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This document summarizes my work so far. Section 1 contains my thesis work. Sections 2 and 3 are
joint work with European coauthors begun while I was a research visitor at the University of Barcelona.
More details can be found in the longer version of my research statement hosted on my website.

1. Bousfield localization and algebras over operads

Let M be a model category with a closed symmetric monoidal product ⊗ and unit S . The pushout
product of two maps f : A → B and g : X → Y is the map f � g : A ⊗ Y

∐
A⊗X B ⊗ X → B ⊗ Y . Let

W ,Q, and F denote the weak equivalences, cofibrations, and fibrations. Let Q(−) and R(−) denote
cofibrant and fibrant replacement functors. We say M is a monoidal model category if it satisfies the
pushout product axiom (Q �Q ⊂ Q and Q � (Q ∩W ) ⊂ Q ∩W ) and the unit axiom (whenever X is
cofibrant, the map QS ⊗ X → S ⊗ X � X is a weak equivalence). Let C be a set of maps such that the
Bousfield localization LC(M) exists. My thesis proves:
Theorem 1. LetM be a monoidal model category and let P be an operad valued inM. If P-algebras
inM and in LC(M) inherit model structures such that the forgetful functors back toM and LC(M) are
right Quillen functors, then LC preserves P-algebras up to weak equivalence. For well-behaved P there
is a list of easy to check conditions onM and C guaranteeing these hypotheses hold.

The motivation for this theorem comes from the recent proof of Hill-Hopkins-Ravenel of the Kervaire
Invariant One Theorem. This proof requires a particular Bousfield localization of equivariant spectra to
preserve commutative structure. Checking the hypotheses of Theorem 1 for the operad Com = (∗)n∈N
requires a general theorem for when commutative monoids inherit a model structure. For monoids this
is done in a paper of Schwede and Shipley, and the hypothesis needed onM is the monoid axiom, which
says that for all objects X, (idX ⊗ (Q ∩ W )) − cell ⊂ W . Here applying cell means taking closure
under transfinite compositions and pushouts. For commutative monoids the correct hypothesis is the
commutative monoid axiom: If g is a (trivial) cofibration then g�n/Σn is a (trivial) cofibration.
Theorem 2. If a monoidal model category satisfies the monoid axiom and the commutative monoid
axiom then commutative monoids form a model category and the forgetful functor is right Quillen.

Examples: simplicial sets, Ch(k) for char(k) = 0, S-modules, and positive model structures on symmet-
ric spectra, orthogonal (equivariant) spectra, and motivic symmetric spectra (see Section 3).

To check the hypotheses of Theorem 1 onM we must assumeM satisfies the pushout product axiom,
the monoid axiom, and the commutative monoid axiom. We also assume M is cofibrantly generated,
left proper, tractable, and the resolution axiom (for cofibrant X, − ⊗ X preserves weak equivalences).
These hold in all the examples above. We then provide hypotheses on C so that LC preserves these
axioms and counterexamples to show these hypotheses are necessary. For instance,
Theorem 3. Under the standing hypotheses above:

(1) LC(M) satisfies the resolution axiom and pushout product axiom if and only if for all domains
and codomains K of the generating cofibrations, maps C⊗ idK are weak equivalences in LC(M)

(2) If Sym(−) preserves weak equivalences in LC(M) then LC(M) satisfies the commutative monoid
axiom. Here Sym(X) = S

∐
X
∐

X⊗2/Σ2
∐

X⊗3/Σ3
∐
· · ·

(3) IfM is h-monoidal in the sense of Berger-Batanin and if the generating cofibrations have finite
domains and codomains then for any C, then LC(M) satisfies the monoid axiom.

As a special case, we recover the theorem of Hill and Hopkins used in Hill-Hopkins-Ravenel:
Corollary 4. Let R be a monoid in the genuine model structure for G-spectra. If Sym(−) preserves R-
acyclicity then the Bousfield localization with respect to R-equivalences preserves commutative monoids.
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Whenever M satisfies the pushout product and monoid axioms, the subcategory of algebras over any
cofibrant operads inherits a model structure as in Theorem 1. Thus, Theorems 1 and 3 provide easy to
check conditions onM and C so that LC preserves P-algebra structure for cofibrant P. Theorem 2 has a
generalization which provides for any operad P, a precise hypothesis onM such that P-algebras inherit
a semi model structure. There are additional axioms so that this semi model structure lifts to a model
structure. Increasing the strength of the cofibrancy hypothesis on P (from no hypothesis to levelwise
cofibrant to Σ-cofibrant to cofibrant) corresponds to decreasing the strength of the hypothesis onM. So
while the cofibrancy price must still be paid, it can be paid partially by P and partially byM.

2. Equivariant Homotopy Theory

My thesis began with an example due to Mike Hill demonstrating that Bousfield localization can fail
to preserve commutative monoids (equivalently, genuine E∞-algebras). In order to apply Theorem 1,
Javier Gutiérrez and I seek to understand cofibrancy for operads with a G action. We prove:
Theorem 5. For every family of subgroups F, the category of G-operads admits a semi-model structure
with weak equivalences and fibrations maps f such that f H is such for all H ∈ F. Taking cofibrant
replacements for Com yields a tower of operads EF

∞ interpolating between naive and genuine E∞ struc-
ture. When F = All, the n-th space is EGΣn, a contractible free G × Σn space defined as the total space
of the universal G-equivariant principle Σn-bundle. General EF

∞ admit similar descriptions.

We are now attempting to classify Bousfield localizations which satisfy Theorem 3 (1).

Additionally, I have a project with Mark Hovey which proposes an alternative approach to equivariant
homotopy theory avoiding the use of universes. We start with the category GSp of orthogonal spectra
X with a G-action, then use the method in Stefan Schwede’s lecture notes to recover X(V) for any V
in a universe. The idea of our project is to create a family of model structures on GSp such that each
is Quillen equivalent to a model structure defined from a universe and such that Bousfield localization
functors between them corresponding to change-of-universe functors.

3. Motivic Homotopy Theory

In order to apply the results of Section 1 in motivic symmetric spectra, Marcus Spitzweck and I proved:
Theorem 6. Hovey’s machine for producing symmetric spectra in general model categories can be
tweaked to produce a positive model structure in the sense of Shipley, i.e. wherein the category of
commutative monoids inherits a model structure.

In order to understand motivic Bousfield localizations, Carles Casacuberta and I observed that if E is a
motivic homology theory, localization at maps f such that E∗,∗( f ) is an isomorphism is different from
localization at f such that E∧ f is a weak equivalence. The latter was known to exist. We proved:
Theorem 7. E∗,∗-localizations exist, and when E is the sphere spectrum the image of S ∗,∗-localization
equals cellular motivic spectra. Thus, this category is both localizing and colocalizing.

This also gives a new way to test for cellularity, namely by testing whether or not the spectrum is S ∗,∗-
local. Cellular spectra are singly generated by the sphere spectrum as a localizing subcategory.
Theorem 8. For all motivic homology theories E, the Brown-Comenetz dual IE exists. Furthermore,
IS is cellular and cogenerates cellular motivic spectra as a colocalizing subcategory.

In the future we would like to prove IS ∧ IS = 0, to understand which LE∗∗ are smashing, to explore the
difference between algebraic and topological cellularity, and to explore LE∗∗ unstably.
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