
HOW A ROBOT CAN EXPLORE AN INFINITE GRAPH

DAVID WHITE

1. Motivation

The Roomba rolls around your house and vacuums the carpets. Early models were known to get
stuck in corners or to end up running in circles. If the robot has unlimited memory then you could
just give it a map of the room and it would never get trapped or confused. In practice, the robot
has limited memory, and for AI programmers, the less used the better. We want to model this
problem mathematically, so we assume it’s a square room and we consider a grid to make it a
discrete rather than continuous problem. So the graph is Pn�Pn. We’ll consider more general
graphs at the end.

One option is to give the robot no memory. At a given vertex it picks a direction uniformly at
random, i.e. each with probability 1/4. The path of the robot is then a simple random walk, as
investigated famously by Polya on infinite lattices Zd in 1921. It turns out that this method will
explore all n2 vertices, but will take O(n4) time on average.

Leszek Gasieniec from Liverpool (Go-She-Nietz) considered another way to explore, where we give
the robot 2 bits of memory and help it out by labeling the edges in the room. From each
vertex, label the outgoing edges by 1, 2, 3, 4 in such a way that each label is used once. Note that
this means an edge can have two different labels; one from each direction. The robot only has to
remember the label it just walked on and it can decide it’s next label. When the robot enters a
vertex by label i ∈ {1, 2, 3, 4}, it should exit following label i + 1 mod 4. Practically, this means
the robot can distinguish between the edges at any given vertex, i.e. has a local orientation. It
is not difficult to assign a labeling so that the robot explores a unique vertex at each step, i.e.
vacuums the whole room in O(n2) time. One way is the spiral out from the center (if you get to
pick starting vertex and label) or a zig-zag (if you don’t, but it’s on a torus).

If the room is more complicated, though, it might be difficult to assign a good labeling. Also, makers
of the Roomba can’t be expected to know the layout of every room in a customer’s house. Thus,
it is natural to consider a random labeling on the edges and ask how long it takes to explore the
room. Note that with an arbitrary labeling a robot can become trapped, e.g. in a 4-cycle. It may
be difficult to find values for a specific n, especially since it’s not 100% clear what the inductive
step would be. Once might also need to use differential equations and run into the percolation
problem. So we’ll let n → ∞ (i.e. run the random process on P∞�P∞) and get an “asymptotic
answer” instead. Note that this gives a closer and closer approximation to the continuous room via
a finer mesh.

2. Background on random walks

On an infinite grid, this question of whether or not a simple random walk reaches each vertex
is known as recurrence vs. transience. Formally, a random walk on a graph G is a sequence
of vertices X0, X1, X2, . . . where each Xn+1 is chosen uniformly at random from the neighbors of

Date: December 14, 2011.

1

2 DAVID WHITE

Xn. It is recurrent if it always returns to the starting vertex, i.e. returns infinitely many times.
Equivalently: for each vertex v, Pr(Xn = v for infinitely many n) = 1, since there is a constant
probability of walking from the origin to any vertex and given infinitely many tries this will occur
with probability 1. The walk is transient if for each vertex v, Pr(Xn = v for infinitely many
n) = 0. All walks on a connected graph are either recurrent or transient.

Polya studied this question for graphs of the form Zd. In his formulation, Z2 was a city and the
edges were city blocks. The particle undergoing the random walk was a drunkard, and the walk
was called the “drunkard’s walk.” Polya proved the following amazing theorem:

Theorem 1. A simple random walk on Zd is recurrent if d = 1 or d = 2 and is transient for all
d > 2.

Shizuo Kakutani described this result as follows: “A drunk man will always find his way home, but
a drunk bird may not.” Polya’s proof came down to writing the probability p(n) of return after
n steps, approximating it using Stirling’s formula, and proving that

∑
n P (n) either converged

(transient) or diverged (recurrent). It’s messy. A much nicer proof by electrical networks places a
unit resistance on each edge and proves that a walk is recurrent iff the resistance from any
point to infinity is infinite. This resistance keeps the walker contained. With this formulation,
the proof is very simple and comes down to just Ohm’s Law and Kirchkoff’s Law from physics. This
characterization works nicely for all locally finite graphs, but to characterize using other properties
is difficult and has not been finished.

