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Abstract. We provide conditions on a monoidal model categoryM so that the

category of commutative monoids in M inherits a model structure from M in

which a map is a weak equivalence or fibration if and only if it is so inM. We

then investigate properties of cofibrations of commutative monoids, rectifica-

tion between E∞-algebras and commutative monoids, the relationship between

commutative monoids and monoidal Bousfield localization functors, when the

category of commutative monoids can be made left proper, and functoriality of

the passage from a commutative monoid R to the category of commutative R-
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satisfying our hypotheses.
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1. Introduction

In recent years, the importance of monoidal model categories has been demon-
strated by a number of striking results related to structured (equivariant) ring spec-
tra, c.f. [EKMM97], [HSS00], [HHR15], [MMSS01], [TV08]. Commutative
monoids played a key role in many of these applications, and it became impor-
tant to have a model structure on objects with commutative structure, compatibly
with the monoidal model structure on the underlying categoryM.

The non-commutative case was treated in [SS00], where the authors introduced the
monoid axiom. They prove that ifM satisfies the monoid axiom then the category
of monoids inM inherits a model structure fromM with weak equivalences (resp.
fibrations) maps that are weak equivalences (resp. fibrations) in M. They then
verify that the monoid axiom holds for all examples of interest.

In this paper we will take a similar approach and introduce the commutative monoid
axiom, which guarantees us that commutative monoids inM inherit a model struc-
ture. In [SS00], the authors refer to the commutative situation as “intrinsically
more complicated” and indeed there are several known cases where commutative
monoids cannot inherit a model structure in the way above, e.g. commutative dif-
ferential graded algebras over a field of nonzero characteristic, Γ-spaces, and non-
positive model structures on symmetric or orthogonal spectra (due to an example
of Gaunce Lewis in [Lew91]). Side-stepping Lewis’s example required the intro-
duction of positive variants on diagram spectra in [MMSS01], and the convenient
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model structure on symmetric spectra introduced in [Shi04] (nowadays referred to
as the positive flat model structure). We discuss these examples in Section 5.

One way to get around these obstacles is to work with E∞-algebras everywhere
and never ask for strict commutativity. It is much easier to place a model structure
on E∞-algebras because E∞ operads are Σ-cofibrant, while Com is not. We feel
it is important to also be able to treat the strict commutative case, because outside
of categories of structured ring spectra one does not know that there is a Quillen
equivalence between E∞-algebras and strictly commutative monoids (because Com

is not Σ-cofibrant, one cannot use the general rectification results in [BM03]). The
crucial hypothesis which allows such a Quillen equivalence in the case of structured
ring spectra is that for all cofibrant X, the map (EΣn)+ ∧Σn

X∧n → X∧n/Σn is a
weak equivalence. It is important to note that this hypothesis is not necessary for
strictly commutative monoids to inherit a model structure (in particular, it fails
for simplicial sets). This hypothesis appears to be more related to the rectification
question than to the question of existence of model structures. We address the point
further in Section 4.2.

Due to the difficulties associated with passing model structures to categories of
commutative monoids, several important papers have folded the existence of a
model structure on commutative monoids into their hypotheses. This is done in As-
sumption 1.1.0.4 in [TV08] and in Hypothesis 5.5 in [Shi01], among other places.
The results in Section 3 provide checkable conditions onM so that those hypothe-
ses are satisfied.

We remark that a different axiom on M which guarantees commutative monoids
inherit a model structure has appeared as Proposition 4.3.21 in [Lur09a]. However,
it is pointed out in [Lur13] that this work contains some errors and as written does
not apply to the positive model structure on symmetric spectra. Furthermore, we
will demonstrate that it does not apply to topological spaces, though it does apply
to chain complexes over a field of characteristic zero. Our commutative monoid
axiom is more general, and does apply in these situations.

After a review of model category preliminaries in Section 2, we will proceed to
state the commutative monoid axiom and prove our main result in Section 3, high-
lighting differences from the situation of [Lur09a] as we go. We additionally dis-
cuss when a cofibration of commutative monoids forgets to a cofibration inM, and
we introduce the strong commutative monoid axiom to guarantee this occurs. Fol-
lowing [SS00], we place the details of the proofs of these main results in Appendix
B and we also prove in Appendix A that it is sufficient to check the strong commu-
tative monoid axiom on the generating (trivial) cofibrations. Using this, we collect
examples in Section 5. We include additional results regarding functoriality of the
passage from R to commutative R-algebras, regarding rectification between Com

and E∞, regarding the interplay between the strong commutative monoid axiom
and Bousfield localization, and regarding left properness for the category of com-
mutative monoids in Section 4. Finally, we conclude with a discussion in Appendix
C of what can be said for operads other than Com. An extension of the ideas in
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this paper to the setting of colored operads may be found in [WY15a]. A different
approach to transferring model structures to algebras over colored operads (more
suitable for right Bousfield localization), may be found in [WY15b].

2. Preliminaries

We assume the reader is familiar with basic facts about model categories. Ex-
cellent introductions to the subject can be found in [DS95], [Hov99], or [Hir03].
Throughout the paper we will assumeM is a cofibrantly generated model category,
i.e. there is a set I of cofibrations and a set J of trivial cofibrations which permit
the small object argument (with respect to some cardinal κ), and a map is a (trivial)
fibration if and only if it satisfies the right lifting property with respect to all maps
in J (resp. I).

A morphism f is a relative I-cell complex if f is a transfinite composition of
pushouts of elements of I, i.e. a transfinite composition of morphisms fα : Xα →

Xα+1 where each fα is obtained as the pushout of a map gα : Cα → Dα in I along
a map Cα → Xα. Let I-cell denote the class of relative I-cell complexes, let I-cof
denote the class of morphisms that are retracts of relative I-cell complexes, and let
I-inj denote the class of morphisms that have the right lifting property with respect
to I.

In order to run the small object argument, we will assume the domains K of the
maps in I (and J) are κ-small relative to I-cell (resp. J-cell), i.e. given a regular
cardinal λ ≥ κ, any λ-sequence X0 → X1 → . . . formed of maps Xβ → Xβ+1 in I-
cell, then the map of sets colimβ<λM(K, Xβ) → M(K, colimβ<λ Xβ) is a bijection.
An object is small if there is some κ for which it is κ-small. See Chapter 10 of
[Hir03] for a more thorough treatment of this material. For any object X we have a
cofibrant replacement QX → X and a fibrant replacement X → RX.

A monoidal model category is a model categoryM that is also a closed symmetric
monoidal category with product ⊗ and unit S ∈ M. The closed assumption guar-
antees that X ⊗ − is a left adjoint (hence preserves colimits), and this is needed so
that X ⊗− can be a left Quillen functor when X is cofibrant. In order to ensure that
the monoidal structure interacts nicely with the model structure (e.g. to guarantee
it passes to a monoidal structure on the homotopy category Ho(M) whose unit is
given by S ) we must assume two conditions:

(1) Unit Axiom: For any cofibrant X, the map QS ⊗ X → S ⊗ X � X is a weak
equivalence.

(2) Pushout Product Axiom: Given any cofibrations f : X0 → X1 and g : Y0 →

Y1, the map f � g : X0 ⊗ Y1
∐

X0⊗Y0
X1 ⊗ Y0 → X1 ⊗ Y1 is a cofibration.

Furthermore, if either f or g is trivial then f � g is trivial.

If these hypotheses are satisfied thenM is called a monoidal model category. Note
that the pushout product axiom forces ⊗ to be a Quillen bifunctor. Furthermore, it
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is sufficient to check the pushout product axiom on the generating maps I and J, by
Lemma 3.5 in [SS00]. Lastly, it is worth remarking that none of our proofs require
the unit axiom, so our results remain valid if one uses the definition of monoidal
model category from [SS00], which does not require the unit axiom.

We turn now to the problem of placing model structures on categories of algebras.
Let P be an operad valued in M. For this discussion it will be fine to think of
P as Ass or Com. For a general discussion of operads see [BM03]. A P-algebra
is an object X of M with an action of P encoded by maps P(n) ⊗ A⊗n → A for
all n ≥ 0 satisfying Σn-equivariance, associativity, and unit conditions. Let P-
alg denote the category whose objects are P-algebras and whose morphisms are
P-algebra homomorphisms (i.e. respect the P-action).

Let P : M → P-alg be the free P-algebra functor and let U : P-alg→ M be
the forgetful functor. Then (P,U) is an adjoint pair. When P is Ass, the free
monoid functor X 7→ S

∐
X
∐

X⊗2∐ . . . has been known to topologists for years
as the James construction. When P is Com, the free commutative monoid functor
S ym : X 7→ S

∐
X
∐

X⊗2/Σ2
∐
. . . is sometimes called the S P∞ functor, or the

Dold-Thom functor.

In order for there to be a model structure on P-alg which is compatible with the
model structure onM, it must be the model structure which is transferred across the
pair (P,U) so that (P,U) forms a Quillen pair. In particular, a weak equivalence or
fibration ofP-algebras will be a map which is a weak equivalence or fibration inM.
If such a model structure on P-alg exists, we say it is inherited fromM. Proving
the existence of this model structure comes down to Lemma 2.3 in [SS00]:

Lemma 2.1. Suppose M is cofibrantly generated and T is a monad which com-

mutes with filtered colimits. If the domains of T (I) and T (J) are small relative to

T (I)-cell and T (J)-cell respectively and

(1) T (J)−cell⊂ W , or

(2) All objects are fibrant and every T-algebra has a path object (factoring the

diagonal δ : X → X × X into
≃
֒→։)

then T-alg inherits a cofibrantly generated model structure with fibrations and

weak equivalences created by the forgetful functor toM.

When the conditions of this lemma are satisfied, P-alg inherits a cofibantly gener-
ated model structure in which P(I) and P(J) are the generating (trivial) cofibrations.
The case P = Ass was treated in [SS00] and checking the first condition of the
lemma led to the introduction of the following axiom on a model category:

Definition 2.2. Given a class of maps C inM, let C ⊗M denote the class of maps
f ⊗ idX where f ∈ C and X ∈ M. A model category is said to satisfy the monoid

axiom if every map in (Trivial-Cofibrations ⊗M)-cell is a weak equivalence.
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Let A be any monoid and let R be any commutative monoid. In [SS00] and the
follow-up paper [Hov98], it is proven that ifM satisfies the monoid axiom and if
the domains of I (resp. J) are small relative to (M⊗ I)-cell (resp. (M⊗ J)-cell),
then the categories of (left or right) A-modules and of R-algebras inherit model
structures fromM. We will require the same smallness hypothesis in Section 3. It
is satisfied automatically ifM is a combinatorial model category.

In [SS00] it is proven that it is sufficient to check the monoid axiom on the gen-
erating trivial cofibrations and that many model categories of interest satisfy the
monoid axiom. We will conduct a similar program for the strong commutative
monoid axiom in Section 5 and in Appendix A.

3. A model structure on commutative monoids

We are now ready to prove the commutative analog of the work summarized above.
We first introduce the commutative analog to the monoid axiom.

Definition 3.1. A monoidal model categoryM is said to satisfy the commutative

monoid axiom if whenever h is a trivial cofibration in M then h�n/Σn is a trivial
cofibration inM for all n > 0.

Under this hypothesis, we state our main theorem:

Theorem 3.2. Let M be a cofibrantly generated monoidal model category satis-

fying the commutative monoid axiom and the monoid axiom, and assume that the

domains of the generating maps I (resp. J) are small relative to (I ⊗M)-cell (resp.

(J ⊗M)-cell). Let R be a commutative monoid inM, and assume Sym commutes

with filtered colimits. Then the category CAlg(R) of commutative R-algebras is

a cofibrantly generated model category in which a map is a weak equivalence or

fibration if and only if it is so inM. In particular, when R = S this gives a model

structure on commutative monoids inM.

It is clear from this description of CAlg(R) that ifM is combinatorial then CAlg(R)
is combinatorial (see [Bek00], 2.3). Furthermore, ifM is simplicial then CAlg(R)
is simplicial: it is cotensored over simplicial sets and the cotensor commutes with
the forgetful functor (i.e. for X in M and K a simplicial set, U(XK) � U(X)K ,
since XK inherits its commutative monoid structure from X), the functor X 7→ XK

has a left adjoint for all X and K by the adjoint functor theorem, and this left
adjoint provides the tensoring ofM over simplicial sets. So CAlg(R) is a simplicial
category. To see that it is a simplicial model category, use that (trivial) fibrations
are created inM and use the pullback formulation of the SM7 axiom.

As the generating (trivial) cofibrations of CAlg(R) are of the form R⊗Sym(I) (resp.
R ⊗ Sym(J)), these are cofibrant in CAlg(R) if the generating (trivial) cofibrations
ofM are cofibrant and ifM satisfies the commutative monoid axiom. Hence, the
property that the domains of the generating cofibrations are cofibrant (sometimes
called tractability) also passes fromM to CAlg(R).
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Proof sketch. We will focus first on the case where R is the monoidal unit S , and
discuss general R at the end. As commutative S -algebras are simply commutative
monoids, we denote the category of commutative monoids CMon(M) rather than
CAlg(S ). We will verify condition (1) of Lemma 2.1 for the monad coming from
the (Sym,U) adjunction between M and CMon(M). Note that just as in Lemma
2.3 of [SS00], limits in CMon(M) are created in M and colimits in CMon(M)
exist because U preserves filtered colimits. Thus, CMon(M) is bicomplete. Let
J denote the generating trivial cofibrations of M. We must prove that maps in
Sym(J)-cell are weak equivalences. Given a trivial cofibration h : K → L inM,
we form the following pushout square in CMon(M):

Sym(K) //

�� u

Sym(L)

��
X // P

We must prove that the bottom map is in the class (Trivial-Cofibrations ⊗M)-cell,
so that the monoid axiom implies that transfinite compositions of such maps are
weak equivalences inM (hence weak equivalences of commutative monoids).

Of course, in CMon(M), the pushout is simply the tensor product, so P � X⊗Sym(K)

Sym(L), but we will not make use of this fact. Following [SS00], we construct a
filtration of the map of commutative monoids X → P as a composition Pn → Pn+1

of maps formed by pushout diagrams inM. Doing so requires the decomposition
of Sym(K) =

∐
n Symn(K) where Symn(K) = K⊗n/Σn.

Thinking of P as formal products of elements from X and from L with relations
in K leads to a consideration of n-dimensional cubes to build products of length n

from the letters X,K, L. Because the map Sym(K)→ X is adjoint to a map K → X,
we will in fact only need to consider n-dimensional cubes whose vertices are length
n words in the letters K and L. Formally, for any subset D of [n] = {1, 2, . . . , n}
we obtain a vertex C1 ⊗ · · · ⊗ Cn with Ci = K if i < D and C j = L if j ∈ D.
The punctured cube is the cube with the vertex L⊗n removed. The map h�n is the
induced map from the colimit Qn of the punctured cube to L⊗n.

There is an action of Σn on the cube which permutes the letters in the words (equiv-
alently, which permutes the vertices in the cube in a way coherent with respect to
the edges of the cube). Explicitly, the action is defined as follows. Any σ ∈ Σn

sends the vertex defined above to the vertex corresponding to σ(D) ⊂ [n] using the
action of Σ|D| on the X’s and Σn−|D| on the Y’s. This action yields a Σn-action on
h�n : Qn → L⊗n, and in a moment we will pass to Σn-coinvariants.

We now show how to obtain Pn (which in this analogy is to be thought of as formal
products of length n) from the cubes we have just described. The steps in the
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filtration of X → P are formed by pushouts of the maps idX ⊗ h�n/Σn:

X ⊗ Qn/Σn
//

�� u

X ⊗ L⊗n/Σn

��
Pn−1

// Pn

The proof that the Pn provide a filtration of X → P is delayed until Appendix
B. Assuming the commutative monoid axiom, the maps h�n/Σn are trivial cofibra-
tions. Thus, the map X → P is a transfinite composite of pushouts of maps in
M⊗ {trivial cofibrations}. Hence, by the monoid axiom, X → P is a weak equiva-
lence. Similarly, for any transfinite composition f of pushouts of maps of the form
Sym(K)→ Sym(L), we may realize f as a transfinite composition of maps X → P

of the form above. As a transfinite composition of transfinite compositions is still
a transfinite composition, the monoid axiom applies again and proves f is a weak
equivalence. Lemma 2.1 now applies to produce the required model structure on
commutative monoids.

To handle the case of commutative R-algebras, note that there is an equivalence
of categories between CAlg(R) and (R ↓ CMon(M)), the category of commutative
monoids under R. So we may apply the remark after Proposition 1.1.8 of [Hov99]
to conclude that this is a model category with cofibrations, fibrations, and weak
equivalences inherited from CMon(M). Note that this is a different approach from
the one provided in [SS00] because we do not pass through R-modules en route
to commutative R-algebras. That CAlg(R) is cofibrantly generated follows from
[Hir05], where it is also shown that the generating cofibrations are given by the
set IR of maps in (R ↓ CMon(M)) where the map in CMon(M) is in I. Under
the equivalence of categories between CAlg(R) and (R ↓ CMon(M)), such maps
are sent to maps in R ⊗ Sym(I). We can similarly identify the generating trivial
cofibrations as R ⊗ Sym(J).

�

Remark 3.3. Notice that the proof in fact requires less than the full strength of
the hypotheses. Rather than assuming the commutative monoid axiom and the
monoid axiom separately, we could have assumed that transfinite compositions of
pushouts of maps in {M ⊗ h�n/Σn | h is a trivial cofibration} are contained in the
weak equivalences. We will refer to this property as the weak commutative monoid
axiom. Certain model categories discussed in Section 5 only satisfy this axiom and
not the commutative monoid axiom. However, for reasons which will become clear
in Corollary 3.8 we have chosen the commutative monoid axiom as the appropriate
axiom for our applications.

The full proof in Appendix B will in fact prove more than just the theorem. It
will also prove the commutative analog to Lemma 6.2 of [SS00], from which
one can deduce the proposition below regarding when cofibrations of commuta-
tive monoids forget to cofibrations inM. It is well-known to experts that obtaining
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the correct behavior of cofibrations under the forgetful functor is subtle in the com-
mutative setting. Indeed, this was the motivation behind the convenient model
structures introduced in [Shi04] and [Sto11]. In order to guarantee the desired
behavior we must strengthen the commutative monoid axiom.

Definition 3.4. A monoidal model category M is said to satisfy the strong com-

mutative monoid axiom if whenever h is a (trivial) cofibration inM then h�n/Σn is
a (trivial) cofibration inM for all n > 0. In particular, we are now assuming that
cofibrations are closed under the operation (−)�n/Σn.

