (Exact Schema Theorem for Genetic Algorithms). In a population of size n, E(m(H, t + 1)) =
nα(H, t) where

α(H, t) = (1− pc)p(H, t) + pc
`

`−1∑
i=0

p(L(H, i), t)p(R(H, i), t)

Moving now to genetic programming schema, we introduce the necessary notation (building on Notation ??):
Notation 4.3. For a genetic program j:

1. Let pdj be the probability that crossover in an active block of j decreases fitness.

2. Let Ca
j equal the number of nodes in j.

3. Let Ce
j equal the number of nodes in the active part of j.

4 Exact Schema Theory 47

4. Let fj denote the fitness of j.

5. Define the effective fitness of j to be f ej = fj ·
(

1− pc ·
Ce

j

Ca
j
· pdj

)
.

6. Let P t
j be the proportion of programs j at generation t. It can be shown that P t+1

j ≈ P t
j · f ej /f(t).

The notion of effective fitness from (5) formalizes a concept used by P. Nordin and W. Banzhaf [?] to explain
the reason for bloat and active-code compression. The result about P t+1

j in (6) describes “the proliferation of
individuals from one generation to the next." The effective fitness of j is an approximation to the effective fitness
of a genetic program individual. The effective fitness of a schema H is defined by

fe(H, t) = α(H, t)
p(H, t) f(H, t) = f(H, t)

1− pc ·
∑

i∈B(H)

(
1− p(L(H, i), t)p(R(H, i), t)

p(H, t)

)
where B(H) is the set of crossover points within the defining length. Another useful concept is the operator

adjusted fitness fa(H, t) = f(H, t)(1 − pc d(H)
`−1 − pmo(H)). This has been used to give a simplified version of the

original Schema Theorem. It can also be used to formally define the notion of a deceptive problem. A deceptive
problem is one for which the optima of fa does not match the optima of f . Another way to define deception is
using channels for creating instances of H. A channel is deceptive if p(L(H, t), t)p(L(R, t), t) < p(H, t).

In [?] genetic programming schema theory is generalized to subtree mutation and headless chicken crossover.
In 2003, Poli and McPhee wrote a 2-paper series [?, ?] which generalized this work and gave a General Schema
Theorem for Genetic Programming which was exact, brought in conditional effects, could be formulated in terms
of both microscopic and macroscopic terms, and held for variable-arity hyperschema.
Theorem 4.4 (General Schema Theorem). Using Notation ??, there is a function ac(H, t) such that

a(H, t) = (1− pc)p(H, t) + pcac(H, t)

With this theorem, all previous schema theorems can be seen as computations of ac(H, t) under the various
choices for selection, mutation, and crossover. The 2-paper series of 2003 [?, ?] culminated in the Microscopic
and Macroscopic Exact Schema Theorems, which generalized all previous papers. These theorems work for
any homologous crossover and virtually all subtree-swapping crossovers including standard genetic programming
crossover, one-point crossover, context-preserving crossover, size-fair crossover, uniform crossover, and strongly-
typed genetic programming crossover. For a more detailed discussion of these types of crossover, the reader is
referred to [?].

We will now state these general theorems, but first we require the necessary notation. In order to mimic the
truncations of Notation ?? for a hyperschema, we need to replace L(H, t) and R(H, t) by u(H, i) and l(H, i) which
are the schemata obtained respectively by replacing all the nodes below i with an = and replacing all nodes not
below i with =. We generalize these to the upper building block hyperschema U(H, i) where we replace the subtree
below i with #, and the lower building block hyperschema L(H, i) where we replace all nodes between the root
and i with an = symbol. If i is in the common region then these are empty sets.
Notation 4.5. For a fixed hyperschema H:

1. Let α(H, t) be the probability that a newly created individual will sample H.
2. Let U(H, i) denote the upper building block hyperschema, and let L(H, i) denote the lower building block

hyperschema introduced above
3. Let NC(h1, h2) be the number of nodes in the common region between h1 and h2

4. Let C(h1, h2) be the set of indices of common region crossover points,
5. Let δ(x) be the Kronecker-Delta function (1 if x is true and 0 otherwise)

Using this notation, we obtain the following two results, from [?, ?]:

5 Schema Theorems without the Expectation Operator 48

Theorem 4.6 (Microscopic Exact Genetic Programming Schema Theorem). For fixed size and shape genetic
program schema H under 1-point crossover and no mutation,

α(H, t) = (1− pc)p(H, t) + pc ·
∑

h1,h2∈Pop(t)

p(h1, t)p(h2, t)
NC(h1, h2) ·

∑
i∈C(h1,h2)

δ(h1 ∈ L(H, i))δ(h2 ∈ U(H, i))

Theorem 4.7 (Genetic Programming Schema Theorem with Schema Creation Correction). For a fixed size and
shape genetic program schema H under 1-point crossover and no mutation,

α(H, t) ≥ (1− pc)p(H, t) + pc
`

`−1∑
i=0

p(L(H, i) ∩G(H), t)p(U(H, i) ∩G(H), t)

with equality when all the programs are in G(H)

The difference between these two theorems is denoted ∆α(H, t) and is sometimes called the Schema Creation
Correction. This is because the second theorem provides a better estimate if pd(t) = 1. To obtain the final macro-
scopic theorem, which generalizes all previous schema theorems for genetic programming and genetic algorithms,
label all possible schema shapes G1, G2, Carefully taking considerations related to shape into account, one
can derive the following from the Microscopic Theorem:
Theorem 4.8 (Macroscopic Exact Genetic Programming Schema Theorem). For fixed size and shape genetic
program schema H under 1-point crossover and no mutation,

α(H, t) = (1− pc)p(H, t) + pc ·
∑
j,k

1
NC(Gj , Gk)

·
∑

i∈C(Gj ,Gk)
p(L(H, i) ∩Gj , t)p(U(H, i) ∩Gk, t)

Note that all the above theorems were simplified and given easier proofs in [?]. As a corollary of the macroscopic
theorem, we obtain the effective fitness for a genetic program as

fe(H, t) = f(H, t)

1− pc

1−
∑
j,k

∑
i∈C(Gj ,Gk)

p(L(H, i) ∩G(H), t)p(U(H, i) ∩G(H), t)
NC(Gj , Gk)p(H, t)


This fact has many applications which are discussed in Section ??.