The robot problem is not a random walk. It acts like one at vertices which have never been visited
before, but appears to act like a self-avoiding random walk at vertices which have been visited
before. This is because if the walk previously left a vertex by label 2 and if it comes in by a
label other than 1, then it must avoid the edge previously traveled. It should be noted that those
avoid vertices while ours avoids edges, but this can be fixed by considering our edges as vertices
and connecting two if they share an endpoint. You can label the new edges by the label on the
second of the two old edges which make it up. Understanding self-avoiding random walks is one of
the biggest open problems in probability theory (right up there with finding the critical point for
percolation). What’s known is that for d ≤ 2 the walk is recurrent and for d ≥ 5 it is transient.
Based on this, the problem group conjectured that the robot would get trapped (this is the analog
of recurrence) in Z2 but would escape in sufficiently high dimension.

3. New Results for exploration with memory

Polya didn’t have the option for his walk to get trapped in a small space. This option exists for the
robot and it’s exactly what we want to study. Indeed, for the d = 1 case (line) we have a simple
argument to see that the robot always gets trapped. Trap on line and grid...(Images: on line it’s
a labeling where the label from m to m + 1 is 1 and the label from m + 1 to m is 2. On grid it’s
4-cycle and a trap configuration where center vertex is entered from below by label i and the path
goes left on i+1, back to center on i+2, right by i+3, and back to center by i, so the trap bounces
the robot back and forth forever among these three vertices.)

To avoid this trap on the line, the labels must alternate 1, 2, 1, 2, 1, 2, This occurs with proba-
bility 0 = limn→∞(1/2)n. For d = 2 there are many ways for the robot to get trapped. Above are
two. Because these traps are small and local (they don’t depend on how far you’ve come on the
random walk), they occur with constant, nonzero probability. We’ll use these traps to prove the
following theorem:

Theorem 2. In Z2, the robot will get trapped with probability 1, i.e. the process is not transient.

HOW A ROBOT CAN EXPLORE AN INFINITE GRAPH 3

Shells Method. The trap with 3 vertices occurs with constant probability c > 0. Draw concentric
squares Sn (shells) of side length 2n centered at the origin. Let En be the event that the walk
reaches Sn and the first time it does so is not a trapping configuration. Note that this “first vertex
hit” cannot be a corner because corners are not adjacent to interior vertices. Because the trap
exists entirely on the shell, it is independent of the walk up to that point.

Let E be the event that the walk escapes to infinity. It’s not hard to see E =
⋂
En because to

escape to infinity you must never trap and you must pass each Sn. These En are not independent,
but because E1 ⊂ E2 ⊂ E3 . . . , we can still write P (E) =

∏
P (En|En−1). The probability of a

path from Sn−1 to Sn existing is ≤ 1. The probability that the first vertex on Sn hit is not a
trap is 1 − c. Thus, P (En|En−1) ≤ 1 ∗ (1 − c) and so P (E) ≤

∏
1− c = 0 because c > 0 implies

1− c < 1. �

This is not so surprising, since it’s the same for Polya and for self-avoiding random walks. Much
more surprising is that the method of proof generalizes to show:

Theorem 3. For all d, in Zd, the robot will get trapped with probability 1, i.e. the process is not
transient.

Proof. For d = 3 each vertex is degree 6 and a trap can be found using only 3 neighbors (i.e. a
trap can be found on a cubical shell around the origin). The trap occurs with constant probability
c′ > 0 and so the probability of escape is ≤ (1 − c′) ∗ (1 − c′) ∗ · · · = 0. The same idea works for
d > 3 as you can always find a trap on the surface of the hypercube and this means independence
of the previous steps is no problem. This is because a vertex on Sn will have 2d− 2 neighbors on
the shell and only needs d to make a trap.