Proposition 3.5. SupposeM satisfies the strong commutative monoid axiom. Then

for any commutative monoid R, a cofibration in CAlg(R) with source cofibrant in

M is a cofibration inM.

Corollary 3.6. Suppose M satisfies the strong commutative monoid axiom and

that S is cofibrant in M. Then any cofibrant commutative monoid is cofibrant in

M. If in addition R is cofibrant inM then any cofibrant commutative R-algebra is

cofibrant inM.

See Appendix B for the proof of this proposition.

Corollary 3.7. Assume S is cofibrant inM and thatM satisfies the strong commu-

tative monoid axiom. If f is a cofibration between cofibrant objects then Sym( f ) is

a cofibration inM. In particular, if X is cofibrant inM then Sym(X) is cofibrant

inM.

Proof. Because the model structure on CMon(M) is transferred from that of M,
the functor Sym(−) is left Quillen, and hence preserves cofibrations. So Sym( f )
is a cofibration of commutative monoids because f is a cofibration in M. If the
source K of f is cofibrant then the source of Sym( f ) is a cofibrant commutative
monoid, by applying Sym(−) to the cofibration ∅ ֒→ K. By Corollary 3.6, the
source of Sym( f ) is cofibrant inM. By Proposition 3.5, Sym( f ) is a cofibration in
M. �

Recall that the point of positive model structures on diagram spectra (e.g. symmet-
ric spectra or orthogonal spectra) is to break the cofibrancy of S and so avoid
Lewis’s obstruction [Lew91] to having a model structure on commutative ring
spectra. Thus, these corollaries do not apply to positive model categories of spec-
tra. In [Shi04], a variant on the positive model structure is introduced in which
cofibrant commutative ring spectra are cofibrant as spectra. This model structure
was known in that paper as the convenient model structure, and later as the posi-
tive flat model structure. We do not know how to obtain this ‘convenient’ property
for general model categories. We suspect it has something to do with forcing the
cofibrations to contain the monomorphisms.

The proof of Theorem 3.2 makes clear precisely where the monoid axiom is being
used, and hence why the smallness hypotheses are needed. IfM does not satisfy
the monoid axiom, then we can make this step work by assuming X is a cofibrant
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commutative monoid (note that R does not need to be cofibrant). In this case,
[Hov98] and [Spi01] make it clear that a semi-model structure can be obtained.
The following corollary is needed for [Whi14b], and the notion of a semi-model
category is defined directly afterwards. The proof of this corollary is delayed until
after Proposition 3.10.

Corollary 3.8. LetM be a cofibrantly generated monoidal model category satisfy-

ing the commutative monoid axiom, and assume that the domains of the generating

maps I (resp. J) are small relative to (I ⊗ M)-cell (resp. (J ⊗ M)-cell). Then

for any commutative monoid R, the category of commutative R-algebras is a cofi-

brantly generated semi-model category in which a map is a weak equivalence or

fibration if and only if it is so inM.

A semi-model category satisfies all the axioms of a model category except that the
lifting of trivial cofibrations against fibrations is only true for trivial cofibrations
with cofibrant domains, and only maps f with cofibrant domain are guaranteed
to factor into a trivial cofibration followed by a fibration. In particular, if all ob-
jects are cofibrant then a semi-model structure is the same as a model structure.
Formally, we define ([Spi01], Definition 1):

Definition 3.9. A semi-model category is a bicomplete category D, an adjunction
F : M ⇆ D : U where M is a model category, and subcategories of weak
equivalences, fibrations, and cofibrations inD satisfying the following axioms:

(1) U preserves fibrations and trivial fibrations.

(2) D satisfies the two out of three axiom and the retract axiom.

(3) Every map inD can be functorially factored into a cofibration followed by
a trivial fibration. Every map in D whose domain is cofibrant in D can be
functorially factored into a trivial cofibration followed by a fibration.

(4) Cofibrations inD have the left lifting property with respect to trivial fibra-
tions. Trivial cofibrations in D whose domain is cofibrant in D have the
left lifting property with respect to fibrations.

(5) The initial object in D is cofibrant inD.

(6) Fibrations and trivial fibrations are closed under pullback.

D is said to be cofibrantly generated if there are sets of morphisms I′ and J′ in D
such that I′-inj is the class of trivial fibrations and J′-inj the class of fibrations in
D, if the domains of I′ are small relative to I′-cell, and if the domains of J′ are
small relative to maps in J′-cell with cofibrant domain.

Spitzweck [Spi01] referred to this as a J-semi model category. It has more struc-
ture than the semi-model categories of [Fre09] (which Spitzweck called (I, J)-semi
model categories), but less structure than a J-semi model category overM (where
cofibrancy inD is weakened to cofibrancy inM). Semi-model structures as defined
above often arises in practice, as the following proposition demonstrates:
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Proposition 3.10. LetM be a cofibrantly generated monoidal model category, T

a monad inM such that T commutes with filtered colimits, and suppose:

(a) The initial T-algebra is cofibrant, i.e. has the left lifting property against

trivial fibrations of T-algebras.

(b) The domains of the generating maps T I (resp. T J) are small relative to

T I-cell (resp. maps in T J-cell with cofibrant domain).

(c) Every map in T J-cell whose domain is cofibrant as a T-algebra is a weak

equivalence inM.

Then T-alg inherits a cofibrantly generated semi-model structure from M where

weak equivalences and fibrations are created and reflected by U : T-alg→M, and

where cofibrations are defined by lifting.

Proof. We check Definition 3.9 item by item. T -alg is complete because limits are
computed inM. T -alg is cocomplete because T commutes with filtered colimits,
just as in Lemma 2.3 of [SS00]. U preserves fibrations and trivial fibrations by the
definition of these classes. The two out of three axiom and the retract axiom for
weak equivalences and fibrations follows from the same axioms inM. The retract
axiom for cofibrations follows because T I-cof is closed under retracts. We thus
have (1)-(2) of Definition 3.9.

By assumption (b), we can use the small object argument to factor any map f as
p ◦ i or as p′ ◦ i′, where i is in T I-cell, i′ is in T J-cell, p is in T I-inj, and p′ is
in T J-inj. By adjointness (as in Lemma 2.3 of [SS00]), p is a trivial fibration, p′

is a fibration, and i and i′ are cofibrations. The p ◦ i factorization is half of (3).
If f has cofibrant domain then (c) implies i′ is a weak equivalence, hence a trivial
cofibration, completing (3).

For the first half of (4), note that cofibrations lift against trivial fibrations by defini-
tion. Let f be a trivial cofibration with cofibrant domain. Factor f = p′ ◦ i′ into an
element of T J-cell (just shown to be a weak equivalence) followed by a fibration.
By the two out of three axiom, p′ is a trivial fibration, so f lifts against p′, so f is
a retract of i′ by the retract argument. It follows that f has the left lifting property
with respect to fibrations, completing (4).

Lastly, (5) holds by (a) and (6) holds because limits are computed in M, where
fibrations and trivial fibrations are preserved under pullback. �

This proposition is related to Theorem 2 in [Spi01], but has fewer conditions and
produces a semi-model category rather than a semi-model category over M. We
are now ready to prove the Corollary:

Proof of Corollary 3.8. We use Proposition 3.10, where T is Sym. First, (a) is
true because the initial object is S = Sym(∅), and so is cofibrant in CMon(M) by
adjointness, since∅ is cofibrant inM. Next, (b) is true by the smallness assumption



MODEL STRUCTURES ON COMMUTATIVE MONOIDS IN GENERAL MODEL CATEGORIES 11

together with the filtration of Sym given in the proof of Theorem 3.2. We are
therefore reduced to checking (c). We begin with the case where R = S , so that
we are building a semi-model structure on CMon(M). The proof of Theorem 3.2
does not use the monoid axiom until we have already proven that the pushout of
commutative monoids

Sym(K) //

��

Sym(L)

��
X // P

can be factored into X = P0 → P1 → · · · → P where each Pn−1 → Pn is a pushout
of X ⊗ f �n/Σn. By the commutative monoid axiom, f �n/Σn is a trivial cofibration.
Without the monoid axiom it is not clear how to proceed unless X is cofibrant.
Every map in T J-cell whose domain is cofibrant is a transfinite composition of
maps of the form X → P above, where X is cofibrant, so we may assume X is
cofibrant when verifying Proposition 3.10 (c). In this case, the map X ⊗ f �n/Σn

has the form (∅ ֒→ X) � f �n/Σn and hence is a trivial cofibration by the pushout
product axiom. Thus, the pushout Pn−1 → Pn must also be a trivial cofibration,
and the composite X → P is a composite of trivial cofibrations and hence a trivial
cofibration.

For the case of a general commutative monoid R, observe that CAlg(R) = R ↓

CMon(M). For undercategories, one usually defines a map f : X → Y (i.e. a
commutative triangle under R) to be a cofibration, fibration, or weak equivalence
precisely when f is a cofibration, fibration, or weak equivalence in CMon(M).
The semi-model structure we seek on CAlg(R) has the same weak equivalences and
fibrations (hence the same cofibrations) as these three classes of maps. Theorem 2.7
of [Hir05] demonstrates that these classes can be transferred from CMon(M) along
the adjunction R ⊗ − : CMon(M)⇆ CAlg(R) : U. Since the semi-model structure
on CMon(M) is itself transferred from M, this means the semi-model structure
we seek on CAlg(R) can be viewed as being transferred along the adjunction R ⊗

Sym(−) :M⇆ CAlg(R) : U.

In order to check that this transfer defines a semi-model structure, we use Propo-
sition 3.10 with T = R ⊗ Sym(−). Hypothesis (a) is true by adjunction, because
the initial object R is T (∅) and ∅ is cofibrant inM. Note that this does not require
R to be cofibrant inM, only in CAlg(R). Hypothesis (b) is true by our smallness
assumption and the filtration above. Hypothesis (c) is true by an argument anal-
ogous to the R = S case above, but now where everything in sight is viewed in
R ↓ CMon(M). Namely, we use Proposition 2.4 in [Hir05] to see that the pushout
of X ← R ⊗ Sym(K) → R ⊗ Sym(L) in CAlg(R) is simply P. We analyze this
pushout in the case where X is cofibrant in CMon(M) (equivalently, R → X is
cofibrant in CAlg(R)), we write the filtration maps Pn−1 → Pn as pushouts of triv-
ial cofibrations, and we conclude that X → P is a trivial cofibration. Since the
maps in T J-cell whose domains are cofibrant are transfinite compositions of such
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maps X → P, we conclude (c) holds and hence that CAlg(R) has a transferred
semi-model structure. �

Observe that if one wishes to obtain on CAlg(R) a semi-model structure over M

in the terminology of [Spi01] then one must also assume that S and R are cofi-
brant so that the initial object in CAlg(R) forgets to a cofibrant object inM. Note
that the proof given here is fundamentally different from Theorem 3.3 in [Hov98]
(which required R to be cofibrant), because we do not pass through the category
of R-modules, and so we do not need to prove R-mod is a monoidal model cate-
gory.

As the filtration given in Appendix B is related to Harper’s filtration for gen-
eral operads from [Har10], we pause for a moment to compare these two ap-
proaches.

Remark 3.11. Harper’s general machinery describes the map Pn−1 → Pn as a
pushout

ComX[n] ⊗Σn
Qn

//

�� u

ComX[n] ⊗Σn
L⊗n

��
Pn−1

// Pn

where ComX is the enveloping operad. One may use Proposition 7.6 in [Har10]
to write ComX[n] = X with the trivial Σn action. Thus, Pn−1 → Pn can be writ-
ten as the pushout of X ⊗ f �n/Σn and Harper’s filtration makes it clear that the
commutative monoid axiom is precisely the right hypothesis.

In a similar way, AssX[n] = X⊗n+1 · Σn, i.e. the coproduct of n! copies of X⊗n+1

with the free Σn action. So in that case the (− · Σn) ⊗Σn
(−) provides a cancellation

and Harper’s filtration reduces to a pushout of X⊗n+1 ⊗ f �n. We see immediately
why the monoid axiom is necessary.

Finally, one could realize commutative R-algebras as algebras over the operad
ComR and in this case Harper’s filtration would be a pushout of a map of the form
(ComR)A[n] ⊗Σn

f �n where A is a commutative R-algebra. In this case, the formula
in Proposition 7.6 yields (ComR)A[n] = R ⊗ A and so the maps Pn−1 → Pn are
pushouts of (R ⊗ A) ⊗ f �n/Σn. In this way we see that in the presence of the com-
mutative monoid axiom but in the absence of the the monoid axiom we need both
R and A to be cofibrant in order to ensure that this map is a trivial cofibration, i.e. to
obtain on CAlg(R) a semi-model structure overM. This is the commutative analog
of Theorem 3.3 in [Hov98], in which cofibrancy of R was required to achieve a
semi-model structure on R-algebras. There the formula (AssR)A[n] = R ⊗ A · Σn

means that the relevant pushout takes the form R ⊗ A ⊗ f �n and this makes clear
why both R and A must be cofibrant in the absence of the monoid axiom.

We conclude this section with a remark comparing our approach and results with
the approach outlined by Lurie in [Lur09a], in which he proved:
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Theorem 3.12. LetM be a left proper, combinatorial, tractable, monoidal model

category satisfying the monoid axiom and with a cofibrant unit. Assume further

that

(*) If h is a cofibration then h�n is a cofibration in the projective model structure

onMΣn for all n. Such maps h are called power cofibrations.

Then CMon(M) has a model category structure with weak equivalences and fibra-

tions inherited fromM.

The difference between this result and Theorem 3.2 is that in Theorem 3.2 we do
not require M to be left proper, we do not require the unit to be cofibrant, we do
not require the model structure to be tractable, we weaken combinatoriality to a
much lesser smallness hypothesis, and we weaken (*) to the commutative monoid
axiom. We have also discussed how to remove the monoid axiom. Note that Lurie
also assumesM is simplicial, but never uses this assumption. The assumption that
the unit is cofibrant is part of what Lurie requires of a monoidal model category.
However, the unit is not cofibrant in the positive and positive flat model structures
on categories of spectra. For this reason, Theorem 3.12 cannot apply to such ex-
amples as stated, but elements of the proof have been made to apply to the positive
flat stable model structure in [Per13].

We refer to condition (*) as Lurie’s hypothesis. It implies the strong commutative
monoid axiom as shown in Lemma 4.3.28 of [Lur09a]. The key observation is that
(−)/Σn : MΣn → M is the left adjoint of a Quillen pair where the right adjoint
is the constant diagram functor (i.e. endows an object with the trivial Σn action).
Thus, if (*) is satisfied and we apply this map to the projective cofibration f �n

we obtain the strong commutative monoid axiom. However, (*) assumes strictly
more than the strong commutative monoid axiom, as evidenced in Section 5 where
we show that simplicial sets and topological spaces satisfy the latter but not the
former.

Note that Lurie’s Proposition 4.3.21 is slightly more general than what we’ve stated
above in that it only requires that there is some combinatorial model structureMV

on the relative categoryM, and thatMV has cofibrations V generated by cofibra-
tions between cofibrant objects and satisfying (*). In this caseM is said to be freely

powered by V . We could also do our work in that level of generality, but choose
not to because it seems unnatural to place a hypothesis on a model category which
references the existence of some other model category. The point is that this extra
generality does not buy us anything becauseM andMV will be Quillen equivalent
by Lurie’s Remark 4.3.20.

Lurie does not prove that it is sufficient to check hypothesis (*) on the generating
(trivial) cofibrations, but this has been done in [Per13].
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4. Additional Results

4.1. Functoriality and Homotopy Invariance. We turn now to the question of
whether or not the passage from R to CAlg(R) is functorial and has good homotopy
theoretic properties. Following [SS00], we provide a condition so that the homo-
topy theory of commutative R-algebras only depends on the weak equivalence type
of R. Recall that a monoidal model categoryM is said to satisfy the property that
cofibrant objects are flat if for all cofibrant X and all weak equivalences f , the map
X ⊗ f is a weak equivalence. This property can be viewed as a global version of
the unit axiom (which is the same statement restricted to the cofibrant replacement
map f : QS → S ).

Theorem 4.1. SupposeM satisfies the conditions of Theorem 3.2. Then:

(1) The passage from R to CAlg(R) is functorial: given a ring homomorphism

f : R→ T, restriction and extension of scalars provides a Quillen adjunc-

tion between CAlg(R) and CAlg(T ).

(2) Suppose that cofibrant objects are flat in CAlg(R), i.e. for any cofibrant

commutative R-algebra N, the functor N⊗R− preserves weak equivalences

of commutative R-algebras. Let f : R → T be a weak equivalence of

commutative monoids. Then f induces a Quillen equivalence CAlg(R) ≃
CAlg(T ).

Proof. Let f : R→ T be a ring homomorphism.

(1) The map f makes T into an R-module, and provides the extension of
scalars functor from CAlg(R) to CAlg(T ), i.e. N � R ⊗R N → T ⊗R N.
Because weak equivalences and fibrations are defined in the underlying
category, the right adjoint restriction functor preserves (trivial) fibrations.
So they form a Quillen pair and the extension functor preserves (trivial)
cofibrations.

(2) To check that extension and restriction form a Quillen equivalence in this
case, we use Corollary 1.3.16(c) of [Hov99]. First, note that restriction re-
flects weak equivalences between fibrant objects because the weak equiv-
alences and fibrations in these two categories are the same. Next, suppose
N is a cofibrant commutative R-algebra. The map N � R ⊗R N → T ⊗R N

is a weak equivalence because cofibrant objects are flat. Thus, restriction
and extension of scalars form a Quillen equivalence.

�

An alternative approach for (2) which avoids the need for cofibrant R-modules to
be flat is suggested by Theorem 2.4 of [Hov98] in the non-commutative case. The
cost is a collection of cofibrancy hypotheses on the objects in question. Via Remark
3.11 we may view the generating cofibrations of CAlg(R) as R⊗ Sym(I) where I is
the set of generating cofibrations forM.
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Theorem 4.2. Suppose M has a cofibrant unit, satisfies the strong commutative

monoid axiom, and that the domains of the generating cofibrations are cofibrant.

Suppose R and T are commutative monoids which are cofibrant inM and suppose

f : R → T is a weak equivalence. Then extension and restriction of scalars is a

Quillen equivalence between CAlg(R) and CAlg(T ).

Proof. We follow the model of Hovey’s proof in [Hov98]. All that must be shown
is that for all cofibrant R-modules M, M → M⊗R T is a weak equivalence. Because
M is cofibrant we may write M = colim Mα where M0 = 0 and Mα → Mα+1 is a
pushout of a map in R ⊗ Sym(I). For concreteness we will let K → L denote the
map in I which is used in this pushout.