5 Schema Theorems without the Expectation Operator

As mentioned in the introduction, one criticism of schema theory was its reliance upon the expectation opera-
tor. While mathematicians may find this criticism difficult to comprehend, since the expectation operator is so
ubiquitous, Poli responded to this criticism by creating a version of the Schema Theorem without the expectation
operator [?]. His method was to use Chebychev’s Inequality from probability theory, which states:

P (|X − µ| ≤ kσ) ≥ 1− 1
k2 for any constantk

Abusing notation, let α(H, t) now denote the probability that H survives or is created after variation in
generation t. As α forms a binomial distribution we have µ = nα and σ2 = nα(1 − α). Chebychev’s Inequality
gives:
Theorem 5.1 (Two-sided probabilistic Schema Theorem).

P

(
|m(H, t+ 1)− nα| ≤ k

√
nα(1− α)

)
≥ 1− 1

k2

Theorem 5.2 (Probabilistic Schema Theorem). P
(
m(H, t+ 1) > nα− k

√
nα(1− α)

)
≥ 1− 1

k2

6 Conditional Schema Theorems 49

In [?, ?], the authors asked whether the lower bound in the Schema Theorem was reliable. This led him to
investigate the impact of variance on schema transmission. Let ps(H, t) be the probability that individuals in H
will survive crossover and let pc(H, t) be the probability that offspring sampling H will be created by crossover
between parents not sampling H. The authors observed that this selection/crossover process is a Bernoulli trial
and thus we are dealing with a binomial stochastic variable:

Pr(m(H, t+ 1) = k) =
(
n

k

)
α(H, t)k(1− α(H, t))n−k

E(m(H, t+ 1)) = nα(H, t) and V ar(m(H, t+ 1)) = nα(H, t)(1− α(H, t))

These equations immediately yield an improvement to the Probabilistic Schema Theorem:

Theorem 5.3. Pr(m(H, t+ 1) ≥ x) =
n∑
k=x

(n
k

)
α(H, t)k(1− α(H, t))n−k

This theorem holds regardless of the representation adopted, operators used, or definition of schema. Thus,
it applies to genetic algorithms with bit-string representations of varying length. This is one of several instances
where genetic programming schema theory yields useful applications to genetic algorithm schema theory and vice
versa. From this theorem we go in two directions. First, we define the signal-to-noise ratio

(
S

N

)
= E(m(H, t+ 1))√

V ar(m(H, t+ 1))
=
√
n

√
α(H, t)

1− α(H, t)

When this number is large the number of schemata in generation t + 1 will be very close to the expected
number. When the ratio is small the number of schemata in generation t + 1 will be effectively random. Poli
shows that as α(H, t)→ 1 the ratio approaches infinity [?]. A corollary of these calculations is the probability of
extinction in any generation:

Pr(m(H, t+ 1) = 0) = (1− α(H, t))n = en log(1−α(H,t)) ≤ 1(
S
N

)2

Clearly this quantity approaches zero as α(H, t) grows, and so heuristically a schema is expected to survive if
α(H, t) > 4/n. However, newly created schema are very likely to go extinct. Calculations show the probability of
extinction in the first generation after creation is above 37%. The probability of extinction within the first two
generations is above 50%. This evidence suggests that more selection pressure or a steady-state genetic algorithm
will be more likely to preserve high fitness newly created schemata. These heuristics come from useful bounds
developed on the expectation and variance of m(H, t + 1). These bounds can be found in [?]. Combining the
probabilistic theorems with the exact, microscopic, and macroscopic theorems gives a host of new and powerful
theorems. Many of these theorems have not been explicitly stated, and this is one area for future research discussed
in Section ??.

The second direction to go from the probabilistic schema theorem is to fix the value of x and attempt to solve
for the right-hand side y of the equation. This is what Poli refers to as “predicting the past from the future" [?]
because we are fixing the future and finding what we need in the past to guarantee that future. Unfortunately,
the solution is expressed in terms of the hypergeometric probability distribution [?], so this is a hard problem.
Some of the necessary mathematics has been done, and the α̃ from the next section is one such inverse function.
An application of Chebychev’s Inequality using k = (1 − y)−1/2 can give a simpler answer but one without as
much accuracy. At this point Poli also considered the effect of using Chernoff-Hoeffding bounds rather than the
one-sided Chebychev inequality. The result is a slightly better bound on y from x and also confidence intervals.
A more careful application of the various inequalities in probability theory may yield yet tighter bounds.

6 Conditional Schema Theorems

In the late 1990s, Fogel and Ghozeli [?, ?] claimed that the Schema Theorem fails in the presence of a noisy
or stochastic fitness function. They correctly pointed out an important bias in the sampling of schemata which

6 Conditional Schema Theorems 50

comes from the use of fitness proportional selection in the presence of stochastic effects. Their key point was
that E

(
f(H,t)

f(H,t)+f(H′,t)

)
must be used to calculate the correct proportion of individuals sampling H when H ′ is a

competing schema.
In response, Poli reinterpreted the Schema Theorem as a conditional statement about random variables [?, ?].

In generation t, there is a constant a ∈ [0, 1] which contains information pertaining to the conditional expected
value of m(H, t+ 1), and the following equality is satisfied:

E(m(H, t+ 1)|α(H, t) = a) = na where n the is population size

In order for this theorem to be useful, bounds on a must be formulated. This is done below. First, the definition
of expectation yields

E(m(H, t+ 1)) =
∫ 1

0
E(m(H, t+ 1)|α(H, t) = a)pdf(a)da

where pdf(a) is the probability density function of α(H, t). Similarly, the selection-only Schema Theorem
can be translated into a conditional statement. Let f(H, t) denote the fitness of H and m(H, t) the number of
instances of H in generation t. Then the expected number of instances in the generation t+ 1 in a selection-only
model is m(H, t) · f(H, t)/f(t). Bringing in the effects of crossover and mutation yields the following formula,
which makes no assumptions on the independence of the random variables involved:

E

(
m(H, t+ 1)

n

)
= E(α(H, t))