Also worth noting: this proves that the probability of escape from the origin is zero. By symmetric,
the probability of escape from any fixed vertex is zero. Pr(∃ vertex which the walk can escape to
infinity from) = 0 because it’s a countable union of events, each of probability zero. �

This means that the set of labelings where the robot escapes has measure zero. I have a drawing,
but it’s too complicated to explain in words. I’ll draw it eventually and include it. The robot
can start anywhere, with any starting label and will escape to infinity via a staircase. It’s easy
to generalize this by adding in plateaus where it goes straight for 4n steps between steps on the
staircase, so this gives an infinite family of labelings where the robot always escapes.

4. Other locally finite graphs

At one point in the process it was suggested that the hexagonal lattice (think chicken-wire or
honeycomb) might be easier to work with. It turns out this is not the case because it’s harder to
form traps there. Indeed, you can’t form traps with just a vertex and its neighbors unless those
traps include the vertex the walk came in from, i.e. the shell surfaces are too small. This led to
a different kind of trap, called a spire, where you enter a vertex of degree D by label i and travel
out along a path by labels i, i+ 1, i+ 2, . . . for D steps, then turn around and come back along the
exact same path. This path is a trap, since it re-enters the initial vertex by label i again. This idea
works easily on the hexagonal lattice because the path has length 3 and occurs with a constant
nonzero probability.

Theorem 4. On the hexagonal lattice, the robot will be trapped with probability 1, i.e. the process
is not transient.

4 DAVID WHITE

Spires Method. Let Sn = {v | d(v0, v) = 4n} and let Dn = {v | d(v0, v) ≤ 4n}. Let En be the
event that you hit Sn and that the first vertex where that occurs (call it vn) does not have a spire
in the region between Dn and Sn+1. As long as a spire consists entirely of vertices which have
not been visited before, it occurs with constant probability c > 0. Without this restriction on the
vertices, the probability changes because some labels will already be set. Thus, we’ll restrict spires
we consider to those strictly between Sn and Sn+1. The probability of getting from Sn to Sn+1

without re-entering Dn is ≤ 1. Thus, P (E) =
∏

P (En|En−1) ≤
∏

(1− c) = 0. �

This method generalizes nicely to arbitrary locally finite graphs, as long as we have a fixed constant
M of radius for our spheres around the starting vertex. The same proof proves:

Theorem 5. On any locally finite graph G such that there exists an integer M with d(v) < M for
all v, the robot will be trapped with probability 1, i.e. the process is not transient.

To even understand the theorem we must define a process on a non-regular graph. There are many
ways to do this if you first label each edge going out from v by 1, 2, . . . , d(v). The one we choose
is: if the robot enters v along label i then it leaves v along the label i + 1 mod d(v). With this
method one can define the spires as above and going d(v) steps away and then d(v) steps back on
the same path will create a trap. A different way is: if the robot enters v along label i and d(v) > i
then it leaves along label i + 1. Otherwise it leaves along label 1. There are problems with this
system. For one, a random walk will use label 1 much more than any other label because it’s more
likely to pick 1 than another label if moving from a higher degree vertex to a lower degree one.
Secondly, if we’re trying to construct a trap at v and we entered v by a label i > 3 then there is no
guarantee that a spire will exist. It could be the case that all the neighbors of v have degree 2 and
so paths exist but there is no way to enter v by label i after completing a spire. So we will use the
first method and not this method.

Proof. Let Sn be the sphere of radius n ∗M . For a robot to escape it must reach each Sn in a
vertex vn which does not have a spire of length d(vn) < M . As above, we require this spire to
take place entirely between Dn and Sn+1. If vn has no path to Sn+1 which doesn’t require going
back into Dn, then allow the walk to continue. It will either get trapped between Sn and Sn+1 or
it will re-enter Dn. If it never leaves Dn again we’re done, as the walk is trapped. If it reaches
a different vertex on Sn then define that vertex to be vn and repeat the argument. If the walk
is to ever escape, there must be some vn ∈ Sn with a path to Sn+1 that does not pass through
Dn. Let c be the probability of a spire of length M , so the probability of a spire of length d(vn) is
> c. Thus, P (En|En−1) ≤ 1− P (spire at vn) ≤ 1− c. From here the proof proceeds as above, i.e.
P (E) ≤