We show by transfinite induction that Mα → Mα⊗R T is a weak equivalence for all
α. The base case is trivial because M0 = 0. For the successor case, apply the left
adjoint −⊗R T to the pushout square defining Mα → Mα+1 and the result will again
be a pushout square. There is also a map from the former pushout square to the
latter, induced by the adjunction. We will apply the Cube Lemma (Lemma 5.2.6 in
[Hov99]) to the resulting cube.

R ⊗ Sym(K) //

��

R ⊗ Sym(L)

��

T ⊗ Sym(K) //

��

T ⊗ Sym(L)

��
Mα

// Mα+1 Mα ⊗R T // Mα+1 ⊗R T

Here we have canceled R⊗R (−) terms in the right-hand square. BecauseM has the
commutative monoid axiom and a cofibrant unit, the cofibrancy of K and L implies
the cofibrancy of Sym(K) and Sym(L) inM, by Corollary 3.6. Thus, by Lemma
1.1.12 in [Hov99], smashing with these objects preserves weak equivalences be-
tween cofibrant objects, so when we apply this to the weak equivalence R → T ,
we see that the maps ⊗ Sym(K) → T ⊗ Sym(K) and R ⊗ Sym(L) → T ⊗ Sym(L)
above are weak equivalences. Similarly, the map Sym(K) → Sym(L) is a cofibra-
tion and so because R and T are cofibrant the horizontal maps across the top are
cofibrations (and hence the bottom horizontals as well, because they are pushouts
of cofibrations).

Because all maps Mα → Mα+1 are cofibrations and because M0 is cofibrant, all Mα

are cofibrant. Because extension of scalars is left Quillen, the objects in the second
square are cofibrant. The inductive hypothesis tells us that the map on the lower
left corner is a weak equivalence. The Cube Lemma then guarantees us that the
map on the lower right corner is a weak equivalence.
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For the limit ordinal case, assume that Mα → Mα ⊗R T is a weak equivalence for
all α < λ. Then we have a map of sequences

M0
//

��

M1
//

��

. . . // Mα
//

��

. . .

M0 ⊗R T // M1 ⊗R T // . . . // Mα ⊗R T // . . .

where all vertical maps are weak equivalences and all all horizontal maps are cofi-
brations of cofibrant objects. So Proposition 18.4.1 in [Hir03] proves the colimit
map Mλ → Mλ ⊗R T is a weak equivalence as well.

�

Hovey provides a counterexample which demonstrates that for non-cofibrant R and
T , and without the hypothesis that cofibrant R-modules are flat, it is not true that
R ≃ T induces a Quillen equivalence of categories of modules.

We do not know whether or not Hovey’s example can be generalized to the case of
algebras rather than modules. We do know that the spaces considered in Hovey’s
example cannot provide such a counterexample for the question of Quillen equiv-
alence between CAlg(R) and CAlg(T ), because commutative monoids in Top are
generalized Eilenberg-Mac Lane spaces (as discussed in Example 4.4).

The author does not know whether or not it is possible to prove homotopy invari-
ance of CAlg(R) without the hypothesis that cofibrant objects are flat and without
having to assume the objects R and T are cofibrant. Note that Corollary 2.4 of
[BM07] does not apply here because the operads Com, ComR, and ComT are not
Σ-cofibrant.

Remark 4.3. The results in this section also hold in the absence of the monoid
axiom. By Corollary 3.8, categories of commutative algebras form semi-model
categories and the output of the theorem is a Quillen equivalence of semi-model
categories. To see this one need only note that the monoid axiom is not used in the
proof, and that the semi-model category analog of 1.3.16 in [Hov99] can be found
in Section 12.1.8 of [Fre09].

4.2. Rectification. We turn next to the question of rectification. As discussed
in [Spi01], categories of algebras over cofibrant operads inherit model structures
whenever the monoid axiom is satisfied. Thus, E∞-algebras inM will always in-
herit a model structure in our set-up. There is a weak equivalence φ : E∞ → Com,
so it is natural to ask whether or not the pair (φ∗, φ!) forms a Quillen equivalence
between E∞-algebras and Com-algebras. If there is, then rectification is said to
occur.

Observe that rectification does not come for free, even for very nice model cate-
goriesM, as the following counterexample demonstrates:
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Example 4.4. Let M be simplicial sets or topological spaces. We will see in
the next section that M satisfies the strong commutative monoid axiom. The
monoid axiom and requisite smallness were verified in [SS00] for simplicial sets,
in [Hov98] for compactly generated spaces, and in [Whi13] for k-spaces. Thus,
commutative monoids inherit a model structure.

For topological spaces the path connected commutative monoids are weakly equiv-
alent to generalized Eilenberg-Mac Lane spaces, i.e. products of Eilenberg-Mac
Lane spaces.

The existence of spaces like QS = Ω∞Σ∞S 0, which has an E∞-algebra structure
but is not a generalized Eilenberg-Mac Lane space, demonstrates that rectification
between E∞ and Com fails for spaces.

The rectification results of [BM07] are phrased so as to apply for very general
model categoriesM, including simplicial sets. However, these results do not apply
to the example above because Com is not a Σ-cofibrant operad. If M satisfies
Harper’s hypothesis that all symmetric sequences are projectively cofibrant (e.g.
if M = Ch(k) for k a Q-algebra), then Com is Σ-cofibrant and so rectification
holds.

The key property possessed by good monoidal categories of spectra is

(**) For all cofibrant X, the map (EΣn)+ ∧Σn
X∧n → X∧n/Σn is a weak equiva-

lence.

This property is certainly related to the commutative monoid axiom, and it is often
used to verify the commutative monoid axiom for positive model structures on
symmetric and orthogonal spectra. However, the example above demonstrates that
this property is not necessary for strictly commutative monoids to inherit a model
structure, and that it cannot be deduced from the commutative monoid axiom. We
now record the correct analogue of this property (**) in general model categories.
We will assume M is a D-model category in the sense of Definition 4.2.18 in
[Hov99], and this allows operads valued inD to act inM.

Definition 4.5. LetM be a monoidal model category which is aD-model category.
View the unit S ofD as an object inDΣn with the trivial Σn action. Let q : QΣn

S →

S be cofibrant replacement in the projective model structure on DΣn . Then M is
said to satisfy the rectification axiom with respect to operads valued in D if for all
cofibrant X inM, the natural map QΣn

S ⊗Σn
X⊗n → X⊗n/Σn is a weak equivalence.

A similar property to the rectification axiom, requiring certain homotopy orbits to
be weakly equivalent to orbits, appears in the axiomatization of good model struc-
tures of spectra given by [GH04]. However, in [GH04], this condition is equivalent
to the condition that all simplicial operads are admissible, and as we have seen that
will not be true for general model categories.

The key consequence of the rectification axiom is that rectification will occur be-
tween commutative monoids and algebras over a cofibrant replacement QCom of



18 DAVID WHITE

the Com operad (see Theorem 4.6 below). An example of such rectification is the
Quillen equivalence between commutative ring spectra and E∞-algebras in good
monoidal model categories of spectra, where QCom can be taken to be the Fulton-
Macpherson operad. In general, we work in the setting of D-model categories
where D is a monoidal model category (see [Hov99], 4.2.6). A D-operad O has
O(n) an object inD for all n. TheseD-operads have algebras inM, just as simpli-
cial operads have algebras in categories of spectra. There is a semi-model structure
on the category of D-operads transferred from the projective model structure on
symmetric sequences in D ([Fre09], 12.2.A). We define QCom to be a cofibrant
replacement of Com in this semi-model structure. This semi-model structure is of-
ten a full model structure ifD satisfies stronger conditions ([BM03] Theorem 3.1),
but a semi-model structure suffices for our needs.

Theorem 4.6. Suppose that all the following hold:

(1) D is a monoidal model category whose unit is cofibrant,

(2) M is a monoidal D-model category satisfying the strong commutative

monoid axiom and the monoid axiom,

(3) The domains of the generating cofibrations ofM are cofibrant and satisfy

the requisite smallness hypotheses so that Com-alg and QCom-alg may

inherit transferred model structures,

(4) Either that the unit S of M is cofibrant, or that M is the positive (flat)

model structure on symmetric or orthgonal spectra, and

(5) M satisfies the rectification axiom.

Then the cofibrant replacement morphism φ : QCom → Com induces a Quillen

equivalence between Com-alg and QCom-alg.

Condition (4) above guarantees that cofibrations of commutative monoids with
cofibrant source forget to cofibrations inM (by Proposition 3.5 in the former case
and Proposition 4.1 in [Shi04] in the latter). Similarly, QCom-algebras with cofi-
brant source forget to cofibrations inM. For the setting where S is cofibrant, this
follows from Theorem 12.1.4 in [Fre09] and Proposition 4.3 in [BM03]. For the
setting of spectra, we will prove this as part of Corollary 4.8 below.

We will see that this theorem implies rectification results for positive (flat) monoidal
categories of spectra (where D is simplicial sets or topological spaces) and for
chain complexes. The case of G-equivariant spectra (where D is G-equivariant
spaces) is more subtle. In that setting, the model structure on G-operads (Theo-
rem 3.1 in [BM03], Theorem 12.2.A in [Fre09]) is the wrong model structure to
correctly encode the mixing of group actions between G and the operad symmet-
ric group actions. As a consequence, QCom is not an N∞-operad in the sense of
[BH14], and the rectification axiom is not satisfied. However, in current joint work
with Javier Gutiérrez, the author shows that there is another model structure on G-
operads in which the cofibrant replacement of Com is a cofibrant N∞-operad and
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in which rectification occurs. The rectification axiom for that setting states that
for all cofibrant G-spectra X, the natural map (EGΣn)+ ∧Σn

X∧n → X∧n/Σn is a
weak equivalence of G-spectra, where EGΣn is the total space of the universal G-
equivariant principal Σn-bundle. We refer to the existence of this weak equivalence
for all cofibrant X as the equivariant analogue of the rectification axiom.

Before proving the theorem above, we record a lemma regarding the behavior of
weak equivalences under coproduct.

Lemma 4.7. Arbitrary weak equivalences between cofibrant objects are closed

under coproduct.

Proof. Suppose { fα : Aα → Bα}α∈S is a set of weak equivalences between cofibrant
objects. Form the model category

∏
α∈S M with weak equivalences, cofibrations,

and fibrations defined fromM. Consider the functor F from this model category
toM which takes (Aα) to

∐
α∈S Aα. This functor takes trivial cofibrations between

cofibrant objects to trivial cofibrations, since the coproduct of any collection of
trivial cofibrations in M is a trivial cofibration. Hence, by Ken Brown’s lemma
(Lemma 1.1.12 in [Hov99]) this functor takes weak equivalences between cofibrant
objects to weak equivalences. The map ( fα) in

∏
α∈S M is a weak equivalence

between cofibrant objects, so
∐

fα is a weak equivalence inM. �

Proof of Theorem 4.6. First, the restriction functor φ∗ preserves limits and so is a
right adjoint, as can be seen from Theorem 12.5.A in [Fre09]. The left adjoint is
denoted by φ!. Next, φ∗ commutes with the forgetful functor toM and so preserves
(trivial) fibrations of algebras since these are created in M. Thus, φ∗ is a right
Quillen functor.

To show that this Quillen pair is a Quillen equivalence, we will use that φ∗ reflects
weak equivalences. This reduces us to proving that for all cofibrant X in QCom-
alg, the adjunction unit map η : X → φ∗φ!(X) is a weak equivalence. We carry this
out first for the case where X has the form QCom(A) for some cofibrant A. In this
case, φ∗φ!(X) = Sym(A) and the map η : QCom(A) → Sym(A) is induced by φ.
This map η is a coproduct of maps of the form ηn : QCom(n) ⊗Σn

A⊗n → A⊗n/Σn.
Since QCom is a cofibrant replacement for Com, it is in particular a Σ-cofibrant
replacement by Proposition 4.3 in [BM03] applied to the category of operads in
D (this is where we need the hypothesis that the unit of D is cofibrant) and so
QCom(n) � QΣn

S . Thus, ηn is a weak equivalence for all n by the rectification
axiom.

Because QΣn
S is Σn-cofibrant and A⊗n is cofibrant in M, the domain of ηn is a

cofibrant object in M (using Lemma 2.5.2 in [BM06]). The codomain of ηn is
cofibrant by the commutative monoid axiom onM. Thus, Lemma 4.7 implies η is
a weak equivalence as required.

Since every cofibrant object in QCom-alg is a retract of a cellular object, it suffices
to prove that ηX : X → φ∗φ!X is a weak equivalence for cellular X, i.e. those built
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as transfinite compositions of pushouts of generating cofibrations of QCom-alg.
Thus, X � colim Xα, where each map iα : Xα → Xα+1 in the chain is a pushout

∐
D QCom(Ad) //

��

∐
D QCom(Bd)

��
Xα

iα
// Xα+1

where all maps id : Ad → Bd are generating cofibrations. The proof that ηX is a
weak equivalence proceeds by transfinite induction. For the base case, X = S is
the initial QCom-algebra and ηX is an isomorphism. The successor ordinal case is
the most subtle, even in the original proof of rectification for weak equivalences
between Σ-cofibrant operads (Proposition 5.7 of [BM03]). What must be shown
is that ηXα+1

is a weak equivalence whenever ηXα is a weak equivalence. Doing
so requires an analysis of a cellular QCom-algebra extension, which requires a
filtration argument analogous to Proposition B.2, but for QCom-algebras instead
of Com-algebras. Carrying out the filtration argument here would take us too far
afield, but the argument may be found in [WY16], where Theorem 4.2.1 gives the
desired result, taking the adjoint pair (L,R) to be the identity.

For the sake of being self-contained, we sketch the argument from [WY16] for
the case of φ : QCom → Com. First, we use the filtration from [Har10], which
makes use of the enveloping operad QComXα (see Remark 3.11) to filter the map
Xα → Xα+1 into a transfinite composition of pushouts taken in M. This trans-
finite composition is then compared, level by level, to the analogous filtration of
φ!Xα → φ!Xα+1 that uses Comφ!(Xα). The main idea for the comparison is to use
Proposition 4.1.1 of [WY16], which gives a weak equivalence of symmetric se-
quences QComXα → Comφ!(Xα). We then induct along the comparison of filtrations,
and use the cube lemma inM at each step of the induction to prove the filtrations
are levelwise weakly equivalent inM. The use of the cube lemma explains why, in
Theorem 4.6, we require the domains of the generating cofibrations inM to be cofi-
brant, and why we require cofibrant QCom-algebras and cofibrant Com-algebras to
forget to cofibrant objects inM (this is a consequence of condition (4)). The in-
duction proves that the underlying map of ηXα+1

is a weak equivalence inM, hence
ηXα+1

is a weak equivalence of QCom-algebras.

For the limit ordinal case, assume ηγ is a weak equivalence between cofibrant ob-
jects for all γ < β. We have a map of sequences

S //

��

X1
//

��

. . . // Xγ

��

// . . .

φ∗φ!S // φ∗φ!X1
// . . . // φ∗φ!Xγ // . . .

All vertical maps are weak equivalences and all horizontal maps are cofibrations
between cofibrant objects (resp. injections in the case of spectra). Thus, ηβ is a
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weak equivalence by Proposition 17.9.1 in [Hir03]. This completes our proof that
(φ!, φ

∗) is a Quillen equivalence. �

Corollary 4.8. Let M be the positive flat stable model structure on symmetric

spectra or orthogonal spectra. Let O be an E∞-operad. Then O-alg is Quillen

equivalent to Com-alg.

LetM be orthogonal spectra with the positive flat stable model structure. Let O be

an E∞-operad. Then O-alg is Quillen equivalent to Com-alg.

Proof. For symmetric spectra D = sS et and for orthogonal spectra D = Top.
In each case, the unit of D is cofibrant. Each of these categories of spectra has
domains of the generating cofibrations cofibrant, since generating cofibrations are
obtained from sS et and Top, where they are maps from spheres into disks. Each of
these model categories of spectra satisfies the strong commutative monoid axiom,
as will be shown in Section 5 below. Each satisfies the monoid axiom, as has
been shown in [Shi04] and [Sto11], among other places. Each has domains of
the generating cofibrations satisfying the requisite smallness hypotheses from (3)
in Theorem 4.6. For symmetric spectra this is because all objects are small. For
orthogonal spectra this is because the domains are small relative to inclusions and
both morphisms of the form I ⊗M and of the form QCom(I) are closed inclusions
(hence transfinite compositions of pushouts of such maps are closed inclusions, see
[Whi13]).

Finally, each of these model categories has been shown to satisfy the rectification
axiom in existing results in the literature. For the case of symmetric spectra this
appears in [Shi04]. For orthogonal spectra, this is in [MMSS01]. Thus, QCom-alg
is Quillen equivalent to Com-alg. Since the unit of D is cofibrant, QCom is a Σ-
cofibrant operad weakly equivalent to Com, hence weakly equivalent to O. Since
both O and QCom are Σ-cofibrant, it follows from [Fre09] (Theorem 12.5.A) that
O-algebras are Quillen equivalent to QCom-algebras, hence to Com-algebras. �

An analogous result is true for equivariant orthogonal spectra, but its proof would
take us too far afield. It will be proven in a forthcoming paper with Javier Gutiérrez.
The equivariant analogue of the rectification axiom (mentioned above Lemma 4.7)
is proven to hold in [HHR15], while rectification with a cofibrant N∞-operad is
proven in the appendix of [BH14].

Corollary 4.9. LetM be the positive stable model structure on symmetric spectra

or orthogonal spectra. Let O be an E∞-operad. Then O-alg is Quillen equivalent

to Com-alg.

LetM be orthogonal spectra with the positive stable model structure. Let O be an

E∞-operad. Then O-alg is Quillen equivalent to Com-alg.

Proof. For these examples commutative monoids inherit a model structure, but the
strong commutative monoid axiom does not hold. A cofibration of commutative
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monoids whose domain is cofibrant in M only forgets to a positive flat cofibra-
tion inM and not a positive cofibration. However, the only place in the proof of
Theorem 4.6 that we used the strong commutative monoid axiom was the step in
which we applied the cube lemma. If we apply the cube lemma in the positive flat
stable model structure then we prove that X → φ∗φ!X is a weak equivalence in the
positive flat stable model structure. Thankfully, such maps are precisely the stable
equivalences, so X → φ∗φ!X is a weak equivalence in the positive (non-flat) stable
model structure as well.

The rest of the hypotheses of Theorem 4.6 are satisfied, as can be seen in [MMSS01]
and [HHR15]. The rectification axiom in the positive (non-flat) stable model struc-
ture is implied by the rectification axiom in the positive flat stable model structure,
since the weak equivalences agree and every positive cofibrant X is positive flat
cofibrant. So the corollary now follows from the proof of Theorem 4.6 using the
argument of the preceding paragraph to prove that X → φ∗φ!X is a weak equiva-
lence. �

Corollary 4.10. Let k be a field of characteristic zero. Then the category of com-

mutative differential graded algebras over k is Quillen equivalent to the category

of E∞-algebras.