This result can be specialized to the case of two competing schemata by integrating the conditional expectation
function times the joint probability density function of the two schemata with respect to both fitness functions.
Explicit formulas provided in [?] serve the purpose required by Fogel and Ghozeli [?, ?]. Furthermore, this theorem
can be used to predict the expected fitness distribution in generation t + 1 if it is known in generation t. The
considerations in this paper culminated in the following two theorems, taken from [?]:
Theorem 6.1 (Conditional Probabilistic Schema Theorem). Let E be the event that the following inequality is
satisfied:

(1− pc)
m(H, t)f(H, t)

nf(t)
+ pc

(`− 1)n2f
2(t)
·
`−1∑
i=1

m(L(H, i), t)f(L(H, i), t)m(R(H, i), t)f(R(H, i), t) ≥ α̃(k, x, n))

where α̃(k, x, n)) =
n(k2 + 2x) + k

√
n2k2 + 4nx(n− x)

2n(k2 + n)
Then the probability that m(H, t+1) > x given that E occurs is at least 1− 1

k2 , i.e. Pr(m(H, t+1) > x|E) ≥ 1− 1
k2

Here α̃ is an inverse function obtained by solving Theorem ?? for x. It is a continuous increasing function of
x.

This theorem is proven using facts about continuous, differentiable maps with positive second derivative. With
this theorem, Poli was able to obtain the Conditional Recursive Schema Theorem [?]. For simplicity, let pc = 1,
assume the schema fitnesses and population fitnesses are known, let P be the probability that the above equation
is satisfied, and use Notation ??. If X is any random variable let 〈X〉 be any particular explicit value of X.
Theorem 6.2 (Conditional Recursive Schema Theorem). For any choice of constants MH ,ML,MR ∈ [0, n] and
i ∈ {1, . . . , `− 1}, consider the events

µi =
{
MLMR >

α̃(k,MH , n)(`− 1)n2〈f(t)〉2
〈f(L(H, i), t)〉〈f(R(H, i), t)〉

}

and φi = {f(t) = 〈f(t)〉, f(L(H, i), t) = 〈f(L(H, i), t)〉, f(R(H, i), t) = 〈f(R(H, i), t)〉}
Then the probability that m(H, t+ 1) > MH given µi and φi is at least(

1− 1
k2

)
· [Pr(m(L(H, i), t) > ML|µi, φi) + Pr(m(R,H, i), t) > MR|µi, φi)− 1]

7 Relationship between Schema Theory and Markov Models 51

In the proof, µi serves to guarantee ML and MR are appropriate, while φi restricts the number of cases needed
in the proof to just two. This theorem answers completely Fogel and Ghozeli’s criticism [?] as well as the second
major criticism from the mid 1990s. This theorem can be applied to the events on the right-hand side recursively
and thus it gives a way to list the conditions necessary on the initial population to ensure convergence, again
assuming one knows the fitnesses and building blocks.

A nice application of this theorem is that the lower bound for the probability of convergence in generation
t is a linear combination of probabilities that there are enough building blocks in the initial population. This
makes clear the relationship between population size, schema fitness, and convergence probability. Maximizing
the lower bound on the probability of convergence provides a lower bound on population size, and thereby helps
programmers determine an appropriate value for the population size parameter.

7 Relationship between Schema Theory and Markov Models

Schema theories up until 2001 were purely macroscopic models of genetic algorithms. In her 1996 textbook,
Mitchell [?] claims that models based on Markov chains and statistical mechanics will be necessary to formalize
the theory of genetic algorithms. Markov chain models are generally exact and fully microscopic, so they hold
more appeal for computer scientists looking for accuracy. The cost is that Markov models have many degrees of
freedom and are difficult to derive and use. For examples of such models, see [?, ?]. Statistical mechanics models
are macroscopic so they are simpler but also less accurate. For examples of such models see [?]. Markov models
have also been applied to genetic programming [?, ?, ?].

For most of the 1990s macroscopic models dominated the field of genetic algorithm modeling. Poli [?] helped
combat this by providing an exact microscopic model, but there are still many more macroscopic models than
microscopic. Aggregation of states in Markov chain models provide another way to move from the microscopic to
the macroscopic. Again, the benefit of such a move is in simpler equations, but the downside is a loss of accuracy.
Very few of these models explicitly factor in the fitness function, so the fitness landscape cannot be seen even if we
get a the program space is well understood. This is one reason why genetic programming schema theory is useful:
it provides a new point of view regarding this failure of Markov chain models. Exact genetic programming models
are designed to explicitly determine how selection and the variation operators affect sample program space.

While the 1990s saw a competition between Markov models and schema theory, both have provided useful
applications and theory, and the two now seem to coexist as alternative approaches with a synergistic interplay.
These two approaches are linked in [?]. In this paper, the authors successfully applied schema theory to determine
the biases of the variation operators (see also [?]) and helped get a better hold on the program space. Furthermore,
the authors create a new Markov chain model and use it to analyze in detail 0/1 trees.

This work required the use of crossover masks, which generalize all possible choices of crossover operator. For
fixed-length binary strings, a crossover mask is a binary string which tells how crossover is done. In this string,
a 1 is an instruction to choose the allele at this position from parent A while a 0 is an instruction to take the
allele from parent B. For each mask i, let pi be the probability this mask is selected. The distribution of the
pi is the recombination distribution. Crossover masks can also be generalized to genetic programming via trees
with the same size and shape as the common region. Similarly, there is a generalized recombination distribution
and a building block generating function for genetic programs. Denote this function by Γ(H, i). It returns the
empty set if i contains a node not in H and otherwise it returns the hyperschema with size and shape matching
H but with = nodes everywhere. Letting i be the tree complementary to i, it turns out that Γ(H, i) and Γ(H, i)
generalize L(H, i) and U(H, i) from Notation ??.

The following lemma is used to prove both microscopic and macroscopic exact theorems stating the total
transmission probability for a genetic program schema using homologous crossover. This is the heart of [?].
Lemma 7.1. If P1 ∈ Γ(H, i) and P2 ∈ Γ(H, i) then crossing P1 and P2 using mask i gives an offspring matching
H. Conversely, if crossover according to i yields an individual matching H then one of the parents must have
come from Γ(H, i) and the other from Γ(H, i).