∏
(1− c) = 0. �

The final question I will consider is whether or not this hypothesis of bounded degree is necessary.
It’s clear that finite degree is necessary to even define the process. Here is a graph with unbounded
degree such that the probability of a path to infinity is strictly greater than zero. This proves our
hypothesis was truly necessary and it classifies locally finite graphs where the robot gets trapped:
(Image is a tree where the root has degree 1, the next node has degree 4, the three nodes below
that have degree 8, the 3∗7 nodes below that have degree 16, etc. All nodes at depth n have degree
2n with only 1 edge pointing back at the root and 2n − 1 pointing down)

Start a walk from the root in the tree above. Define an event P to be “for each i, the robot
is distance i away from the root at step i” i.e. ”all steps are away from the root.” Certainly,
Pr(escape) ≥ Pr(P) since P is a way for the robot to escape. In previous examples, any infinite
path was guaranteed to contain traps, but this one will not because the degree is unbounded.
Define events Pi to be “at step i the robot is distance i from the root.” So P0 ⊂ P1 ⊂ P2 ⊂ . . .

HOW A ROBOT CAN EXPLORE AN INFINITE GRAPH 5

and because each vertex has only one edge pointing back at the root, Pr(P0) = Pr(P1) = 1,
Pr(P2|P1) = 1− 1/4, Pr(P3|P2) = 1− 1/8, . . . , P r(Pn|Pn−1) = 1− 1/2n. Thus:

Pr(P) =
∞∏
n=2

1− 1

2n
and taking logs we get ln(Pr(P)) =

∞∑
2

ln

(
1− 1

2n

)
To prove Pr(P) > 0 we must prove this sum is greater than −∞. We’ll use the Taylor Series
expansion of ln(1− x) around 0:

ln(1− x) = −x− x2

2
− x3

3
− . . . for − 1 ≤ x < 1

For x of the form 1/2n and n ≥ 1 this equality holds. Thus:

ln(Pr(P)) = −
∞∑
2

1

2n
− 1

2

∞∑
2

1

22n
− 1

3

∞∑
2

1

23n
− · · · − 1

k

∞∑
2

1

2kn
− . . .

≥ −
∞∑
2

1

2n
−
∞∑
2

1

22n
−
∞∑
2

1

23n
− · · · = −1

2
− 1

12
− 1

56
− · · · ≥ −

∞∑
n=1

1

2n
= −1

Undoing the log, we see that P(escape)≥ Pr(P) = eln(Pr(P)) ≥ e−1 > 0. This proves there is a
positive chance that the robot escapes, i.e. the process is transitive.

5. Future Directions

• Return to the case of the finite grid and find the expected number of vertices visited on a
walk. If it’s less than n2 (seems extremely likely) then this process is not good for vacuuming
the room.

• As n→∞ can we prove that for all k < n there must be a path of length k with probability
1? Note that there is a labeling where every vertex is in a 4-cycle.

• What’s the expected size of a cycle, i.e. a trap more complicated than those considered
above? What if there are big holes in the graph? Maybe this forces very long cycles to go
around those holes.

6. References

(1) G. Polya. Über eine Aufgabe betreffend die Irrfahrt im Strassennetz. Math. Ann, 84:149-
160, 1921.

(2) Dobrev, S., Jansson, J., Sadakane, K., Sung, W.K.: Finding short right-hand-on-the-wall
walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp.
127139. Springer, Heidelberg (2005)

(3) Ga sieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph explo-
ration with constant memory. J. Computer and System Science 74(5), 808822 (2008)

(4) Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph explo-
ration by a finite automaton. ACM Transactions on Algorithms 4(4), 331344 (2008)

6 DAVID WHITE

(5) more to come

	1. Motivation
	2. Background on random walks
	3. New Results for exploration with memory
	4. Other locally finite graphs
	5. Future Directions
	6. References