Proof. The model category M = Ch(k) satisfies the strong commutative monoid
axiom, as will be shown in Section 5 below. It satisfies the monoid axiom (see
[SS00]), has domains of the generating cofibrations cofibrant, and has all objects
small (see [Hov99]), and satisfies the rectification axiom (see [Qui69]). �

We pause now to record a proposition about the interplay between the rectification
axiom and the commutative monoid axiom which we shall use in Section 5.

Proposition 4.11. SupposeM is a monoidal model category satisfying the rectifi-

cation axiom. Then Symn(−) takes trivial cofibrations between cofibrant objects to

weak equivalences.

Proof. Let f : A → B be a trivial cofibration between cofibrant objects. Note
that f ⊗n : A⊗n → B⊗n is a trivial cofibration in M because it is the composite
A⊗n → A⊗n−1 ⊗ B → A⊗n−2 ⊗ B⊗2 → · · · → B⊗n. This follows by iteratively
applying the fact that A ⊗ − and B ⊗ − are left Quillen functors. Furthermore, this
map has an obvious Σn-action.

Because QΣn
S is projectively Σn-cofibrant, the map ∅ → QΣn

S is a cofibration

in the projective model structure onMΣn . Thus, by Lemma 2.5.2 in [BM06], the
pushout product of ∅ → QΣn

S and f ⊗n is a trivial cofibration in the projective

model structure on MΣn . When we pass to Σn-coinvariants we obtain a trivial
cofibration in M, because (−)/Σn is left Quillen. The resulting map is A⊗n ⊗Σn

QΣn
S → B⊗n ⊗Σn

QΣn
S .
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Consider the following commutative square, where the bottom horizontal map is
Symn( f ), the top horizontal map is the map we have just described, and the vertical
maps are induced by QΣn

S → S and by passage to Σn-coinvariants:

QΣn
⊗Σn

A⊗n //

��

QΣn
⊗Σn

B⊗n

��

A⊗m/Σm
// B⊗m/Σm

We have shown the top vertical map is a weak equivalence. The vertical maps are
weak equivalences by the rectification axiom. Thus, the bottom horizontal map is
a weak equivalence by the two-out-of-three property.

�

In situations arising from topology, whereM is spectra and D is spaces, the map
QΣn

S → S is the cofibrant replacement of the point and so is EΣn → ∗ in the

unpointed setting and (EΣn)+ → S 0 in the pointed setting. This proposition is
used in Section 5 to make sure that a particular Bousfield localization respects the
commutative monoid axiom.

We have not undertaken a general study of when rectification between Com and E∞
holds. The interested reader is encouraged to consult [GV12], [SS12], [PS14], and
[WY16] for more information about rectification for general model categories.

4.3. Relationship to Bousfield Localization. We now record a few facts regard-
ing the relationship between the model category axioms we have discussed and
(left) Bousfield localization. These results are proven in the author’s thesis [Whi14a],
and have appeared in the companion paper [Whi14b]. Taken together, the follow-
ing three results give a list of checkable conditions on a model category M and
a set of maps C so that the Bousfield localization LC(M) of M with respect to C

satisfies the necessary hypotheses of Theorem 3.2, i.e. so that one may obtain a
model structure on the category of commutative monoids in LC(M). It is proven
in [Whi14a] that these properties imply that commutative R-algebras are preserved
by LC . Throughout we assume that the maps in C are cofibrations between cofi-
brant objects. If they are not, then this can be arranged without loss of generality
by taking cofibrant replacements of the maps in C and applying the factorization
axiom to obtain cofibrations between cofibrant objects.

Theorem 4.12. LetM be a left proper, monoidal model category where cofibrant

objects are flat and such that the domains of the generating cofibrations are cofi-

brant. Let C be a set of maps such that the Bousfield localization LC(M) exists.

Then LC(M) has cofibrant objects flat and satisfies the pushout product axiom if

and only if for all domains and codomains K of the generating cofibrations, maps

in C ⊗ idK are C-local equivalences.
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Furthermore, without the hypothesis on the domains of the generating cofibrations,

we have:

LC(M) has cofibrant objects flat and satisfies the pushout product axiom if and

only if for all cofibrant K, maps in C ⊗ idK are C-local equivalences.

Note in particular that under these hypotheses LC(M) also satisfies the unit axiom.
In light of this characterization, we refer to Bousfield localizations satisfying the
hypotheses of the theorem as monoidal Bousfield localizations. We turn next to
the strong commutative monoid axiom, for which we have two preservation results
with differing hypotheses.

Theorem 4.13. Suppose M is a simplicial model category satisfying the strong

commutative monoid axiom. Suppose that for all n ∈ N and f ∈ C, Symn( f ) is a

C-local equivalence. Then LC(M) satisfies the strong commutative monoid axiom.

Theorem 4.14. Assume M is a monoidal model category satisfying the strong

commutative monoid axiom and in which the domains of the generating cofibra-

tions are cofibrant. Suppose that LC(M) is a monoidal Bousfield localization with

generating trivial cofibrations JC. If Symn( f ) is a C-local equivalence for all n ∈ N

and for all f ∈ JC, then LC(M) satisfies the strong commutative monoid axiom.

Because the results in [Whi14b] are general enough to hold only in the presence
of a semi-model structure on commutative monoids, it is enough for localization to
preserve the pushout product axiom and the commutative monoid axiom. However,
we also have a result regarding preservation of the monoid axiom which we record
here for the reader’s convenience. First we must introduce a new definition, taken
from [BB14]:

Definition 4.15. A map f : X → Y is called an h-cofibration if the functor
f! : X/M → Y/M given by cobase change along f preserves weak equivalences.
Formally, this means that in any diagram as below, in which both squares are
pushout squares and w is weak equivalence, then w′ is also a weak equivalence:

X //

f

��

A
w

//

��

B

��
Y // A′

w′
// B′

M is said to be h-monoidal if for each (trivial) cofibration f and each object Z,
f ⊗ Z is a (trivial) h-cofibration.

If M is left proper, then an equivalent characterization of an h-cofibration is as
a map f such that every pushout along f is a homotopy pushout (this version of
the definition above was independently discovered in [Whi14a]). In [BB14], h-
monoidality is verified for the model categories of topological spaces, simplicial
sets, chain complexes over a field (with the projective model structure), symmetric
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spectra (with the stable projective model structure), and several other model cate-
gories not considered in this paper. More examples can be found in [Whi14b].

With this definition in hand, it is proven in Proposition 2.5 of [BB14] that ifM is
h-monoidal and the weak equivalences in (M⊗ I)-cell are closed under transfinite
composition, then M satisfies the monoid axiom. We strengthen this result by
replacing the third condition with the hypothesis that the (co)domains of I are finite
relative to the class of h-cofibrations (here finite means small relative to all limit
ordinals, as in Section 7.4 of [Hov99]). Because this is a statement phrased entirely
in terms of I, it is preserved by any Bousfield localization LC. We therefore are able
to prove:

Theorem 4.16. SupposeM is an h-monoidal model category such that the (co)domains

of I are finite relative to the h-cofibrations, the domains of the generating cofibra-

tions are cofibrant, and cofibrant objects are flat. Then for any monoidal Bousfield

localization LC, the model category LC(M) satisfies the monoid axiom.

4.4. Left Properness. In [BB14] conditions are provided so that if M is left
proper then the transferred model structure on algebras over a certain type of monad
T is left proper. A standard condition in [BB14], that subsumes the smallness hy-
pothesis in Theorem 3.2, is thatM is compactly generated, i.e. all objects are small
relative to (M⊗ I)-cell and the weak equivalences are closed under filtered colim-
its along morphisms in (M⊗ I)-cell (i.e. the class of weak equivalences is perfect
with respect to (M⊗ I)-cell). Unfortunately, the meaning of compactly generated
and of h-cofibration in this paper and in [BB14] is totally unrelated to the meaning
in [EKMM97]. The approach in [EKMM97], via the Cofibration Hypothesis, is
meant to avoid the need for the monoid axiom, but does not yield left proper model
structures on categories of algebras.

Theorem 3.1 in [BB14] proves that the model structure on monoids constructed
in [SS00] is left proper ifM is compactly generated and if the weak equivalences
in M are closed under ⊗ (this condition is referred to as M being strongly h-

monoidal). Following this proof method, we can prove that our model structure on
commutative monoids is left proper under the weaker hypothesis thatM is only h-
monoidal (in the sense of Definition 4.15). However, because we still need certain
monoidal products of weak equivalences to be weak equivalences, we replace the
strong h-monoidality by the assumptions that cofibrant objects are flat in M and
that the domains of the generating cofibrations are cofibrant, as in the previous
section.

Theorem 4.17. LetM be a compactly generated h-monoidal model category sat-

isfying the strong commutative monoid axiom and the monoid axiom. Assume the

domains of the generating cofibrations inM are cofibrant and that cofibrant ob-

jects are flat. Let R be a commutative monoid inM. Then the category CAlg(R)
inherits a left proper transferred model structure from M. In particular, when

R = S this gives a left proper model structure on commutative monoids inM.
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Proof. As usual we can reduce to proving the case R = S , since CAlg(R) = R ↓

CMon(M) and an under-category is left proper if when we forget to CMon(M) the
result is left proper. The hypotheses of the theorem subsume those of Theorem 3.2,
so we may assume CMon(M) admits a transferred model structure. Note also that
M is left proper, since h-monoidality implies left properness. Following Theorem
2.14 in [BB14], what must be shown is that for any cofibration u : K → L inM and
for any weak equivalence f : A → B in CMon(M) with a map α : K → U(A), the
map A[u, α]→ B[u, fα] defined by the following diagram is a weak equivalence:

Sym(K)

Sym(u)

��

Sym(α)
//

u

Sym(U(A))

��

//

u

A

��

f
//

u

B

��
Sym(L) // Sym(P) // A[u, α] // B[u, fα]

Here P is the pushout of L ← K → U(A) inM, the left-hand square is obtained by
applying Sym to this pushout, and the map Sym(U(A)) → A is the structure map
of the monad Sym. The notation A[u, α] and B[u, fα] are defined by the pushout
diagrams above.

In order to prove that A[u, α] → B[u, fα] is a weak equivalence we observe as in
Theorem 2.14 of [BB14] that the filtration on each component induces a filtration
of the map

A[u](0) //

��

A[u](1) //

��

. . . // colimn A[u](n)

��

U(A[u, α])

B[u](0) // B[u](1) // . . . // colimn B[u](n) U(B[u, fα])

We have changed notation, but the filtration across the top line is precisely the filtra-
tion denoted by P0 → P1 → . . . in Theorem 3.2 for the diagram A ← Sym(K) →
Sym(L), and the filtration across the bottom is the corresponding filtration for B.
In particular, the horizontal maps across the top are pushouts of maps of the form
A ⊗ u�n/Σn and the horizontal maps across the bottom are pushouts of maps of
the form B ⊗ u�n/Σn. The strong commutative monoid axiom guarantees us that
u�n/Σn is a cofibration, and h-monoidality tells us that the horizontal maps are in
the class (M⊗I)-cell. SinceM is compactly generated, any filtered colimit of weak
equivalences along such maps is a weak equivalence, so we are reduced to proving
the vertical maps are weak equivalences. This will be accomplished by induction,
using the fact that the vertical maps may be realized inductively as colimits of the
following cubes:
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A ⊗ Qn/Σn
//

��

&&▼
▼▼

▼▼
▼▼

▼▼
▼

A ⊗ L⊗n/Σn

��

&&▲
▲▲

▲▲
▲▲

▲▲
▲

A[u](n−1) //

��

A[u](n)

��

B ⊗ Qn/Σn
//

&&▼
▼▼

▼▼
▼▼

▼▼
▼

B ⊗ L⊗n/Σn

&&▲
▲▲

▲▲
▲▲

▲▲
▲

B[u](n−1) // B[u](n)

Since f is a weak equivalence in CMon(M), it is a weak equivalence in M, so
A[u](0) → B[u](0) is simply the weak equivalence f . By induction we may assume
A[u](n−1) → B[u](n−1) is a weak equivalence. We must now prove that the other
vertical maps are weak equivalences. This is where we use our hypotheses onM.
Our assumption on the domains of the generating cofibrations implies K and L

are cofibrant, and hence that the maps inside the cube defining Qn are cofibrations
(hence h-cofibrations because M is left proper). Since passage to Σn-coinvariants
commutes with pushout, and becauseM satisfies the commutative monoid axiom,
Qn/Σn and L⊗n/Σn are cofibrant. A detailed proof of this claim is given in Lemma
A.3. Because cofibrant objects are flat, the vertical maps f ⊗Qn/Σn and f ⊗L⊗n/Σn

are weak equivalences.

The strong commutative monoid axiom and h-monoidality of M imply that A ⊗

u�n/Σn and B ⊗ u�n/Σn are h-cofibrations. The characterization of h-cofibrations
in a left proper model category (given after Definition 4.15 above) implies that
both the top and bottom squares of the cube above are homotopy pushout squares.
As in the proof of Theorem 3.1 in [BB14] this implies that the back square in the
cube above is a homotopy pushout square, and so the front one is too. Finally, this
implies that A[u](n) → B[u](n) is a weak equivalence, completing our induction and
the proof that CMon(M) is left proper.

�

As in the proof of Theorem 3.1 in [BB14], the proof above also has a relative
version whenM fails to be h-monoidal.

Theorem 4.18. Let M be a compactly generated monoidal model category sat-

isfying the strong commutative monoid axiom and the monoid axiom. Let R be a

commutative monoid in M. Then the category CAlg(R) inherits a relatively left

proper transferred model structure fromM.

Here relatively left proper means that the pushout by a cofibration in CAlg(R) of
any weak equivalence f : A→ B where U(A) and U(B) are cofibrant inM is again
a weak equivalence.
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Proof. The hypotheses of the theorem still imply that CMon(M) inherits a model
structure. The proof proceeds precisely as above, but now one may assume U(A)
and U(B) are cofibrant in M, and that u has a cofibrant domain (this is why we
do not need a tractability hypothesis onM). So maps of the form A ⊗ u�n/Σn and
B⊗u�n/Σn are cofibrations. Furthermore, all objects of the cube above are cofibrant
and we no longer need the hypothesis that cofibrant objects are flat in order to
conclude that the vertical maps are weak equivalences. We simply use Ken Brown’s
lemma, since − ⊗ Z will preserve weak equivalences between cofibrant objects for
any cofibrant Z (e.g. Z = Qn/Σn or Z = L⊗n/Σn). Finally, the Cube Lemma
(Lemma 5.2.6 in [Hov99]) completes the induction and implies A[u](n) → B[u](n)

is a weak equivalence. �

4.5. Lifting Quillen Equivalences. We turn now to the question of when a monoidal
Quillen equivalence F :M→ N , between model categories satisfying the commu-
tative monoid axiom, induces a Quillen equivalence of categories of commutative
monoids.

Theorem 4.19. Suppose M and N satisfy the commutative monoid axiom. Sup-

pose F : M → N is left Quillen equivalence and a strong symmetric monoidal

functor. Let T be a commutative monoid which is cofibrant in M and such that

cofibrant commutative T-algebras forget to cofibrant objects inM. Then F(T ) is

a commutative monoid in N and the functor F̃ :CAlg(T ) → CAlg(F(T )), induced

by F, is a left Quillen equivalence.

Note that the hypothesis about cofibrant commutative T -algebras forgetting to cofi-
brant objects in M can be arranged either by assuming the strong commutative
monoid axiom and that the unit S ofM is cofibrant (in which case the hypothesis
holds by Corollary 3.6), or by working in the setting where M is a positive flat
model structure on a monoidal category of spectra (in which case the hypothesis
was proved to hold in [Shi04]).

Proof. First, we lift the functor F to a functor of commutative T -algebras. Let
S denote the unit of M and let SN denote the unit of N . For any commutative
T -algebra M, FM is a commutative FT -algebra with structure maps FT ⊗ FM �

F(T ⊗ M)→ FM, FM ⊗ FM � F(M ⊗ M)→ FM, and SN ⊗ FM � FS ⊗ FM �

F(S ⊗ M) → FM inherited from M. For commutativity of FM we use that F is
symmetric monoidal.

Let η : X → UFX and ǫ : FUX → X be the unit and counit of the adjunction
(F,U). We now show that U lifts to a functor of commutative monoids. For any
commutative FT -algebra N, UN is a T -module with structure map T ⊗ UN →

UFT ⊗ UN → U(FT ⊗ N) → UN where the first map is η ⊗ 1 and the second
map is adjoint to F(UFT ⊗ UN) → FUFT ⊗ FUN → FT ⊗ N, the composite of
a natural isomorphism with ǫ ⊗ ǫ. Similarly, UN is a commutative T -algebra with
structure maps UN ⊗ UN → U(N ⊗ N) → U(N) where the first map is adjoint
to F(UN ⊗ UN) � FUN ⊗ FUN → N ⊗ N again using ǫ ⊗ ǫ. Lastly, the unit
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SN � FS → N is adjoint to S → UN. It is easy to verify that F and U remain
adjoint as functors of commutative monoids.

Since U preserves fibrations and trivial fibrations of commutative monoids (since
it does so as a functor N → M), it is a right Quillen functor. To prove that (F,U)
forms a Quillen equivalence, we must prove that for any cofibrant commutative
T -algebra X, the natural map X → URT FX is a weak equivalence, where RT is a
fibrant replacement functor in the category of commutative FT -algebras. Let R be a
fibrant replacement functor inN . Then there is a weak equivalence RFX → RT FX

because RT FX is fibrant inN and weakly equivalent to FX. This is a weak equiva-
lence between fibrant objects inN , so URFX → URT FX is a weak equivalence in
M. Since X is a cofibrant commutative T -algebra, our hypothesis guarantees X is
cofibrant inM. It follows that X → URFX is a weak equivalence (since (F,U) is
a Quillen equivalence), hence that X → URT FX is a weak equivalence inM. �

Note that because we only needed X → URFX to be a weak equivalence to finish
our proof above, it also works in positive (non flat) model structures on monoidal
categories of spectra, since it is sufficient that X be positive flat cofibrant rather
than positive cofibrant.

Remark 4.20. The proof above is based on Theorems 2.7 and 3.6 in [Hov98]. How-
ever, the Dold-Kan equivalence is not strongly symmetric monoidal (see page 2
of [SS03]). One could attempt to generalize the Theorem above in the way that
[SS03] generalized [Hov98], and work with weak monoidal Quillen pairs, follow-
ing Theorem 3.12 of [SS03], but this would not solve the fact that the Dold-Kan
equivalence is not symmetric.