Both Markov chain models and schema theory are attempts to look carefully at the generation-to-generation
behavior of a genetic algorithm or genetic program. In the conclusion of [?], the authors claim that exact schema
models are simply different representations of Markov chain models. If this is true then these two fields are
equivalent, and there are many areas where results from one may be applied to the other. The authors support
this claim by noting the use of dynamic building blocks in the formulation of exact schema theory. The authors
leave open the details of making this connection precise, so we have included this as an open problem in Section
??.

8 Applications of Schema Theory 52

8 Applications of Schema Theory

In general, theorists in this field wish to understand the benefits of schema theory over other theories that
attempt to explain the efficacy of genetic algorithms. Over a number of years, Poli laid the groundwork for
schema theory and resolved the criticisms of the field. Practitioners tend to be more interested in choosing the
correct representation of a problem, choice of operators, choice of fitness function, settings of parameters, size
of population, number of runs, etc. The problem of combating bloat is also important. While applications of
genetic programming abound (they are catalogued in [?, ?, ?] among other places), our focus in this section is on
applications of schema theoretic analysis.

8.1 Applications to Genetic Algorithms and Programs

As mentioned above, genetic programs have been applied to a wide variety of settings. A list is provided in
[?] and [?], to wide-ranging situations such as data modeling, bioinformatics, economics, medicine, soil science,
chemistry, climate science, astronomy, financial trading, industrial process control, music, art, and numerous
classical problems in computer science such as sorting, caching, compression, computer games, image segmentation,
edge detection, and signals processing. The wonderful summary [?] includes yet more applications of genetic
programming, including its use in Matlab and Mathematica, for evolving data structures, and telecommunications.
Hence, any application of schema theory that furthers the applicability or power of genetic programs has profound
effects. We list several such applications in this section.

First, [?] discusses applications of schema theory to important problems such as finding the probability that a
genetic algorithm finds the optimal solution within some fixed numbers of steps, studying GP problem difficulties,
and deriving Markov chain models for other types of GP. In a related vein, [?] identifies schemata in a genetic
approach to a clustering problem, and then introduces a new crossover operator that is biased in favor of passing
good schema to offspring. An empirical analysis on real-world datasets demonstrates the value of this crossover
function over an alternative that does not identify schema.

Another related paper, [?], introduces an algorithm to identify schemata in a genetic algorithm, and proves
that the set of schemata forms a complete lattice. Furthermore, each generation samples a complete sublattice
of the search space, and naively combining sublattices can fail to form the entire search space. While this paper
provides compelling evidence against the building block hypothesis, it leaves open the question of whether a new
crossover operator (leveraging the schemata found by the algorithm) could result in better behavior of the genetic
algorithm.

Moving from genetic algorithms to genetic programs, the considerations in Section ?? provide comparisons
between the various ways to represent a problem. Finding a relationship between the choice of representation
and schema behavior can help practitioners choose the best representation for their chosen application. Another
instance where schema theory helps practitioners was discussed at the end of Section ??. Here schema theory pro-
vides a lower bound on population size and thereby helps practitioners determine a good value for the population
size parameter.

Regarding the problem of bloat, [?] shows how to use the macroscopic exact genetic programming schema
theorem and its corollary to determine when there is an effective fitness advantage in having a large amount of
inactive code. Thus, bloat can at times be necessary for the success of the genetic program. However, because
bloat often slows down a genetic program, practitioners can also use the considerations in [?] to avoid situations
which lead to bloat.

Schema theory has motivated new crossover functions (one-point, two-point, and uniform) and the notion of a
smooth operator, and these notions have been useful to practitioners. Furthermore, in [?] different measurement
functions are explored to investigate the behavior and biases of the variation operators and parameters. This led
to new initialization strategies for genetic programming to optimize performance using knowledge of the variation
operator biases. Finally, [?] provides an exact formulation of which problems are hard for a genetic program to
solve (see also [?]).

To discuss other applications, we must first discuss the proof method in [?]. This proof method relies on the
Cartesian node reference system representation of genetic programs as functions over the space N2 and the process
of selection as a probability distribution over N4. This reference system consists of laying out the trees on a grid
where each node has arity am. After doing so, there are anm nodes at depth n. Any node can be recovered from
its depth (d) and where it falls (i) in that row. We list the relevant notation:
Notation 8.1. 1. The name function N(d, i, h) returns the node in h at position (d, i).

8 Applications of Schema Theory 53

2. The size function S(d, i, h) returns the number of nodes present in the subtree rooted at (d, i).
3. The arity function A(d, i, h) returns the arity of the node at (d, i).
4. The type function T (d, i, h) to return the data type of the node.
5. The function-node function F (d, i, h) returns 1 if the node is a function and 0 otherwise.
6. The common region membership function C(d, i, h, h) which returns 1 if (d, i) is in the common region and

0 otherwise.
7. Define p(d, i | h) as the probability that the (d, i) node is selected in program h.
8. Define p(d1, i1, d2, i2 | h1, h2) as the probability that (dj , ij) is selected in hj .
9. Define p(d1, i1, d2, i2) = p(d1, i1 | h1)p(d2, i2 | h2). A symmetric crossover is one for which p(i, j | h1, h2) =
p(j, i | h2, h1).

The microscopic and macroscopic schema theorems can be specialized for standard genetic programming
crossover using this machinery. A corollary is the size-evolution equation for genetic programming with subtree-
swapping crossover:
Theorem 8.2 (Size Evolution Equation). Let µ be the mean size of a program in a genetic program population.
If the genetic program uses a symmetric subtree-swapping crossover operator and no mutation then for fixed (d, i)
we have

E(µ(t+ 1)) =
∑

h∈Pop(t)
S(h)p(h, t) =

∑
k

S(Gk)p(Gk, t)

The theorem tells us that the mean program size evolves as if selection alone were acting on the population.
Thus, bloat is the effect of selective pressure and we can calculate the mean size of individuals at time t in terms
of the number N of individuals sampling a schema Gk and the proportion Φ of individuals of size and shape Gk:
E(µ(t)) = ∑

kN(Gk)Φ(Gk, t). This allows for the prediction and control of bloat, helping to solve a major open
problem dating back to Koza’s early work in genetic programming [?]. In this application, controlling bloat can
be achieved by acting on the selection probabilities to discourage growth, e.g. by creating holes in the fitness
landscape which repel the population. Note that this equation was expanded and simplified [?] to exactly formalize
program size dynamics.
Corollary 8.3. For a flat landscape, we have E(µ(t+ 1)) = µ(t)

This has also been studied for flat landscapes with holes and spikes [?]. This study can also be used to fine
tune parameter settings for the variation operators and move towards optimal performance. In the same vein,
[?] applied schema theory to look into bistability of a gene pool genetic algorithm with mutation. A bistable
landscape is one with two stable fixed points on a single-peak fitness landscape. This paper led to a better overall
understanding of mutation and also provided another example of an unexpected application of schema theory.