5. Examples

In this section we verify the strong commutative monoid axiom for the model cate-
gories of chain complexes over a field of characteristic zero, for simplicial sets, for
topological spaces, and for positive flat model structures on various categories of
spectra. We also discuss precisely what is true for positive (non-flat) model struc-
tures of spectra. Throughout this section we make use the following lemma, which
is proven in Appendix A.

Lemma 5.1. SupposeM is a cofibrantly generated monoidal model category and

that for all f ∈ I (resp. J) we know that f �n/Σn is a (trivial) cofibration. Then the

strong commutative monoid axiom holds forM.

5.1. Commutative Differential Graded Algebras in characteristic zero. Con-
sider a field k andM = Vect(k). ThenM satisfies the strong commutative monoid
axiom if and only if char(k) = 0. Because MΣn � k[Σn] − mod, the projective
model structure is nicely behaved (i.e. matches the injective model structure) ex-
actly when k[Σn] is semisimple, i.e. exactly when k has characteristic zero. Indeed,
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such M satisfies the stronger condition required in Theorem 3.12. This example
generalizes to pertain to Ch(R) whenever R is a commutative Q-algebra.

The commutative monoid axiom fails over F2 because F2 is not projective over
F2[Σ2] (because now Maschke’s Theorem does not hold) and so the cokernel of
f �n does not have a free Σn action, and this will be an obstruction to f �n/Σn being
a cofibration.

That CDGA(k) cannot inherit a model structure for char(k) = p > 0 has been
known for many years. The fundamental problem is that Sym(−) does not preserve
weak equivalences between cofibrant objects and so cannot be a left Quillen func-
tor. This is because for example Symp(D(k)) will not be acyclic even though the
disk D(k) is acyclic.

5.2. Spaces.

Theorem 5.2. The category of simplicial sets (both pointed and unpointed) satis-

fies the strong commutative monoid axiom but does not satisfy Lurie’s axiom or the

rectification axiom.

Proof. To see that the rectification axiom fails, consider X = ∆[0]. Then the rec-
tification axiom is asking BΣn to be contractible. To see that Lurie’s axiom fails,
consider f �2 where f : S 0 → D1. This map is not a Σ2-cofibration because the
action on the cofiber of f �2 is not free. However, to show that we get a cofibra-
tion after passing to Σ2 coinvariants is easy, because the map is a monomorphism.
Furthermore, this line of reasoning generalizes to show that f �n/Σn is a cofibra-
tion whenever f is a generating (trivial) cofibration. To check that it’s also a weak
equivalence if f is a generating trivial cofibration, we use the following theorem of
Casacuberta [RCJ09]:

Theorem 5.3. If f is any map of simplicial sets, then S ym(−) preserves f -equivalences.

Obviously, this proves much more than we needed, and in fact we use the proof of
this theorem in [Whi14b] to see that any monoidal Bousfield localization of sS et∗
also satisfies the strong commutative monoid axiom. The key point in the proof of
this theorem is due to an observation of Farjoun [Far96] which says that for any
X, S ymn(X) can be written as a homotopy colimit of a free diagram formed by the
orbits of Σn where each quotient Σn/H is sent to the fixed-point subspace (Xn)H . It
is then not too much work to see that S ymn(−) preserves weak equivalences (and
more generally f -equivalences), as is proven in [RCJ09]. We then use Lemma
A.3 to see that f �n/Σn is a weak equivalence whenever f is a trivial cofibration,
completing our proof that the strong commutative monoid axiom holds.

�

Observe that the counterexample displaying the failure of Lurie’s axiom and the
rectification axiom also applies to Top, sS etG, and TopG . Also, [RCJ09] only
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states Theorem 5.3 in the setting of pointed spaces, but it is true for unpointed
spaces as well. This follows from Lemma A.3 and the main result of [BW16].

Theorem 5.4. The category of compactly generated topological spaces satisfies

the strong commutative monoid axiom.

Proof. In Top, cofibrations and monomorphisms no longer coincide, but the strong
commutative monoid axiom still holds. This may be verified by either checking it
directly on the generating maps S n−1 → Dn and Dn → Dn × [0, 1] (a valuable
exercise), or by transporting the strong commutative monoid axiom on sS et to
Top via the geometric realization functor. From [Hov98] we see that Top satisfies
the necessary smallness hypotheses, so Theorem 3.2 applies. �

In case the reader is interested in checking the commutative monoid axiom on Top

directly, we remark that the interpretation of Farjoun’s work in [RCJ09] makes
clear that the only property of simplicial sets being used in the argument is that
the fixed point subspaces of actions of subgroups of Σk on Xk are homeomorphic to
spaces Xn for some n ≤ k. So one could apply Farjoun’s work just as well in Top as
in sS et. Indeed, Farjoun’s work provides a way to “free up” any diagram category
and view the colimit of a diagram as the homotopy colimit of a different diagram
(indexed by the so-called orbit category). In this way good homotopical properties
can be achieved in a great deal of generality. The fact that the same argument works
in both Top and sS et leads us to make the following conjecture.

Conjecture 5.5. Suppose that M is a concretizable Cartesian closed model cat-
egory in which cofibrations are closed under the operation (−)�n/Σn. Then the
strong commutative monoid axiom holds inM.

We now turn to equivariant spaces.

Theorem 5.6. Let G be a finite group. Then sS etG and TopG satisfy the strong

commutative monoid axiom.

Proof. We begin with sS etG . Note that just as for sS et, cofibrations are monomor-
phisms. Thus, the same proof as for sS et applies. In particular, when applying
Farjoun’s trick on (Xn)H where H < Σn, we simply use the fact that the G action
and the Σn action commute.

To handle the situation of TopG we may again transfer the strong commutative
monoid axiom via geometric realization. Here we really need G to be a finite
group. For any simplicial group G, a G action on X ∈ sS et is taken to an action of
|G| on |X| by geometric realization. If G is finite then G = S ing|G| acts on S ing|X|

and we can prove sS etG is Quillen equivalent to Top|G|. However, for non-finite G

we do not know that every subgroup K of the topological group |G| is realized as
some |H| for H < G, so there may be fewer weak equivalences in Top|G| than in
sS etG. Indeed, the referee for this paper pointed out that G = BZ is an example of
such behavior: |BZ| has uncountably many subgroups, but BZ does not.
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�

5.3. Symmetric Spectra. The obstruction noticed by Gaunce Lewis and discussed
in [Lew91] guarantees that commutative monoids in the usual model structure on
symmetric spectra cannot inherit a model structure, because the unit is cofibrant
and because the fibrant replacement functor is symmetric monoidal. This second
property cannot be changed, but there are model structures on symmetric spectra
in which the unit is not cofibrant. The positive model structure was introduced
in [HSS00] and [MMSS01] and this model structure breaks the cofibrancy of the
sphere by insisting that cofibrations be isomorphisms in level 0 (though in other
levels they are the same as the usual cofibrations of symmetric spectra). In [Shi04],
Shipley found a more convenient model structure which is now called the positive
flat model structure. In this model structure the cofibrations are enlarged to contain
the monomorphisms, and then the condition in level 0 is applied. The result is a
model structure in which commutative ring spectra inherit a model structure and
in which cofibrations of commutative ring spectra forget to cofibrations of spec-
tra.

Note that in [Lur09a], Lurie’s axiom is claimed to hold for positive flat symmetric
spectra. This is an error, as acknowledged in [Lur13]. Indeed, the example given
in Proposition 4.2 of [Shi04] demonstrates this failure conclusively, for both the
positive and the positive flat model structures. We will now show that the commu-
tative monoid axiom holds for positive flat (stable) symmetric spectra, and a slight
weakening holds for positive (stable) symmetric spectra.

5.3.1. Positive Flat Stable Model Structure.

Theorem 5.7. The strong commutative monoid axiom holds for the positive flat

stable model structure on symmetric spectra.

Proof. By Lemma 5.1, it’s sufficient to check the strong commutative monoid ax-
iom on the generating (trivial) cofibrations. Such maps are cofibrations between
cofibrant objects, so Lemma 8.3.2(1) of [WY15a] implies that for any generating
trivial cofibration g and any generating cofibration f , the maps g�n/Σn and f �n/Σn

are monomorphisms for all n. Similarly, Lemma 8.3.2(2) of [WY15a] implies that
Symn(g) is a weak equivalence for all n. These two results are special cases of
Proposition 4.28∗(b) and Proposition 4.29∗(a) in [Har09] (corrigendum). In the no-
tation of [WY15a], B should be taken to be the monoidal unit S with the trivial
Σn-action.

Together with the observations above, Lemma A.3 (applied in the injective model
structure on symmetric spectra), implies that g�n/Σn is a weak equivalence. We are
therefore reduced to proving that g�n/Σn and f �n/Σn are cofibrations rather than
only monomorphisms. In light of Lemma 5.1, it suffices to do so for generating
cofibrations f , as the result will then hold for all cofibrations. Thankfully, this has
been painstakingly checked by Pereira in Theorems 1.6 and 1.7 of [Per14]. Pereira
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introduces the S Σ-Inj G-Proj model structure on the category (SpΣ)G of G objects
in symmetric spectra, for any finite group G. We need the case where G = Σn, and
we note that S -model structures are the same as flat model structures. Theorem
1.6 of [Per14] implies that f �n is a cofibration in this new model structure. It
can be deduced from the proof of Theorem 1.7 in Section 4 of [Per14] that the
functor (−)/Σn from the S Σ-Inj Σn-Proj model structure to the positive flat model
structure preserves cofibrations (this is the point of the projectivity: to free up the
Σn-action). It follows that (−)�n/Σn preserves positive flat cofibrations, and hence
that the strong commutative monoid axiom is satisfied. �

We remark that this theorem together with Lewis’s example demonstrate that the
commutative monoid axiom need not be preserved by monoidal Quillen equiva-
lences, since the positive flat stable model structure is monoidally Quillen equiva-
lent to the canonical stable model structure. This can be seen via Proposition 2.8
in [Shi04], together with the fact that stable cofibrations are contained in flat cofi-
brations (Lemma 2.3 in [Shi04]) and the fact that the two model structures have
the same weak equivalences. We do not know of a similar example which would
demonstrate that the monoid axiom need not be preserved by monoidal Quillen
equivalence.

5.3.2. Positive Stable Model Structure. Shipley proves in [Shi04] that positive
symmetric spectra do not satisfy the property that cofibrations of commutative
monoids forget to cofibrations of symmetric spectra. Thus, this model structure
cannot satisfy the strong commutative monoid axiom. However, Proposition 4.2
in [Shi04] proves that a cofibration of commutative R-algebras forgets to a posi-
tive R-cofibration (and hence to an R-cofibration) even though it is not a positive
cofibration in the sense of [MMSS01]. This suggests the following result:

Proposition 5.8. Let f be a (trivial) cofibration in the positive stable model struc-

ture. Then f �n/Σn is a (trivial) cofibration in the positive flat stable model struc-

ture. Furthermore, commutative monoids inherit a model structure in the positive

stable model structure.

Proof. The proof is identical to the proof that the positive flat stable model struc-
ture satisfies the strong commutative monoid axiom. This is because positive cofi-
brations form a subclass of positive flat cofibrations. For the statement regarding
trivial cofibrations, the same logic used above holds, because it is a Bousfield lo-
calization with respect to the same class of maps, and the weak equivalences of
both the positive stable and positive flat stable model structures are the same. In
particular, this observation proves that the positive (stable) model structures sat-
isfy the weak form of the commutative monoid axiom discussed in Remark 3.3, so
commutative monoids inherit a model structure. �

Shipley provides a counterexample which demonstrates that Sym(F1S 1) is not
positively cofibrant (only positively flat cofibrant) because the space in level two,
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[(F1S 1)∧2/Σ2]2 = (S 1 ∧ S 1)/Σ2, is not Σ2-free. Thus, Proposition 3.5 cannot hold
as stated. However, for the same reasons as in the proof above (namely, the con-
tainment of positive cofibrations in positive flat cofibrations) we can obtain the
following weakened form of Proposition 3.5.

Proposition 5.9. LetM be the positive stable model structure on symmetric spec-

tra, and let CAlg(R) be the model structure passed from M to the category of

commutative R-algebras (where R is a commutative monoid in M). Suppose f

is a cofibration in CAlg(R) whose source is cofibrant in M. Then f forgets to a

cofibration in the positive flat stable model structure.

5.4. General Diagram Spectra. In [MMSS01], a general theory of diagram spec-
tra is introduced which unifies the theories of S-modules, symmetric spectra, or-
thogonal spectra, Γ-spaces, and W-spaces. For the first, homotopy-coherence is
built into the smash product, so commutative monoids immediately inherit a model
structure and there is rectification between Com-alg and E∞-alg. For the next two,
positive model structures are introduced which allow strictly commutative monoids
to inherit model structures. The rectification axiom is then proved and rectification
is deduced as a result.

Theorem 5.10. The positive flat stable model structure on (equivariant) orthog-

onal spectra satisfies the strong commutative monoid axiom and (the equivariant

analogue of) the rectification axiom. The positive stable model structure satisfies

the weak commutative monoid axiom, Proposition 5.8, and Proposition 5.9.

Proof. For the positive flat stable model structure on (equivariant) orthogonal spec-
tra, proceed as in the proof of Theorem 5.7, but using (equivariant) topological
spaces rather than simplicial sets. The rectification axiom is proven in [MMSS01]
(and in [BH14] for the equivariant case). For the positive stable model structure
proceed as in Proposition 5.8 and Proposition 5.9. �

We turn now to W-spaces and Γ-spaces. Recall that W is the category of based
spaces homeomorphic to finite CW-complexes, Γ is the category of finite based
sets, and D-spaces are functors from D to Top (where D is either W or Γ). The
indexing category for Γ-spaces is a subset of W . First, Lewis’s counterexample
[Lew91] still applies to rule non-positive model structures out from consideration.
This is discussed in the context of Γ-spaces in Remark 2.6 of [Sch99]. The author
has not been able to find a place where this is written down for W-spaces, but it is
clear that the same counterexample applies for W-spaces. We must work in positive
model structures on W-spaces and Γ-spaces. Such positive model structures are
introduced in Section 14 of [MMSS01], where their monoidal properties are also
discussed.

Analogously to the setting of symmetric and orthogonal spectra, one can define
positive flat model structures (also known as convenient model structures) on Γ-
spaces and W-spaces. For instance, one can carry out the program of [Shi04] for
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Γ-spaces (e.g. following the work in [Sag13] and making use of the relationship
between Γ-spaces and symmetric spectra as explored in [Sch15]) to obtain the nec-
essary mixed model structure on spaces. From there it is purely formal to construct
the appropriate levelwise model structure on diagrams, e.g. using Theorem 6.5
in [MMSS01]. The weak equivalences are the level equivalences and the gener-
ating cofibrations for W-spaces take the form FW I = {Fd(i) | d ∈ skel W, i ∈ I}

where Fd(−) is W(d,−) : W → Top. The indexing category for Γ-spaces is a
subset of W , so an analogous construction works for the generating cofibrations of
Γ-spaces.

Passage from the levelwise structure to the positive flat model structure is again
formal, and is accomplished by truncating the levelwise cofibrations to force level-
wise cofibrations to be isomorphisms in degree 0. Finally, passage to the positive
flat stable model structure may be accomplished via Bousfield localization, just as
in Section 8 of [MMSS01].

Theorem 5.11. The positive flat model structures on W-spaces and Γ-spaces sat-

isfy the strong commutative monoid axiom. The positive model structure on W-

spaces and Γ-spaces satisfies the weak commutative monoid axiom. So commuta-

tive monoids inherit model structures in both settings.

The verification of the strong commutative monoid axiom proceeds precisely as
for the positive flat model structure on symmetric spectra. In particular, one can
reduce the verification to a verification in spaces. We leave the details to the reader.
The difficulty comes in the part of the proof when one attempts to pass the com-
mutative monoid axiom to the stable model structure, and that is why the adjective
stable is not in the statement of the theorem. In particular, the difficulty is that the
rectification axiom is not known to hold for D-spaces (where D is either W or Γ).
Indeed, we can show that the rectification axiom cannot hold.

First, if the rectification axiom held, then the proof that the strong commutative
monoid axiom holds for positive flat stable symmetric spectra (i.e. via Theorem
4.13) would prove that D-spaces satisfy the commutative monoid axiom. Secondly,
because of the rectification axiom the rest of the work in [MMSS01] and [Shi04]
would prove that commutative D-rings were Quillen equivalent to E∞-algebras and
this would contradict the main theorem of Tyler Lawson’s paper [Law09].

Lawson produces an E∞-algebra in Γ-spaces which cannot be strictified to a com-
mutative Γ-ring. Together with the monoidal functor from Γ-spaces to W-spaces
(developed in [MMSS01]), this same counterexample proves that not all E∞-algebras
in W-spaces can be strictifed to commutative W-rings.

5.5. Diagram Categories. We now investigate conditions on a model categoryM
and on a small indexing category D so that the commutative monoid axiom holds
forMD.
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5.5.1. Injective Model Structures. The case of injective model structures on dia-
grams is particularly easy, since weak equivalences and cofibrations are defined in
M. By 5.2, the category of simplicial sets satisfies the commutative monoid axiom.
This property will be inherited by the category of simplicial presheaves with the
injective model structure. In particular, we have

Proposition 5.12. Suppose M is a monoidal model category which satisfies the

commutative monoid axiom. Suppose D is a small category such that the injective

model structure onMD exists. Then the injective model structure with the levelwise

monoidal structure satisfies the commutative monoid axiom.

Proof. Suppose f : X → Y is a cofibration inMD so that each fd is a cofibration
in M. Colimits in MD are computed componentwise, so the domain Qn of f �n

has the property that (Qn)d is the domain of ( fd)�n. Furthermore, the same is true
of Qn/Σn and of Y⊗n/Σn for the same reason. Since M satisfies the commutative
monoid axiom, each ( fd)�n/Σn is a cofibration inM. Thus, f �n/Σn is a levelwise
cofibration, i.e. a cofibration inMD. The case of a trivial cofibration f is similar,
since injective weak equivalences are also defined levelwise. �

In a related vein, we make the following conjecture.

Conjecture 5.13. Any excellent model category in the sense of [Lur09b], Defini-
tion A.3.2.16, will satisfy the commutative monoid axiom.