Another corollary of the size-evolution equation is the study of Crossover Bias Theory [?]. This states that
because crossover removes as much material as it adds (on average), crossover is not solely responsible for changes
in mean program size (i.e. bloat). However, crossover does affect the higher moments of the distribution, pushing
the population towards a Lagrange distribution of the second kind. In this distribution smaller programs have
significantly higher frequency than larger programs. Thus, larger programs have an evolutionary advantage over
smaller programs and this forces the mean program size to increase over time.

Lastly, [?] extends schema theory to the realm of Gene Expression Programming, and gives several applications
to big data problems.

8.2 Applications to Other Fields

After genetic programming schema theory provided a definition for the notion of a deceptive program (discussed
in Section ??), Langdon and Poli [?] were able to investigate deception in the Ant problem. The Ant problem is
a difficult search-space problem in which the goal is to program an artificial ant to follow the Santa Fe trail. A
priori, this problem has nothing to do with schema theory, so this is a particularly striking application.

Another striking application is the relationship between schema theory and Markov models discussed at the end
of Section ?? and in [?]. For instance, the authors hint that schema theory can be used to determine conditions

9 Future Directions 54

under which the Markov model’s transition matrix is ergodic. This relationship has the potential for many other
future applications as well, some of which are discussed in Section ??.

In [?], the authors specialized exact genetic programming schema theory to the case of linear structures of
variable length (i.e. where the functions are all unary). For example, binary strings or programs with primitives
of arity 1 only are linear structures. The authors then found a version of the theorem for standard crossover in
the linear representation case. Finally, they considered fixed points of the schema equations which allowed them
to prove that standard crossover has a bias which samples shorter structures exponentially more frequently than
longer structures [?]. This led to a number of conclusions about linear systems [?], that we now list.

First, genetic programming crossover exerts a strong bias forcing the population towards a Gamma length
distribution. This bias is strong enough to overpower the selection bias, so a practical application is the foresight to
initialize a population so that the lengths begin by matching the Gamma distribution. Second, shorter than average
structures are sampled exponentially more than longer ones, so the genetic program wastes time resampling.
Thus, time could be saved by setting the mean length of the initial structures so that the sampling will occur
where solutions are believed to be. Third, focusing on the distribution of primitives in the representation gives
a generalization to Geiringer’s Theorem and of the notion of linkage equilibrium to representations with non-
fixed length [?]. It can be shown that the primitives in each individual tend to be swapped with those of other
individuals and also to diffuse across the positions within the individual. This diffusive bias may also interfere
with the selection bias and so should be avoided by initializing the population so that primitives are already
uniformly distributed in each individual. Fourth, highly fit individuals may fail to transmit their genes, so this
should be avoided by moving towards a steady-state model.

These four lessons show a very nice application of schema theory to a well-studied problem area. Linear struc-
tures enter in the following way. Given a genetic program made up of linear structures with only two functions
and only two terminals, the concept of a genetic program schema corresponds exactly to that of a genetic algo-
rithm schema. Similarly, 1-point genetic programming crossover corresponds exactly to 1-point genetic algorithm
crossover. This gives yet another link between the theories of genetic programming and genetic algorithms.

9 Future Directions

As the huge number of papers listed above demonstrates, schema theory is certainly an interesting and rich field of
study. Many early arguments based on schema theory demonstrated a lack of rigor on the part of those writing the
papers, but this led to disapproval among computer scientists of the field as a whole. This disapproval chased away
many who could have done work in schema theory, but thanks to the work of Riccardo Poli and his collaborators,
schema theory survived this early setback and is becoming a popular field once more. Poli has demonstrated that
all criticisms leveled at schema theory are either unfounded or can be fixed. He has created a huge number of
schema theorems and related them to Markov models so that other computer scientists can use them effectively.
Furthermore, as discussed in Section ??, Poli and others have found numerous surprising applications of schema
theory. These include applications to the Ant problem, to controlling bloat, to the study of variation operators,
to parameter setting, and to population initialization. There are also several extended examples such as linear
structures where the insights from schema theory have been invaluable.

There are many directions for development of schema theory. We begin with the easiest first. The next three
problems build directly on the considerations discussed in the previous sections:
Problem 9.1. Extend the work discussed at the end of Section ?? and combine the Probabilistic Schema Theorems
with the Exact, Microscopic, and Macroscopic Schema Theorems.
Problem 9.2. Update the existing schema theorems to address the effects of mutation. Consider creating a
mutation mask analogous to the crossover mask from Section ?? so that all choices of mutation are handled at
once.
Problem 9.3. Extend schema theory to graph (rather than tree) representations of genetic programs, and to
more general types of crossover and mutation, as discussed in [?].

Partial work on these problems has been achieved by several recent papers. A schema theorem is proven for two
point crossover in [?]. A new crossover operator is introduced, and the corresponding schema theorem is proven
in [?]. An alternative approach, using two mutations in each generation, is introduced, and the corresponding
schema theorem is proven in [?]. However, much work remains to resolve these problems in full generality.

Once this is done, the natural next step would be to specialize the schema theorems for different mutation
operators as has been done for different selection and crossover operators. This would likely lead to a better

9 Future Directions 55

understanding of the role of mutation in genetic algorithms and genetic programming just as the schema theory
above led to a better understanding of the role of crossover and selection.

Whitley [?] claims that mutation can be used as a hill-climbing mechanism and that genetic algorithms using
only mutation can compete with genetic algorithms using crossover and a small mutation probability. Mutation
often serves the role of searching locally, while crossover is more of a global search. It would be valuable to
understand the relationship between local and global search, and the considerations within schema theory may
help in obtaining this understanding.