The results in 5.2, together with the main results of [Whi14b] imply that any left
Bousfield localization of simplicial sets will satisfy the commutative monoid ax-
iom. A similar statement is true for the injective model structure on simplicial
presheaves, but one must be more careful that the pushout product axiom is pre-
served by the localization (i.e. not all Bousfield localizations are monoidal in the
sense of [Whi14b]). In recent joint work with Michael Batanin, we have shown
that all monoidal Bousfield localizations of simplicial presheaves satisfy the hy-
potheses of Theorem 4.13 and as a result the model structures considered by Rezk
in [Rez10] will satisfy the commutative monoid axiom.

5.5.2. Projective Model Structure. The projective model structure is more subtle
than the injective model structure, because one has less control over the projective
cofibrations. For this reason, we begin with a simple case, but one which we expect
to have important applications in the future.

Recall from [Hov14] that for any monoidal model category M, the diagram cat-
egory Arr(M) := M•→• may be endowed with a monoidal model structure in
which weak equivalences and fibrations are defined componentwise and in which
the monoidal product is the pushout product f � g. Hovey proved that if M
is cofibrantly generated and satisfies the monoid axiom then the same is true of
Arr(M).
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WhenM is the category of symmetric spectra, monoids are Smith ideals, named af-
ter Jeff Smith to whom this definition is due. The main results in [Hov14] together
with the model structure on monoids from [SS00] allow for a model category of
Smith ideals. Smith envisioned using ideals to extend many results in commutative
algebra to the world of ring spectra. A necessary step in carrying out this program
is having a good homotopy theory for commutative ideals. This is accomplished
by the following result.

Theorem 5.14. Suppose M is a cofibrantly generated monoidal model category.

Then the projective model structure on Arr(M) with monoidal structure given by

the pushout product satisfies the commutative monoid axiom. If M satisfies the

(strong) commutative monoid axiom then so does Arr(M).

Proof. By Appendix A it is sufficient to check the commutative monoid axiom and
the strong commutative monoid axiom on generating (trivial) cofibrations. Recall
that the model structure on Arr(M) is transferred from M• • = M ×M. Let D
be the walking arrow category • → •. The generating cofibrations for Arr(M) are

F(I′) and F(J′) where I′ and J′ are generators forMD
disc

=
∏

d∈DM and F is the
functor

F(X) =
∐

α∈Ob(D)

Fα
Xα
=
∐

α

Xα ⊗ Fα
∗ i.e. F(X)β =

∐

α

∐

D(α,β)

Xα

For simplicity we will remain in the case of the generating trivial cofibrations.
The proof for generating cofibrations is identical. A typical element of J′ is either
(0, j) or ( j, 0) where j : A → A′ is a generating trivial cofibration for M. The
generating trivial cofibrations of Arr(M) are given by applying the functor F to
such generating morphisms. The resulting squares (read as morphisms from left to
right) are

∅ //

��

∅

��

A //

��

A′

��
A // A′ A // A′

where the left-hand square is φ := F( j, 0) and the right hand square is ψ := F(0, j).
We must analyze φ�2n/Σn and ψ�2n/Σn, where �2 denotes the pushout product taken
in the monoidal category Arr(M) where the monoidal product on arrows is given by
the Day convolution product (i.e. by the usual pushout product �). For simplicity
we will focus on the case n = 2, so we are analyzing (φ �2 φ)/Σ2 and (ψ �2 ψ)/Σ2.
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We can draw φ �2 φ and ψ �2 ψ as

∅
Id

//

��

∅

��

A′ ⊗ A
∐

A⊗A A ⊗ A′
j� j

//

��

A′ ⊗ A′

��
A′ ⊗ A

∐
A⊗A

A ⊗ A′
j� j

// A′ ⊗ A′ A′ ⊗ A
∐

A⊗A
A ⊗ A′

j� j
// A′ ⊗ A′

In order to show that a square is a trivial cofibration in Arr(M) one must show
that both horizontal maps in the square are trivial cofibrations in M and that the
pushout corner map is a trivial cofibration inM.

For (φ �2 φ)/Σ2 the top horizontal map is Id∅ and so is a trivial cofibration. The
bottom horizontal map and the pushout corner map are both ( j � j)/Σ2 and this
is a trivial cofibration because we assumed the commutative monoid axiom on
M (or the strong commutative monoid axiom for the case of cofibrations). Thus,
(φ �2 φ)/Σ2 is a trivial cofibration in Arr(M).

For (ψ �2 ψ)/Σ2 both the top and bottom horizontal maps are ( j � j)/Σ2 and we
have seen this map is a trivial cofibration. The pushout corner map is IdA′⊗A′/Σ2 =

IdA′⊗A′/Σ2
and so is a trivial cofibration inM because it’s an isomorphism. Thus,

(ψ �2 ψ)/Σ2 is a trivial cofibration in Arr(M) and so Arr(M) satisfies the n = 2
case of the commutative monoid axiom.

Before tackling the case of general n, we record the general formula for

γ �2 δ : f � k
∐

f�h

g � h→ g � k

where γ : f → g, δ : h→ k, f : A → A′, g : B→ B′, h : X → X′, and k : Y → Y ′.
Visualize γ �2 δ as going from left to right:

(A ⊗ Y ′
∐

A⊗Y
A′ ⊗ Y)

∐
A⊗X′

∐
A⊗X A′⊗X

(B′ ⊗ X
∐

B⊗X
B ⊗ X′) //

��

B ⊗ Y ′
∐

B⊗Y
B′ ⊗ Y

��
A′ ⊗ Y ′

∐
A′⊗X′

B′ ⊗ X′ // B′ ⊗ Y ′

For the case of general n, observe that φ�2(n) is again a square with ∅ across the
top row, but now the bottom horizontal map is j�n. This can be seen inductively,
since φ�2(n) = φ�2(n−1) �2 φ and the formula above tells us the effect of applying
− �2 φ. We are lucky here since φ takes such a simple form. For ψ the situation
is slightly more complicated, but because both vertical maps in ψ are identities
the same will be true of ψ�2(n). A straight-forward induction demonstrates that the
horizontal maps in ψ�2(n) are both j�n. The same sort of analysis as in the n = 2
case demonstrates that ψ�2(n)/Σn and φ�2(n)/Σn are trivial cofibrations in Arr(M)
because j�n/Σn and identity maps are both trivial cofibrations in Arr(M).

�
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As a consequence, the category of commutative Smith ideals inherits a model struc-
ture as soon as M satisfies the commutative monoid axiom. Using the results in
Subsections 5.3.1 and 5.3.2 we obtain the following:

Corollary 5.15. SupposeM is the positive flat (stable) model structure on symmet-

ric spectra or orthogonal spectra. Then commutative Smith ideals inherit a model

structure becauseM satisfies the strong commutative monoid axiom. Furthermore,

a cofibrant commutative Smith ideal forgets to a cofibrant object of Arr(M).

Corollary 5.16. Suppose M is the positive (stable) model structure on symmet-

ric spectra or orthogonal spectra. Then commutative Smith ideals inherit a model

structure becauseM satisfies the commutative monoid axiom. Furthermore, a cofi-

brant commutative Smith ideal forgets to a positive flat cofibrant object of Arr(M).

In fact, we can use the method in the theorem above to prove something more
general. First note that the commutative monoid axiom can be transferred across
certain types of adjunctions. In the following, assume F is a nonunital strongly
symmetric monoidal functor in the sense of [Tho78]. This simply means F satisfies
all the hypotheses of a strong symmetric monoidal functor except F need not satisfy
the hypotheses involving the unit. So F(n1 ⊗ n2) � F(n1) ⊗ F(n2) and there are
diagrams encoding associativity and commutativity for F, but F need not preserve
the unit.

Lemma 5.17. Suppose N is a cofibrantly generated model category satisfying the

(strong) commutative monoid axiom, that F : N → A is a left adjoint functor

along which a model structure is transferred to A, and that F is a nonunital

strongly symmetric monoidal functor. Then A satisfies the (strong) commutative

monoid axiom.

Proof. As in the proof of the theorem above, it suffices to check that for every gen-
erating (trivial) cofibration F( f ) of A, (F( f ))�n/Σn is again a (trivial) cofibration.
Because F preserves the monoidal product and is left Quillen, F commutes with
the operation (−)�n, so (F( f ))�n/Σn = F( f �n)/Σn = F( f �n/Σn) again using that
F is a left adjoint. Since f is a generating (trivial) cofibration of N , this map has
the form F(g) where g is a (trivial) cofibration of N . Hence, F(g) is a (trivial)
cofibration ofA because F is left Quillen. �

Let D be a general diagram category. The projective model structure on MD is

transferred fromMD
disc

=
∏

d∈DM along the functor F whose formula is given in

the theorem above. If MD
disc

is given the objectwise product then this functor F

does not preserve binary products in general. In the case Arr(M) one can endow

MD
disc

with the monoidal structure (X1, Y1)�d(X2, Y2) = (X1Y2
∐

X1Y1
∐

X2Y1, Y1Y2)
which is cooked up to match the Day convolution product on Arr(M), but then the

functor fromM toMD
disc

may not be monoidal. In the following, we transfer the

model structure fromM rather than fromMD
disc

.
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Recall that for every d ∈ D there are right adjoints evd : MD
pro j
→ M whose left

adjoints are given by Fd : X 7→ D(d,−) · X =
∐
D(d,−) X. The model structure

onMD may be transferred directly from M via the product of these left adjoints
(Lemma 4.3 in [DRØ03]), so it is valuable to know when they are strongly sym-
metric monoidal.

Theorem 5.18. Suppose (M, S ,⊗) is a cofibrantly generated symmetric monoidal

model category satisfying the (strong) commutative monoid axiom. Suppose (D, I,⊛)
is a small symmetric monoidal category in which the monoidal product is idempo-

tent, i.e. there are natural isomorphisms d ⊛ d � d for all d ∈ D and they induce

isomorphisms D(d ⊛ d,−) � D(d,−). Then the projective model structure onMD

exists and the Day convolution product ◦ makes it into a cofibrantly generated

symmetric monoidal model category satisfying the (strong) commutative monoid

axiom.

Proof. The existence of a cofibrantly generated model structure onMD is an old
result, which may be found as Theorem 11.6.1 in [Hir03]. For the fact that the
Day convolution product makes MD into a symmetric monoidal model category
we refer to Theorem 4.1 in [BB14]. For the commutative monoid axiom we must
show that the left adjoints Fd preserve binary monoidal products. We must show
that Fd(A ⊗ B) � Fd(A) ◦ Fd(B). By definition of the Day convolution product, the
latter can be realized as the following coend, which we re-write using the Yoneda
lemma

∫ x,y∈D

(D(d, x) · A) ⊗ (D(d, y) · B) · D(x ⊛ y,−)

=

∫ x,y

(D(d, x) ×D(d, y) ×D(x ⊛ y,−)) · A ⊗ B

= D(d ⊛ d,−) · A ⊗ B

Our hypothesis on D guarantees that D(d ⊛ d,−) · A ⊗ B = D(d,−) · A ⊗ B as
required. �

Observe that the hypothesis that Fd is strongly symmetric monoidal would have
been too strong, since the only d for which Fd preserves the monoidal unit is d = I

the unit ofD. Observe also that the proof above shows Fa(A) ⊗ Fb(B) = Fa⊛b(A ⊗
B).

In fact, Theorem 4.1 in [BB14] proves that MD is a symmetric monoidal model
category with respect to the Day convolution product in a more general setting than
that stated above. If one is willing to assume M is compactly generated then one
can generalize to the case of a smallM-enriched category D:

Corollary 5.19. Suppose (M, S ,⊗) is a compactly generated symmetric monoidal

model category satisfying the (strong) commutative monoid axiom. Suppose (D, I,⊛)
is a smallM-enriched symmetric monoidal category in which the monoidal prod-

uct is idempotent as above. Suppose one of the following three conditions holds:
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(1) all hom-objects of D are coproducts of copies of the unit ofM (this case

recovers the classical projective model structure),

(2) all hom-objects ofD are cofibrant inM, or

(3) the monoid axiom holds inM.

Then the projective model structure onMD exists and the Day convolution prod-

uct ◦ makes it into a cofibrantly generated symmetric monoidal model category

satisfying the (strong) commutative monoid axiom.

We omit the proof since it is identical to the theorem above, except that we rely on
Theorem 4.1 in [BB14] for the existence of the transferred model structure onMD

as well as for the fact that it forms a monoidal model structure.

We also have a result in caseMD is endowed with the objectwise monoidal product
(F ⊗G)(d) = F(d) ⊗G(d). In this case we may not rely on Theorem 4.1 in [BB14]
and so we will focus attention again on a discrete indexing category D.

Corollary 5.20. SupposeD is a small poset with finite coproducts and (M, S ,⊗) is

a cofibrantly generated symmetric monoidal model category satisfying the (strong)

commutative monoid axiom. Then the projective model structure on MD with

the objectwise monoidal product ⊗ is a cofibrantly generated symmetric monoidal

model category satisfying the commutative monoid axiom.

Proof. That the projective model structure exists is again described in Theorem
11.6.1 of [Hir03]. That it satisfies the pushout product axiom can be found in
Lemma 3.8 of [Yal12], because we have assumed D has finite coproducts. We
must now verify that Fd(A ⊗ B) � Fd(A) ⊗ Fd(B) for all d ∈ D. The latter is now
(D(d,−) × D(d,−)) · A ⊗ B. It is an easy exercise to verify that for any poset D,
this is isomorphic toD(d,−) · A ⊗ B as required. �

Relating the situations of the above two results we have the following

Proposition 5.21. If D is a Cartesian closed small category then the Day convo-

lution product agrees with the objectwise product onMD
op

.

Proof. Let X, Y : Dop → M. Let × denote the Cartesian product on D and on
MD

op

. We use the Cartesian assumption in (*) below and we use the closed hy-
pothesis for the next equality after (*):

(X ◦ Y)β =

∫ γ,δ∈D ∐

D(β,γ×δ)

Xγ ⊗ Yδ

∗
=

∫ ∐

β→γ

β→δ

Xγ ⊗ Yδ =

∫ γ∐

β→γ

Xγ ⊗

∫ δ∐

β→δ

Yδ = Xβ ⊗ Yβ = (X × Y)β

The last non-trivial equality is the Yoneda lemma. �
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5.5.3. Reedy Model Structures. We have focused on the projective model struc-
ture, but for directed categories analogous statements hold for the Reedy model
structure, since it coincides with the projective model structure. In order to make
the Reedy structure into a monoidal model category we require two results of Bar-
wick [Bar10]. In the following, assumeD is a Reedy category andM is a monoidal
model category.

Proposition 5.22 (Barwick’s Corollary 4.17). Suppose (D, I,⊛) is monoidal and

⊛ : D×D → D defines a right fibration of Reedy categories, i.e. if for any model

category N , the induced adjunction ND ⇆ ND×D is a Quillen adjunction. Then

MD with the Reedy model structure and the Day convolution product satisfies the

pushout product axiom.

Proposition 5.23 (Barwick’s Theorem 4.18). Suppose D is left fibrant, i.e. for

any model category N the Reedy functor N → ∗ where ∗ is the terminal Reedy

category induces an adjunction ND ⇆ N∗ which is a Quillen adjunction. Suppose

that every morphism in the inverse category associated to D is an epimorphism.

Then the objectwise monoidal product endows the Reedy model categoryMD with

the structure of a monoidal model category.

From these, together with our results on projective model structures and the fact
that Reedy model structures coincide with projective model structures wheneverD
is a directed category we have:

Corollary 5.24. Suppose (D, I,⊛) is a small directed monoidal category, that ⊛ :
D×D→ D defines a right fibration of Reedy categories, and that d⊛d � d for all

d ∈ D. SupposeM is a cofibrantly generated monoidal model category satisfying

the (strong) commutative monoid axiom. ThenMD with the Reedy model structure

and the Day convolution product satisfies the (strong) commutative monoid axiom.

Corollary 5.25. Suppose D is a small directed poset with finite coproducts and

is left fibrant as a Reedy category. Suppose M satisfies the (strong) commuta-

tive monoid axiom. Then the Reedy model structure on MD with the objectwise

monoidal product satisfies the (strong) commutative monoid axiom.

In the second corollary we were able to remove Barwick’s condition about epimor-
phisms because our category D has a trivial inverse category.

5.6. Other Examples. There are several other examples which we have not in-
vestigated and which we would be curious to learn more about. We list them
here:

• Stable module categories.

• Comodules over a Hopf algebroid.

• The model for spectra consisting of simplicial functors, in the style of
[Lyd98].
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We have not addressed positive model structures on motivic symmetric spectra.
We understand that these examples are central to the work of [PS14], which will
appear soon.

Appendix A. Sufficiency of Commutative Monoid Axiom on Generators

We prove that if the strong commutative monoid axiom holds for the generating
(trivial) cofibrations I and J then it holds for all (trivial) cofibrations.

Lemma A.1. SupposeM is a cofibrantly generated monoidal model category and

that for all f ∈ I (resp. J) we know that f �n/Σn is a (trivial) cofibration. Then the

strong commutative monoid axiom holds forM.

We will prove that the class of maps satisfying the condition in the strong com-
mutative monoid axiom is closed under retracts, pushouts, and transfinite compo-
sitions. The first two are easy, but the third will require an induction. So we must
introduce some new notation, following [Har10]. Let f : X → Y and consider the
n-dimensional cube in which each vertex is a word of length n on the letters X and
Y .

Recall the action of Σn on the diagram which defines Qn. The vertices of the cube
correspond to subsets D of [n] = {1, 2, . . . , n} where a vertex C1 ⊗ · · · ⊗ Cn has
Ci = X if i < D and C j = Y if j ∈ D. Any σ ∈ Σn sends the vertex so defined to the
vertex corresponding to σ(D) ⊂ [n] using the action of Σ|D| on the X’s and Σn−|D|

on the Y’s. Clearly, this action descends to an action on the colimit Qn.

For inductive purposes, we will need to consider subdiagrams whose vertices con-
sist of words with ≤ q copies of the letter Y . This subdiagram consists of all
vertices of distance ≤ q from the initial vertex X⊗n. We denote the colimit of this
subdiagram by Qn

q, to match the notation of [Har10]. The superscript n refers to
the fact that this is a subdiagram of the n-dimensional cube, so in particular each
vertex is a word on n letters. In particular, Qn

0
= X⊗n, Qn

n = Y⊗n, and Qn
n−1

is the
domain of f �n, which we have formerly denoted by Qn. For the purposes of this
proof we will now write it as Qn

n−1
( f ) (or Qn

n−1
if the context is clear).