A more difficult but more fruitful collection of problems is based on the considerations in Section ??. In
addition to the generalizations of genetic algorithms that we have already seen, several other generalizations in
need of schema theory are listed in the problem that follows. An excellent description of genetic programs with
architecture-altering operations (e.g. changing tree arities), and tools such as gene duplication, gene deletion, and
developmental processes (growing individuals from embryos), is provided in [?].
Problem 9.4. Formulate schema theories for developmental genetic programming, genetic programs with architecture-
altering operations, Genetic Algorithm for Rule Set Production (GARP), learning classifier systems, and other
systems commonly studied.

Moving in a different direction, note that the development of schema theory has so far only made use of
relatively elementary results from probability theory. Each time more advanced results were introduced they led
to significant gains in schema theory. There are more advanced tools from probability theory which have not been
used, and this provides a rich and fertile area for future work.

For example, to the author’s knowledge no one has tried to apply the study of martingales to the recursive
conditional schema theorem. There is a well-developed study of conditional stochastic processes and many tools
from this could be applied. It is possible that more advanced mathematical approaches would answer the remaining
open problems in this field. Perhaps the biggest such problem is that schema theory and Markov models do not
contain information about the fitness distribution in the search space, so we cannot hope to fully characterize
genetic programming behavior [?].
Problem 9.5. Sharpen the inequalities in the various schema theorems by making use of more sophisticated tools
from probability theory.
Problem 9.6. Introduce the study of martingales into recursive conditional schema theory, and use this to obtain
tighter bounds and to make better predictions for the behavior of evolutionary computation in the presence of
conditional effects.
Problem 9.7. Find a way to factor information about the fitness distribution into schema theory.

In a related vein, there is still much work to be done towards relating schema theory to Markov models.
Problem 9.8. Fill in the details of the claims in the conclusion of [?] that exact schema models contain precisely
the same information as Markov chain models.

A reasonable place to begin working on this problem would be the remark in [?] that using their exact formulas
for the probability that reproduction and recombination will create any specific program, “a GP Markov chain
model is then easily obtained by plugging this ingredient into a minor extension of Vose’s model for genetic
algorithms" [?].

Once this has been done, results obtained by Vose and the Markov chain model can be generalized to apply
to both genetic programming and variable-length genetic algorithms. For example, as pointed out in [?], Markov
chain models have the ability to calculate probability distributions over the space of all possible populations. If
there is a version of this for schema theory then it might help to produce better bounds in schema theorems and
to produce more accurate long term predictions.
Problem 9.9. Generalize Vose’s results [?] (discussed in [?]) on the Markov chain model to apply to both genetic
programming and variable-length genetic algorithms.
Problem 9.10. Use schema theory to determine conditions under which the Markov model’s transition matrix
is ergodic.

If Problem ?? can be solved and if the dictionary between schema theory and Markov models can be fleshed out,
then this could also provide a way for Markov chain models to factor in information about the fitness distribution.

There are also hard foundational problems left to resolve in this field. The most famous was mentioned in the
Introduction:

9 Future Directions 56

Problem 9.11. Use the theory of dynamical systems to formulate a precise mathematical statement of the
building block hypothesis. Prove or disprove this statement.

Preliminary work on this problem has been accomplished [?], though the connection to schema and building
blocks remains mysterious.

The next problem goes back to the comparison of definitions in Section ??. Whigham [?] allowed multiple
instances of a schema in a given tree and showed that this definition restricts to both the usual genetic programming
schema theory and to the genetic algorithm schema theory. In biology, genetic material does not come in packages
which corresponding to single “good" templates. Rather, having multiple copies of a “good" block of alleles or a
“good" template is rewarded. For artificial evolution to successfully move towards computational evolution it will
be necessary to include the possibility of multiple instances of a schema.
Problem 9.12. Generalize the schema theorem so that it holds for genetic algorithm strings which allow multiple
copies of a schema to be represented.

Learning classifier systems provide one way in which to attack this problem. In particular, the use of numerosity
in accuracy-based learning classifier systems, e.g. XCS [?], could be adapted to create an initial model which
contains the possibility of multiple schema instances. The schema theorem which works for variable-length genetic
algorithms is a very nice step in this direction.

The solution to these last problems may add another layer of complexity to the schema theorems, but with
care the solution could also create a simpler overall theory. Furthermore, this theory would be robust enough to
cope with self-modification mechanisms and feedback in artificial evolution. Generalizing schema theory in the
direction of computational evolution would likely lead to good suggestions for ways to factor in this added layer
of complexity. One crucial way to move towards computational evolution is by generalizing genetic programming
schema theorems so they work when we don’t restrict the size and shape of the program. However, there is a
danger of doing this because “simply getting to the point of stating exact models for these algorithms requires a lot
of machinery" [?]. But because there is so much machinery in probability theory which has not been exploited, it
is not unreasonable to hope that generalizing schema theory will one day occur. More sophisticated mathematics
should lead to a better grasp of the theory.

The application of genetic programming schema theory to genetic algorithm schema theory with a represen-
tation of variable-length bit strings [?] will be very useful in the move from artificial evolution to computational
evolution. This is because in biology the genome is not given by fixed length chromosomes. Rather, genetic
material can come in all shapes and sizes. The existence of this genetic algorithm generalization should also
give us all hope that it will be possible to generalize genetic programming schema theorems to work when the
representation is not of a fixed length size and shape. The other applications of schema theory will also be useful
in the move to computational evolution, and their existence suggests that schema theory will continue to give
surprising applications in the future. If there is any lesson to be taken from Poli’s work it is that schema theory
is strong and can adapt to any problem thrown at it. Generalizing schema theory tends to make proofs easier to
understand, so it’s possible schema theory can lead the way in the move from artificial evolution to computational
evolution.

References

[1] L. Altenberg, Emergent phenomena in genetic programming, in Evolutionary Programming - Proceedings of
the Third Annual Conference (A. V. Sebald and L. J. Fogel, eds.), pp. 233-241, World Scientific Publishing,
1994.

[2] L. Altenberg, The Schema Theorem and Price’s Theorem, in Foundations of Genetic Algorithms 3 (L. D.
Whitley and M. D. Vose, eds.), (Estes Park, Colorado, USA), pp. 23-49, Morgan Kaufmann, 31 July-2 Aug.
1995.

[3] A. Banerjee, A novel probabilistically-guided context-sensitive crossover operator for clustering. Swarm and
evolutionary computation, 13, 47-62, 2013.

[4] W. Banzhaf, A. Lakhtakia, and R. J. Martin-Palma. "Evolutionary computation and genetic programming."
Engineered Biomimicry, 429-447, 2013.

[5] K. M. Burjorjee, The Fundamental Problem with the Building Block Hypothesis, arXiv:0810.3356, 2008.

9 Future Directions 57

[6] B. Burlacu, M. Affenzeller, M. Kommenda, G. Kronberger, S. Winkler, Schema Analysis in Tree-Based
Genetic Programming. In: Banzhaf W., Olson R., Tozier W., Riolo R. (eds) Genetic Programming Theory
and Practice XV. Genetic and Evolutionary Computation. Springer, Cham, 2018.

[7] T. E. Davis and J. C. Principe. A Markov chain framework for the simple genetic algorithm, in Evolutionary
Computation, 1(3):269-288, 1993.

[8] J. M. Fletcher, T. Wennekers, A natural approach to studying schema processing, arXiv:1705.04536, 2017.
[9] D. B. Fogel and A. Ghozeil, Schema processing under proportional selection in the presence of random

effects, IEEE Transactions on Evolutionary Computing, 1(4):290-293, 1997.
[10] D. B. Fogel and A. Ghozeil, The Schema theorem and the misallocation of trials in the presence of stochas-

tic effects, In Evolutionary Programming VII: Proceedings of the 7th Annual Conference on Evolutionary
Programming, edited by V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, pages 313-321, Springer,
Berlin, 1998.

[11] J. Holland, Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, Massachusetts, second
edition. 1992.

[12] Z. Huang, M. Li, C. Chousidis, A. Mousavi, and C. Jiang. Schema Theory-Based Data Engineering in Gene
Expression Programming for Big Data Analytics, IEEE Transactions on Evolutionary Computation, Vol.
22, NO. 5, 2018

[13] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT
Press. 1992.

[14] W. B. Langdon and R. Poli. Why Ants are Hard. Technical Report CSRP-98-4, University of Birmingham,
School of Computer Science, January 1998.

[15] W. B. Langdon, S. Gustafson, J. R. Koza, GP Bibliography. http://www.cs.bham.ac.uk/wbl/biblio/gp-bib-
info.html (2008)

[16] N. F. McPhee and R. Poli. Using schema theory to explore interactions of multiple operators inGECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference pp. 853-860. Morgan Kaufmann.

[17] S. Meyer-Nieberg, H. G. Beyer. The dynamical systems approach - progress measures and convergence
properties. In: Handbook of natural computing 2012, pp. 741-814. Springer, Berlin, Heidelberg.

[18] A. Mishra and S. Anupam. Mathematical analysis of the cumulative effect of novel ternary crossover operator
and mutation on probability of survival of a schema. Theoretical Computer Science 666: 1-11, 2017.

[19] A. Mishra and S. Anupam. Mathematical analysis of schema survival for genetic algorithms having dual
mutation. Soft Computing. 2018 Mar 1;22(6):1763-71.

[20] B. Mitavskiy and J. Rowe. Some results about the Markov chains associated to GPs and to general EAs.
Theoretical Computer Science, 361(1):72-110, 28 August 2006.

[21] M. Mitchell, An Introduction to Genetic Algorithms, MIT press, 1996.
[22] A.E. Nix, and M.D. Vose, Modeling Genetic Algorithms With Markov Chains, in Annals of Mathematics

and Artificial Intelligence 5 (1992), pp. 79-88.
[23] P. Nordin and W. Banzhaf. Complexity compression and evolution. In Genetic Algorithms: Proceedings of

the Sixth International Conference (ICGA95), L. Eshelman, editor, pages 310-317, Pittsburgh, PA, USA,
15-19 July 1995. Morgan Kaufmann.

[24] U. M. O’Reilly, An Analysis of Genetic Programming. PhD thesis, Carleton University, Ottawa-Carleton
Institute for Computer Science, Ottawa, Ontario, Canada. 1995.

[25] U. M. O’Reilly, and F. Oppacher, The troubling aspects of a building block hypothesis for genetic program-
ming. In Whitley, L. D. and Vose, M. D., editors, Foundations of Genetic Algorithms 3, pages 73-88, Estes
Park, Colorado, USA. Morgan Kaufmann. 1994.

[26] U. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf. Open issues in genetic programming. Genetic
Programming and Evolvable Machines, 11(3-4), 339-363, 2010.

9 Future Directions 58

[27] R. Poli, Schema Theorems without Expectations. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R.E., editors, Proceedings of the Genetic and Evolutionary Computing
Confrence, volume 1, page 806, Orlando, Florida, USA. Morgan Kaufmann, 1999.

[28] R. Poli. Recursive Conditional Schema Theorem, Convergence and Population Sizing in Genetic Algorithms,
in Proceedings of the Foundations of Genetic Algorithms Workshop (FOGA 6), pages 146-163, 2000. Morgan
Kaufmann.

[29] R. Poli. Why the schema theorem is correct also in the presence of stochastic effects, in Proceedings of the
Congress on Evolutionary Computation (CEC 2000), pages 487-492, 2000.

[30] R. Poli, Hyperschema theory for GP with one-point crossover, building blocks, and some new results in
GA theory, in Genetic Programming, Proceedings of EuroGP 2000 (R. Poli, W. Banzhaf, et al., eds.),
Springer-Verlag, 15-16 Apr. 2000.

[31] R. Poli. Exact schema theory for genetic programming and variable-length genetic algorithms with one-point
crossover, in Genetic Programming and Evolvable Machines, 2(2): 123-163, 2001.

[32] R. Poli, J. Koza, Genetic Programming. In: Burke E., Kendall G. (eds) Search Methodologies. Springer,
Boston, MA, 2014.