The induction will make use of the maps of colimits Qn
q−1
→ Qn

q which are induced

by inclusion of subdiagram. The Σn action on the cube clearly preserves the size
of the subset D ⊂ [n] and so it restricts to an action of Σn on each Qn

q. Because this
action is a restriction of the Σn-action on the full cube, the map of colimits Qn

q−1
→

Qn
q is automatically Σn-equivariant. Indeed, the map of colimits Qn

q−1
→ Qn

q can be

realized by the following pushout:

Σn ·Σn−q×Σq
X⊗(n−q) ⊗ Q

q

q−1

��

//

u

Qn
q−1

��
Σn ·Σn−q×Σq

X⊗(n−q) ⊗ Y⊗q // Qn
q

(1)
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where the left vertical map is induced by f �q (see Section 7 of [Har10] and Remark
4.15 of [Har09] for a toy case). To explain the notation Σn ·Σn−q×Σq

(−), first note
that for any set G and any object A, G · A =

∐
g∈G A. When G = Σn this object

inherits a Σn action by permuting the An! objects in the coproduct. When we write
Σn ·Σk×Σq

(−) we are quotienting out by the Σk × Σq action on this object in MΣn .
The result is a coproduct with n!/(k!q!) terms because the order of the k! terms to
the left of the product (and of the q! terms to the right) do not matter. In particular,
applying Σn ·Σk×Σq

(−) has the effect of equivariantly building in additional layers
of the cube. With this notation in hand we proceed to the proof.

Proof. Let P denote the class of cofibrations f for which f �n/Σn is also a cofi-
bration. Let P′ denote the same for trivial cofibrations. We must prove that if
I ⊂P then all cofibrations are in P (and the same for J ⊂P′). We will do so by
proving the classes P and P′ are closed under retracts, pushouts, and transfinite
compositions.

The simplest to verify is closure under retracts, which follows from the fact that
(−)�n/Σn is a functor on Arr(M) so if f is a retract of g (with g ∈ P or P′) then
f �n/Σn is a retract of g�n/Σn and hence a (trivial) cofibration.

We next consider closure under pushouts. Suppose f : X → Y is a pushout of
g : A→ B and g ∈P or P′. Then we have a Σn-equivariant pushout diagram

Qn(g) //

�� u

B⊗n

��

Qn( f ) // Y⊗n

by Proposition 6.13 in [Har09]. When we pass to Σn-coinvariants we see that
f �n/Σn is a pushout of g�n/Σn, e.g. by commuting colimits. Indeed, for any
X ∈ MΣn , X ⊗Σn

f �n is a pushout of X ⊗Σn
g�n. So if the latter is assumed to

be a (trivial) cofibration because g ∈P or P′ then the former will be as well.

Composition is harder, so we begin with the case of two maps f : X → Y and
g : Y → Z in P or P′. We will prove that Qn

n−1
(g f )/Σn → Z⊗n/Σn is a (trivial)

cofibration. First note that this map factors through Qn
n−1

(g)/Σn and the hypothesis

on g guarantees that Qn
n−1

(g)/Σn → Z⊗n/Σn is a (trivial) cofibration. So we must
only prove that Qn

n−1
(g f )/Σn → Qn

n−1
(g)/Σn is a (trivial) cofibration.

We proceed by realizing both colimit diagrams as subdiagrams of the same di-
agram, which is a n-dimensional cube featuring 3n vertices which are words of
length n in the letters X, Y, and Z. Formally, this cube is an element of the rectan-
gular diagram category Fun((0 → 1 → 2)×n,M), and every time we write subdia-
gram we mean with respect to this cube with 3n vertices. The domain Qn

n−1
(g f ) of

the map we care about is the colimit of the X − Z subdiagram, i.e. the punctured
cube formed from vertices which are words in X and Z, where all maps are com-
positions g f . The codomain Qn

n−1
(g) of the map we care about is the colimit of the
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Y − Z subdiagram, i.e. the punctured cube formed from vertices which are words
in Y and Z. So we must again introduce new notation to build this map one step at
a time.

The induction will proceed by moving through the rectangle by adding a single
Σn-orbit at a time. So we will need to consider Σn-equivariant subdiagrams of the
rectangle which contain the X − Z punctured cube and which contain a new vertex
e (and hence its entire Σn-orbit).

In order to build this new vertex into the colimit we will also need to consider the
subdiagram of the X − Y − Z box which maps to e (but which does not include e

itself). This is collection of vertices sitting under e (i.e. of distance strictly less
than e from the initial vertex). As with e, we wish to consider the Σn-orbit of
this subdiagram, which is equivalently described as all vertices sitting under any
vertex in the orbit of e. Now that we have a picture of the subdiagram in mind, we
denote the colimit of this subdiagram by Qe. By construction there is an induced
Σn-equivariant map Qe → e.

We are now ready to consider the diagrams formed when we adjoin the Qe-diagram
with the X − Z punctured cube. Let Q[0]n

n−1
= Qn

n−1
(g f ) denote the colimit of the

X−Z punctured cube. Let Q[1]n
n−1

denote the colimit of the subdiagram containing

the X−Z punctured cube, the orbit of the vertex e = Y ⊗Z⊗(n−1), and the vertices in
the Qe subdiagram. Continue inductively, by adding e = Y⊗q ⊗Z⊗(n−q) and vertices
below it to the Q[q − 1]n

n−1
-diagram to get the Q[q]n

n−1
-diagram. This process

terminates with the whole X − Y − Z punctured cube whose 3n − 1 vertices contain
all words in X, Y, Z except the word Z⊗n. The colimit of this diagram is denoted
Q[n]n

n−1
. A cofinality argument shows that this colimit is equal to Qn

n−1
(g), because

all factors of X which appear are mapped to a factor of Y in the subdiagram and so
do not affect the colimit.

The induction will proceed along the maps Q[q−1]n
n−1
→ Q[q]n

n−1
induced by con-

tainments of subdiagrams. This induction can be thought of as stepping through
shells in the cube of increasing distance from the initial vertex X⊗n until the infor-
mation from the entire diagram has been built into the colimit.

Because each step Q[q − 1]n
n−1
→ Q[q]n

n−1
builds in the information of one new

vertex (and its orbit under the Σn action on the cube), we may apply Proposition
A.4 from [Per13] with e = Y⊗q ⊗ Z⊗(n−q) to write the following pushout diagram:

Σn ·Σq×Σn−q
Qe

��

//

u

Q[q − 1]n
n−1

��
Σn ·Σq×Σn−q

Y⊗q ⊗ Z⊗(n−q) // Q[q]n
n−1

(2)
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The left vertical map is induced by Qe → Y⊗q ⊗ Z⊗(n−q) and this is in turn induced
by f �q � g�(n−q) because

Qe � Y⊗q ⊗ Q
n−q

n−q−1
(g)

∐

Q
q

q−1
( f )⊗Q

n−q

n−q−1
(g)

Q
q

q−1
( f ) ⊗ Z⊗(n−q)(3)

To see that the diagram defining Qe decomposes into a gluing of the diagrams
defining Q

q

q−1
( f ) ⊗ Zn−q and Yq ⊗ Q

n−q

n−q−1
(g) along the diagram defining Q

q

q−1
( f ) ⊗

Q
n−q

n−q−1
(g), note that every X in the Qe diagram gets mapped to a Y in the Qe

diagram and so does not affect the colimit. This is the reason why we insisted
upon including the vertices under e in our construction of the diagram defining
Qe. Furthermore, every Z in the Qe diagram is the image of some Y and so we
may apply a cofinality argument to realize that any map out of the diagram for the
left-hand side of (3) must factor through the right-hand side, which completes the
proof of (3).

Now pass to Σn-coinvariants in Equation (2). Verifying that the left vertical map
is a cofibration reduces to verifying that f �q/Σq � g�(n−q)/Σn−q is a cofibration.
This in turn follows from the inductive hypothesis on f and g. Thus all the maps
Q[q]n

n−1
/Σn → Q[q + 1]n

n−1
/Σn are pushouts of cofibrations and hence are cofibra-

tions themselves. Hence, their composite Qn
n−1

(g f )/Σn → Qn
n−1

(g)/Σn is a cofi-
bration. This completes the proof that the classes P and P′ are closed under
composition.

Finally, we cover the case of transfinite composition. First note that the proof
for the composition of two maps proves that the vertical maps and the induced
pushout corner map in the following square become cofibrations after passing to
Σn-coinvariants, by the general machinery of adding a new vertex e containing only
Ys and Zs:

Qn
t−1

( f ) //

��

Qn
t−1

(g f )

��
Qn

t ( f ) // Qn
t (g f )

Indeed, the same is true of the diagram

Qn
n−1

( f ) //

��

Qn
n−1

(g f )

��

Y⊗n // Z⊗n

This is the analogous result to Corollary A.7 in [Per13], which begins with power
cofibrations and concludes that the diagram represents a projective cofibration in
Arr(MΣn). Recall, e.g. from Definition 2.1 in [CDI04] that a square is a projective
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cofibration if and only if the vertical maps and the pushout corner map are cofibra-
tions. In our situation we pass to Σn-coinvariants on the diagram level and in that
way achieve a projective cofibration in Arr(M)

Now let X0

f0
→ X1

f1
→ X2

f2
→ . . . be a λ-sequence in which each fα ∈ P . Let

f∞ : X0 → Xλ be the composite. To prove that f �n
∞ /Σn is a cofibration, we realize

this map as the colimit of a particular diagram. Because colimits commute we
can pass to Σn-coinvariants in the diagram and we will see that the colimit of the
resulting diagram (which will be f �n

∞ /Σn) will be a cofibration. First we realize
the domain of f �n

∞ /Σn as a colimit along the sequence Qn
n−1

( f0) → Qn
n−1

( f1 f0) →
Qn

n−1
( f2 f1 f0)→ . . .Qn

n−1
( f∞). Next, we realize f �n

∞ as the far right-hand map in

Qn
n−1

( f0) //

��

Qn
n−1

( f1 f0) //

��

Qn
n−1

( f2 f1 f0) //

��

. . . // Qn
n−1

( f∞)

��

X⊗n
0

// X⊗n
1

// X⊗n
2

// . . . // X⊗n
λ

(4)

As in the case for two-fold composition, we pass to Σn-coinvariants in this diagram
and realize that the resulting diagram is a projective cofibration in the category of
λ-sequencesMλ because all vertical maps and all pushout corner maps are cofibra-
tions. The colimit of such a diagram must be a cofibration, because colimit is a left
Quillen functor fromMλ → M. This proves that f �n

∞ /Σn is a (trivial) cofibration
as desired.

�

Remark A.2. The author is indebted to Luis Pereira for many helpful conversations
as this proof was worked out. The author’s original proof proceeded by construct-
ing a lift to prove that Qn

n−1
(g f )/Σn → Qn

n−1
(g)/Σn has the left lifting property

with respect to all (trivial) fibrations. This proof comes down to constructing an
equivariant lift at the level of the cube diagrams, and it appears something similar
has been done by [GG13], though we find the proof presented here conceptually
simpler. In [Per13], Pereira uses a similar proof to prove that it is sufficient to
check Jacob Lurie’s axiom on the generating (trivial) cofibrations, at least in the
case when the domain X of f is cofibrant. Pereira in fact proves something more
general about the intermediate maps Q[q − 1] → Q[q]. The proof presented here
avoids the need for X to be cofibrant, even in Pereira’s situation of working with
Lurie’s axiom rather than the strong commutative monoid axiom.

We conclude this appendix by recording a result related to the proof above which
is used in Section 4.4 and in the companion paper [Whi14b]:

Lemma A.3. Assume that for every g ∈ I, g�n/Σn is a cofibration. Suppose f :
X → Y is a trivial cofibration between cofibrant objects and f �n/Σn is a cofibration

for all n. Then f �n/Σn is a trivial cofibration for all n if and only if Symn( f ) is a

trivial cofibration for all n.
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Proof. We have seen above that if all maps g in I (resp. J) have the property that
g�n/Σn is a (trivial) cofibration, then the same holds for all (trivial) cofibrations
g. Thus, the hypothesis implies that the class of cofibrations is closed under the
operation (−)�n/Σn.

Recall the construction of the Σn-equivariant maps Qn
q−1
→ Qn

q from our proof

above:

Σn ·Σn−q×Σq
X⊗(n−q) ⊗ Q

q

q−1

��

//

u

Qn
q−1

��
Σn ·Σn−q×Σq

X⊗(n−q) ⊗ Y⊗q // Qn
q

(5)

Observe that the pushout diagram above remains a pushout diagram if we apply
(−)/Σn to all objects and morphisms in the diagram, because (−)/Σn is a left adjoint
and so commutes with colimits. We obtain the diagram

Symn−q(X) ⊗ Q
q

q−1
/Σq

��

//

u

Qn
q−1

/Σn

��
Symn−q(X) ⊗ Symq(Y) // Qn

q/Σn

(6)

We have assumed X is cofibrant, so Symk(X) is cofibrant for all k by the hypothesis
of the lemma applied to the cofibration g : ∅ → Symk(X). Thus, the left vertical
map above is a trivial cofibration as soon as f �q is a trivial cofibration, by the
pushout product axiom.

We are now ready to prove the forwards direction in the lemma. Fix n and realize
Symn( f ) as a composite of maps Qn

q−1
/Σn → Qn

q/Σn as above, where Qn
0
= X⊗n

and Qn
n = Y⊗n. Assume f �q is a trivial cofibration for all q and deduce that each

Qn
q−1
/Σn → Qn

q/Σn is a trivial cofibration, because trivial cofibrations are closed

under pushout. Furthermore, because trivial cofibrations are closed under compos-
ite, this proves Symn( f ) is a trivial cofibration.

To prove the converse, assume that Symk( f ) is a trivial cofibration for all k. We
will prove f �n/Σn is a trivial cofibration for all n by induction. For n = 1 the map
is f , which we have assumed to be a trivial cofibration. Now assume f �i/Σi is a
trivial cofibration for all i < n. As in the proof of Lemma 5.1 we may again prove
f �n/Σn is a trivial cofibration via the filtration in diagram (6). By our inductive
hypothesis, we know that for all i < n, Qn

i−1
/Σn → Qn

i
/Σn is a trivial cofibration.

We therefore have a composite:

Symn(X) = Qn
0/Σn → Qn

1/Σn → · · · → Qn
n−1/Σn → Qn

n/Σn = Symn(Y)

in which each map except the last is a trivial cofibration. However, we have as-
sumed Symn(X) → Symn(Y) is a trivial cofibration, so by the two out of three
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property the map Qn
n−1

/Σn → Qn
n/Σn is in fact a weak equivalence. This map is

f �n/Σn, and is a cofibration by hypothesis, so it is a trivial cofibration. This com-
pletes the induction.

�

Appendix B. Proof ofMain Theorem

As described in Section 3, it is sufficient to prove the statements of Theorem 3.2
and Proposition 3.5 for the case R = S of commutative monoids in M. Before
proceeding to the proof, we fix some notation. Given a map g : K → L one can

form g�n : Qn → L⊗n. This map is a (trivial) cofibration if g is such, by the pushout
product axiom. The domain and codomain both have an action of Σn. Modding out
by this action gives a map which is denoted by f �n/Σn : Qn/Σn → Symn(L) =
L⊗n/Σn.

The proofs of Theorem 3.2 and Proposition 3.5 follow the proof in [SS00] that
Mon(M) has a model structure inherited from M. Because that proof is based
on the general theory of monads (c.f. Lemma 2.3) it will go through verbatim if
Lemma 6.2 in [SS00] can be generalized to describe pushouts in CMon(M) rather
than in Mon(M). We state the analogue to Lemma 6.2:

Lemma B.1. (1) IfM satisfies the commutative monoid axiom then in the cat-

egory CMon(M), Sym(J)-cell is contained in the collection of maps of the

form (idZ ⊗ J)-cell inM. If in additionM satisfies the monoid axiom then

these maps are weak equivalences inM and hence in CMon(M).

(2) IfM satisfies the strong commutative monoid axiom then maps in Sym(I)−
cell with cofibrant domain (inM) are cofibrations inM.

As in [SS00], the proof of this proposition requires a careful analysis of the filtra-
tion on pushouts in the category of commutative monoids. In particular, we must
prove the following.

Proposition B.2. Given any map h : K → L in M, consider the commutative

monoid homomorphism X → P formed by the following pushout in CMon(M)

Sym(K) //

u��

Sym(L)

��
X // P
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This map X → P factors as X = P0 → P1 → · · · → P, where each Pn−1 → Pn is

defined by the following pushout inM

X ⊗ Qn/Σn
//

u��

X ⊗ Symn(L)

��
Pn−1

// Pn

Here Qn = Qn
n−1

denotes the colimit of the n-dimensional punctured cube discussed

in Appendix A.

This filtration is analogous to the one given in [SS00], and makes use of the decom-
position Sym(−) = ⊕ Symn(−). The map g : K → X needed for the construction of
Pn−1 → Pn is adjoint to the map Sym(K) → X. Note that this description of Pn is
significantly simpler than the one found in [SS00] because commutativity means
one need not consider words with X’s, K’s, and L’s interspersed. Rather, all the
X’s can be shuffled to the left and multiplied at the beginning of the process, rather
than at the end as is done in [SS00]. It is for this reason that Theorem 4.17 only
requires the hypothesis that M be h-monoidal rather than strongly h-monoidal as
is required for monoids. If we were to keep our notation in line with the notation in

[SS00] then what we call Qn would be denoted Qn, but we will avoid this unneces-
sary shift in notation, because we will have no need for colimits of cubes formed
from words in the letters X,K, L.

Once we prove this proposition, we will restrict attention to the case when h = j is
a trivial cofibration to prove the first statement in Lemma B.1 and we will restrict
to when h = i is a cofibration and X is cofibrant for the second statement. This is
done at the end of the section.

Proof of Proposition B.2. We begin by describing the left vertical map in the dia-
gram which defines the maps Pn−1 → Pn. This will be done inductively. Because
X⊗− commutes with colimits (since it’s a left-adjoint), the map X⊗Qn/Σn → Pn−1

may be defined componentwise on the vertices of the cube defining X ⊗ Qn.

For the n = 1 case the map X⊗K → X⊗X → X = P0 is g followed by µX : X⊗X →

X. Let D be a proper subset of [n] = {1, . . . , n} and define W(D) = C1 ⊗ · · · ⊗ Cn

where Ci = K if i < D and Ci = L if i ∈ D. These are the vertices of the cube
defining Qn. Given a vertex X⊗W(D) define a map by first applying g to all factors
of K (call this map g∗), then shuffling all the factors of X so obtained to the left by a
permutation σD, then multiplying these factors together. This map takes X ⊗W(D)

to X ⊗ L⊗|D| and hence to X ⊗ Sym|D|(L) by passing to Σn-coinvariants. Induction
then gives a map to P|D| and hence to Pn−1 because D was a proper subset of [n].