[33] R. Poli and W. B. Langdon. A new schema theory for genetic programming with one-point crossover and
point mutation. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 278-285, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[34] R. Poli and W. B. Langdon, A review of theoretical and experimental results on schemata in genetic
programming, in Proceedings of the First European Workshop on Genetic Programming (W. Banzhaf, R.
Poli, M. Schoenauer, and T. C. Fogarty, eds.), vol. 1391 of LNCS, (Paris), pp. 1-15, Springer-Verlag, 14-15
Apr. 1998.

[35] R. Poli, W.B. Langdon, and U. M. O’Reilly. Analysis of Schema Variance and short term extinction like-
lihoods, in Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 284-292, Morgan
Kaufmann, 22-25 July 1998.

[36] R. Poli and N. F. McPhee. General schema theory for genetic programming with sub-
tree swapping crossover: Part I. Evolutionary Computation, 11(1):53-66, March 2003. URL
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partI.pdf.

[37] R. Poli and N. F. McPhee. General schema theory for genetic programming with sub-
tree swapping crossover: Part II. Evolutionary Computation, 11(2):169-206, June 2003 URL
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf.

[38] R. Poli, N. F. McPhee, and J. E. Rowe. Exact schema theory and Markov chain mod-
els for genetic programming and variable-length genetic algorithms with homologous crossover.
Genetic Programming and Evolvable Machines, 5(1):31-70, March 2004. ISSN 1389-2576. URL:
http://cswww.essex.ac.uk/staff/rpoli/papers/GPEM2004.pdf.

[39] R. Poli. Exact schema theorem and effective fitness for GP with one-point crossover. In D. Whitley, et al.,
editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 469-476, Las Vegas,
July 2000. Morgan Kaufmann.

[40] R. Poli, J. E. Rowe, and N. F. McPhee, Markov chain models for GP and variable-length GAs with homol-
ogous crossover, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
(San Francisco, California, USA), Morgan Kaufmann, 7-11 July 2001.

[41] R. Poli and N. F. McPhee, Exact GP schema theory for headless chicken crossover and subtree mutation,
in Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, (Seoul, Korea), May 2001.

[42] R. Poli and N. F. McPhee, Exact schema theorems for GP with one-point and standard crossover operating
on linear structures and their application to the study of the evolution of size, in Genetic Programming,
Proceedings of EuroGP 2001, LNCS, (Milan), Springer-Verlag, 18-20 Apr. 2001.

[43] R. Poli. General schema theory for genetic programming with subtree-swapping crossover. In Genetic Pro-
gramming, Proceedings of EuroGP 2001, LNCS, Milan, 18-20 April 2001. Springer-Verlag.

9 Future Directions 59

[44] R. Poli, A simple but theoretically-motivated method to control bloat in genetic programming. In Ryan, C.,
Soule, T., Keijzer, M., Tsang, E., Poli, R., and Costa, E., editors, Genetic Programming, Proceedings of the
6th European Conference, EuroGP 2003, LNCS, pages 211.223, Essex, UK. Springer-Verlag.

[45] R. Poli and W. B. Langdon. Efficient markov chain model of machine code program execution and halting.
In R. L. Riolo, et al., editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and
Evolutionary Computation, chapter 13. Springer, Ann Arbor, 11-13 May 2006. ISBN 0-387-33375-4. URL
http://www.cs.essex.ac.uk/sta /poli/papers/GPTP2006.pdf.

[46] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp- eld-guide.org.uk, 2008. (With contributions by J. R.
Koza)

[47] R. Poli, C. R. Stephens, A. H. Wright, and J. E. Rowe. A schema-theory-based extension of Geiringer’s
theorem for linear GP and variable-length GAs under homologous crossover in Foundations of Genetic
Algorithm 7 (2003) pp. 45-62. Morgan Kaufmann.

[48] R. Poli, L. Vanneschi, W. B. Langdon, N. F. McPhee, Theoretical results in genetic programming - the next
ten years? Genet Program Evolvable Mach (2010) 11: 285. https://doi.org/10.1007/s10710-010-9110-5

[49] A. Prügel-Bennett and J. L. Shapiro. An analysis of genetic algorithms using statistical mechanics. Physical
Review Letters, 72:1305-1309, 1994.

[50] J. P. Rosca. Analysis of complexity drift in genetic programming, in Genetic Programming 1997: Proceedings
of the Second Annual Conference pp. 286-294, 1997, Morgan Kaufmann.

[51] J. P. Rosca and D. H. Ballard. Rooted-tree schemata in genetic programming. In L. Spector, et al., editors,
Advances in Genetic Programming 3, chapter 11, pages 243-271. MIT Press, Cambridge, MA, USA, June
1999. ISBN 0-262-19423-6.

[52] C. R. Stephens and H. Waelbroeck, Schemata evolution and building blocks, Evolutionary Computation,
vol. 7, no. 2, pp. 109-124, 1999.

[53] G. Syswerda, Uniform crossover in genetic algorithms in Proceedings of the Third International Conference
on GA, 1989, pp. 2-9. Morgan Kaufmann.

[54] M. D. Vose, The simple genetic algorithm: Foundations and theory. MIT Press, Cambridge, MA, 1999.
[55] P.A. Whigham, A schema theorem for context-free grammars. In 1995 IEEE Conference on Evolutionary

Computation, volume 1, pages 178-181, Perth, Australia. IEEE Press.
[56] D. Whitley, A genetic algorithm tutorial. Technical Report CS-93-103, 1993, Department of Computer

Science, Colorado State University.
[57] S.W. Wilson, Classifier Fitness Based on Accuracy, Evolutionary Computation 3(2):149-175, 1995.
[58] A. H. Wright, J. E. Rowe, C. R. Stephens and R. Poli, Bistability in a Gene Pool GA with Mutation, in

K. De Jong, R. Poli and J. Rowe, editors, Proceedings of the Foundations of Genetic Algorithm (FOGA-7)
Workshop, Torremolinos, Spain, 3-5 September 2002, Morgan Kaufmann, pages 63-80, 2003.

[59] X. F. Yin, L. P. Khoo, An exact schema theorem for adaptive genetic algorithm and its application to
machine cell formation, Expert Systems with Applications Volume 38, Issue 7, July 2011, Pages 8538-8552

David White,

Department of Mathematics and Computer Science
Denison University, P.O. Box 810
Granville, OH 43023, USA

E-mail addresses: david.white@denison.edu