The map above is well-defined (i.e. respects the Σn action on the cube defining
X ⊗ Qn) because a permutation σ which takes W(D) to a different vertex W(T ) for
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some T of the same size as D yields the following commutative diagram:

X ⊗W(D) //

1⊗σ

��

X⊗(n−|D|) ⊗ L⊗|D| //

��

X ⊗ L⊗|D|

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

X ⊗ L⊗|D|/Σn

X ⊗W(T ) // X⊗(n−|D|) ⊗ L⊗|D| // X ⊗ L⊗|D|

77♣♣♣♣♣♣♣♣♣♣♣

The left square commutes because the top left horizontal map is σD ◦ g∗ and the
bottom left horizontal map is σT ◦ g∗, so the dotted arrow can be defined as σ|D
on the |D| factors of L and as σ|[n]−D on the n − |D| factors of X (using the fact
that X is commutative). Thus, both ways of going around are simply doing g∗, σ,

and the shuffling of X’s to the left. The right pentagon commutes because X is
commutative (so the order of factors doesn’t matter) and because passage to Σ-
coinvariants means the order of factors of L does not matter either.

These maps from vertices assemble to a map from X ⊗ Qn → Pn−1 because taking
i < D and defining the map from X ⊗W(D∪ {i})→ Pn−1 as above gives a diagram,
which we will show commutes:

X ⊗W(D) //

��

X ⊗ L⊗|D| // P|D|

��
X ⊗W(D ∪ {i}) // X ⊗ L⊗(|D|+1) // P|D|+1

The upper left horizontal map is µX ◦ σD ◦ g∗ so we may factor it as X ⊗W(D)→
X⊗(n−|D|−1) ⊗ K ⊗ L⊗|D| → X ⊗ L⊗|D| where K is the ith factor of the original W(D).
Since this factor becomes an L in the bottom row we have the following diagram:

X ⊗W(D) //

��

X ⊗ K ⊗ L⊗|D| //

��

P|D|

��
X ⊗W(D ∪ {i}) // X ⊗ L⊗(|D|+1) // P|D|+1

The difference between the two ways of going around the left-hand square is the
order of factors in the L component (the order in the X component doesn’t matter).
Thus, this square will commute upon passage to P|D|+1 because of passage to Σ|D|+1-
coinvariants. Recall that P|D|+1 is a pushout of X ⊗Q|D|+1, which is itself a pushout
of vertices X ⊗ W(R). Because a pushout of a pushout is again a pushout, the
right-hand square commutes by the basic property of pushouts.

This completes the inductive definition of Pn. Setting P to be the colimit of the Pn

(taken in M) completes the analysis. Note that in [SS00] the pushout is the free
product of T (L) and X over T (K) for the free monoid functor T , whereas in the
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commutative setting P is the (conceptually simpler) tensor product Sym(L)⊗Sym(K)

X. In an analogous way to the versions of these statements in [SS00] we now prove

(1) P is naturally a commutative monoid.

(2) X → P is a map of commutative monoids.

(3) P has the universal property of the pushout in the category of commutative
monoids.

As in [SS00] the unit for P is the map S → X → P and the multiplication on P is
defined from compatible maps Pn ⊗ Pm → Pn+m by passage to the colimit. These
maps are defined inductively using the following pushout diagram (which is simply
the product of the two pushout diagrams defining Pn and Pm), where for spacing

reasons we let Q̃n denote Qn/Σn and let L̃n denote L⊗n/Σn:

(X ⊗ Q̃n) ⊗ (X ⊗ L̃m)
∐

(X⊗Q̃n)⊗(X⊗Q̃m)(X ⊗ L̃n) ⊗ (X ⊗ Q̃m)

��

// (X ⊗ L̃n) ⊗ (X ⊗ L̃m)

��
(Pn−1 ⊗ Pm)

∐
(Pn−1⊗Pm−1)(Pn ⊗ Pm−1) // Pn ⊗ Pm

This is a pushout square by Lemma 4.1 in [Mur11]. The lower left corner has a
map to Pn+m by induction. The upper right corner is mapped there by shuffling the
middle X to the left-hand side, multiplying the two factors of X, passing to Σn+m-
coinvariants, and using the definition of Pn+m. To show P is a commutative monoid
one must verify the following diagrams:

S ⊗ P //

■■
■■

■■
■■

■■

■■
■■

■■
■■

■■
P ⊗ P

��

P ⊗ P ⊗ P

1⊗µ

��

µ⊗1
// P ⊗ P

��

P ⊗ P
τ

//

��

P ⊗ P

zz✉✉
✉✉
✉✉
✉✉
✉✉

P P ⊗ P // P P

The leftmost diagram commutes because the left-hand factor of P is P0, coming
from a map S → X, and so if we replace the other factors of P by Pm we see
that this diagram commutes before passage to colimits. In particular, the diagram
defining the map P0 ⊗ Pm → Pm collapses in the following way. The upper left
corner is X ⊗ X ⊗ L⊗m/Σm

∐
X⊗X⊗Qm/Σm

X ⊗ X ⊗Qm/Σm = X ⊗ X ⊗ L⊗m/Σm because

X ⊗ Q0 = X. The upper right corner is also X ⊗ X ⊗ L⊗m/Σm because X ⊗ L⊗0 = X.
Thus, the upper horizontal map is the identity. Similarly the bottom horizontal map
is the identity on P0 ⊗ Pm. Recalling that the P0 comes from a map S → X where
S is the monoidal unit we may write

P0⊗Pm = (P0⊗Pm−1)
∐

S⊗X⊗Qm/Σm

(S⊗X⊗L⊗m/Σm) = Pm−1

∐

X⊗Qm/Σm

(X⊗L⊗m/Σm) = Pm

Where P0⊗Pm−1 = Pm−1 by induction, and the other factors of S disappear because
S is the unit for X. This proves the commutativity of the leftmost diagram.
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The middle diagram also commutes on the level of individual Pi. In particular,
the two ways of getting from Pn ⊗ Pm ⊗ Pk to Pn+m+k (i.e. via Pn+m ⊗ Pk and via
Pn ⊗ Pm+k) are the same. The key observation to show this is that all maps in the
diagram are of the form (Pushout ⊗ Identity), and the pushout of a pushout is a
pushout. Thus, both ways of going around are pushouts, and the universal property
of pushouts shows that they must be isomorphic.

The rightmost diagram also commutes on the level of individual Pi, i.e. Pn⊗Pm →

Pn+m is the same as Pn ⊗ Pm → Pm ⊗ Pn → Pm+n. To see this, look at the
diagram defining µP and consider what happens if the n factors and m factors are
swapped. This causes no harm to the upper right corner because the map from
(X ⊗ L⊗m/Σm) ⊗ (X ⊗ L⊗n/Σn) requires passage to Σm+n-coinvariants, so changing
the order of the L factors has no effect on µP. Similarly there is no harm to the
lower left corner because of induction. The upper left corner is hardest, but either
way of going around to Pm+n will render the swapping of factors meaningless. One
way around requires passage to Σm+n-coinvariants and the other way goes to Pi⊗P j

factors for i, j < n,m and so will hold by induction. This completes the proof of
statement (1).

To verify that the map X → P is a map of commutative monoids one must only
verify that it’s a map of monoids and that the two monoids in question are commu-
tative. This means verifying the commutativity of the following diagrams:

X ⊗ X //

��

X

��

S //

��❄
❄
❄❄

❄
❄❄

❄
X

��
P ⊗ P // P P

The map P ⊗ P → P is induced by passage to colimits of the multiplication Pn ⊗

Pm → Pn+m and so by definition the obvious diagram with Pn ⊗ Pm, Pn+m, P ⊗ P,
and P commutes for all n,m. The point is that defining P ⊗ P→ P requires one to
go to Pn ⊗ Pm, so the commutativity is tautological. In particular, it commutes for
n = m = 0 and this proves the left-hand diagram above commutes, since X = P0.
The right-hand diagram commutes by definition of the map S → P as coming from
X. This completes the proof of statement (2).

To prove that P satisfies the universal property of pushouts in the category of com-
mutative monoids requires one to define a map P → M which completes the fol-
lowing diagram, where M is a commutative monoid, X → M is monoidal, and
L → M is a map inM. The reason one works with K and L rather than Sym(K)
and Sym(L) is that the data of a map of commutative monoids Sym(K)→ M is the
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same as that of a map from K to M, by the free-forgetful adjunction.

K //

��

L

��

��✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

X //

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖ P

  
M

The existence of maps K → X → M and L → M defines maps from X ⊗W(D)→
M for all D and all n. Commutativity of the outer diagram forces the maps X ⊗

W(D) → M to be compatible, i.e. commutativity of the square diagram featuring
X ⊗W(D), X ⊗W(D ∪ {i}, M, and M. This is because the left-vertical map in that
diagram is K → L and the right vertical map is K → X → M (which is easy to
see when thinking of commutativity of the outer diagram above as defining a word
in M). Furthermore, these maps respect the Σn action on the cube defining Qn

because M is commutative. Thus, by induction on n we may define a map Pn → M

because the diagram featuring X ⊗ Qn/Σn, X ⊗ L⊗n/Σn, Pn−1, and M commutes. In
this diagram we use induction to define the map Pn−1 → M and we using the fact
that M is commutative to define the map X ⊗ L⊗n/Σn → M.

Commutativity of this diagram is due to the fact that X ⊗ W(D) → M factors
through X ⊗ L⊗|D|/Σ|D| and hence through Pn−1 via P|D|. The unique maps Pn → M

assemble to a unique map P→ M.

Commutativity of the triangle featuring X, P, and M follows by definition of P as
a colimit and of X as P0. Commutativity of the other triangle follows because it
holds with Pn substituted for P, for all n. This is because commutativity holds in
the triangle which defines the map Pn → M for all n, so it holds in the (first) L

factor of X ⊗ L⊗n/Σn, i.e. L → M is the same as L → Pn → M for all n. This
completes the proof of statement (3) and hence of the proposition. �

We move now to homotopy theoretic considerations, and use the proposition to
prove Lemma B.1.

Proof. To prove statement (1), recall that the commutative monoid axiom tells us
that if h is a trivial cofibration then h�n/Σn is a trivial cofibration for all n > 0.

So suppose h = j : K
≃
֒→ L. Because j is a trivial cofibration, the map j�n/Σn :

Qn/Σn → Symn(L) is a trivial cofibration. Thus, the map X ⊗ j�n/Σn is of the form
required by the monoid axiom. This means transfinite compositions of pushouts of
such maps are weak equivalences, so in particular X → P is a weak equivalence
inM and hence in CMon(M). Any map in Sym(J)-cell is a transfinite composite
of pushouts of maps in Sym(J). We have seen that all such pushouts are of the
form required by the monoid axiom, and a transfinite composite of a transfinite
composite is still a transfinite composite, so the monoid axiom applied again proves
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that Sym(J)-cell is contained in the weak equivalences. This completes the proof
of (1).

For (2), suppose h = i : K ֒→ L and suppose X is cofibrant inM. By the strong
commutative monoid axiom, the maps i�n/Σn are cofibrations for all n, so X⊗i�n/Σn

are cofibrations for all n. Since pushouts of cofibrations are again cofibrations, the
maps Pn−1 → Pn are cofibrations for all i. Because P0 = X is cofibrant, this
means all the Pk are cofibrant and also X → P is a cofibration (so P is cofibrant)
because transfinite compositions of cofibrations are again cofibrations (see Propo-
sition 10.3.4 in [Hir03]). Every map in Sym(I)-cell which has cofibrant domain is a
transfinite composite of pushouts of maps of the form above, and so is in particular
again a cofibration inM.

�

Appendix C. Operadic Generalization

In the proof above, we make use of a particular filtration on the map X → P. We
could also have followed [Lur09a] and filtered the map Sym( f ) as

Sym(K) = B0 → B1 → · · · → Sym(L)

where each Bn is a Sym(K)-module. This makes it clear that the map X → P is
a map of X-modules, and thus makes it easier to check that P is in fact a monoid.
However, this filtration requires special knowledge of Com, namely that it is gen-
erated by Com(2)-swaps (i.e. functions of arity two) so that Com-algebras can be
multiplied with themselves. The author chose the approach presented here because
it allows for an easy generalization to operads.

The commutative monoid axiom has a natural generalization to an arbitrary operad
P. Recall that cofibrancy may be defined for P-algebras via a lifting property, even
if the category of P-algebras is not a model category.

Definition C.1. Let P be an operad. A monoidal model category M is said to
satisfy the P-algebra axiom if for all cofibrant P-algebras A and for all n ≥ 0,
PA(n) ⊗Σn

(−)�n preserves trivial cofibrations (where PA is the enveloping operad).

Theorem C.2. Let P be an operad (always assumed symmetric) and supposeM is

a combinatorial model category satisfying the P-algebra axiom. Then the category

P-alg(M) inherits a semi-model structure fromM.

Proof. As usual, this semi-model structure will be transferred along the free-forgetful
adjunction (P,U) via Lemma 2.1. BecauseM is combinatorial, the smallness hy-
potheses of Lemma 2.1 are automatically satisfied. Let j : K → L be a trivial
cofibration in M and consider the pushout of P( j) along a P-algebra homomor-
phism P(K) → A. Denote the resulting map γ : A → B. Factor this map as in the
Section 7.3 of [Har10], recalled in Remark 3.11. So γ is a transfinite composite
of pushouts of maps of the form PA(n) ⊗Σn

j�n. By hypothesis all such maps are
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trivial cofibrations, so γ is a trivial cofibration. As in Corollary 3.8, this completes
the proof. �

While the P-algebra axiom gives a minimal condition on M so that P-algebras
inherit a semi-model structure, it is not clear that this condition can be checked in
practice because of the presence of PA in the hypotheses. However, we can general-
ize the commutative monoid axiom to find a new family of axioms onM which do
not make reference to PA. This line of reasoning has been used in [Spi01] (where
conditions are given so that Σ-cofibrant operads are admissible) and in [Har10]
(where conditions are given so that all operads are admissible).

These two examples demonstrate that in order for the category of P-algebras to
inherit a semi-model structure, a cofibrancy hypothesis on either M or P will be
needed. The following result will unify all previous results on admissibility into
a single framework and provide new results for levelwise cofibrant operads (espe-
cially useful for En-operads in Top), where the cofibrancy hypotheses are evenly
distributed between the operad and the model category.

Theorem C.3. Let M be a combinatorial monoidal model category. Let f run

through the class of (trivial) cofibrations. Consider the following hypothesis, where

X is an object with a Σn-action that runs through some class of objects K:

Hypothesis: X ⊗Σn
f �n is a (trivial) cofibration for all X ∈ K .

In each row of the following table, placing this hypothesis on M for the class of

objects K listed in the left column gives a semi-model structure on P-algebras for

all P satisfying the hypotheses in the right column.

Hypothesis onM Class of operad

K = {Σn−projectively cofibrant objects } (Σ−)Cofibrant

K = {objects cofibrant inM} Levelwise cofibrant

K = {objects inMΣn} Arbitrary

The hypotheses going down the left column are increasing in strength, while the
hypotheses in the right column are decreasing. The last row says that if M is
combinatorial, monoidal, satisfies the monoid axiom, and has the property that
∀X ∈ MΣn , X ⊗Σn

f �n is a (trivial) cofibration, then all operads are admissible.
This generalizes the main theorem from [Har10], which states that if all symmetric
sequences in M are projectively cofibrant then all operads are admissible. Simi-
larly, the first row recovers a theorem of Spitzweck from [Spi01], since it follows
from the pushout product axiom that for any Σn-projectively cofibrant X, the map
X ⊗Σn

f �n is a trivial cofibration. The row regarding levelwise cofibrant operads is
new.

Proof. The proof proceeds as in Remark 3.11, but using PA(n) rather than ComA(n).
The hypothesis in the theorem guarantees this procedure will work as soon as PA(n)
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is known to be in the class of objects considered in the left-hand column. For the
bottom row this condition is automatic. For the top row one may use Proposition
5.17 in [HH13]. For the middle row, we must show PA(n) is cofibrant in M if
P is levelwise cofibrant and A is a cofibrant P-algebra. The proof in Proposition
5.17 (and Proposition 5.44a, on which it relies) in [HH13] goes through mutatis
mutandis. �

The author is still working to reduce the hypotheses onM so that combinatoriality
is not required. This will come down to better understanding what the free P-
algebra functor does to the domains of the generating trivial cofibrations. The
interested reader may fill in an appropriately weakened smallness hypothesis on
the domains. The author, together with Donald Yau, has worked out in [WY15a]
a generalization to this theorem in the setting of colored operads. This involves
generalizing the filtration of Remark 3.11 to the colored setting.

These hypotheses on M are not too difficult to check. For example, the one for
levelwise cofibrant operads holds for sS et, even though the hypothesis in the bot-
tom row does not hold for sS et. The bottom row holds for Ch(k) for k a field of
characteristic 0 and for the positive flat model structure on symmetric spectra (by
arguments analogous to those found in Section 5 above).

To get from a semi-model structure to a full model structure we would need to
add a new hypothesis onM. By way of analogy, note that to do this for cofibrant
operads or for Com, the monoid axiom was needed. This is because the filtration
by PA is simpler in these cases. In general, we need a hypothesis similar to the
monoid axiom but which takes the Σn action into account.

Definition C.4. Let Qt
Σn

be the class of maps inMΣn which are trivial cofibrations

inM. We sayM satisfies the Σn-equivariant monoid axiom if transfinite compo-
sitions of pushouts of maps of the form (Qt

Σn
) ⊗Σn

X are contained in the weak

equivalences for all X ∈ MΣn .

It is clear from the filtration argument given in Section 7.3 in [Har10] that this hy-
pothesis will imply the semi-model structures are actually model structures. How-
ever, this hypothesis is in fact so strong that it alone proves all operads are admis-
sible, regardless of the hypotheses in Theorem C.3. We summarize:

Corollary C.5. SupposeM is a combinatorial monoidal model category satisfying

the Σn-equivariant monoid axiom. Then for any operad P, algebras over P inherit

a model structure fromM.

A simpler hypothesis to check, which also works to improve a semi-model struc-
ture to a model structure, is the hypothesis that all objects are cofibrant. Combined
with our earlier observation about sS et this implies all levelwise cofibrant operads
(hence all operads) are admissible whenM = sS et.
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[RCJ09] José L. Rodrı́guez, Carles Casacuberta, and Tai Jin-Yen. Localizations of abelian

Eilenberg-Mac Lane spaces of finite type, preprint available electronically from

http://atlas.mat.ub.es/personals/casac/publicacions.html. 2009.

[CDI04] J. Daniel Christensen, William G. Dwyer, and Daniel C. Isaksen. Obstruction theory in

model categories. Adv. Math., 181(2):396–416, 2004.
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