
RECURRENCE THEOREMS IN VARIOUS RANDOM WALKS

DAVID WHITE

Thank the organizers; it’s nice to give something back to the seminar. Outline: Transience for
Classical Random Walks, A new type of random walk, Transience for it. The theorems in the third
part of the talk come from my masters thesis, which I’m editing now. I’m actually a homotopy
theorist.

1. Background on random walks

Let G be a finite connected graph, but you can think of G as Z2 for what follows. A random walk
on G is a sequence of vertices X0, X1, X2, . . . where each Xn+1 is chosen uniformly at random from
the neighbors of Xn (i.e. each option with probability 1/d(Xn) or 1/4 in Z2). It is recurrent if it
always returns to the starting vertex. This forces it to returns infinitely many times: the walk after
the n-th visit is again a random walk, so an (n + 1)-st visit is guaranteed. Equivalently: for each
vertex v, Pr(Xn = v for infinitely many n) = 1, since there is a constant probability of walking
from the origin to any vertex and given infinitely many tries this will occur with probability 1. The
walk is transient if it is not recurrent. Equivalently: with probability 1 every vertex is visited
only finitely often. If it doesn’t return then we say the walk has escaped to infinity. All walks on
a connected graph are either recurrent or transient.

Polya studied this question for graphs of the form Zd. In his formulation, Z2 was a city and the
edges were city blocks. The particle undergoing the random walk was a drunkard, and the walk
was called the “drunkard’s walk.” Polya proved the following amazing theorem:

Theorem 1. A simple random walk on Zd is recurrent if d = 1 or d = 2 and is transient for all
d > 2.

Shizuo Kakutani described this result as follows: “A drunk man will always find his way home, but
a drunk bird may not.” I intend to use this the exact day that I hand in my thesis. Polya’s proof
was by counting the number of paths which return and dividing by the total number of paths.
It’s messy and gives little understanding.

2. Basic Walk

A problem computer scientists are interested in is graph exploration by a mobile entity using
only constant memory. Useful if it’s software moving on a network, searching for pages on the
internet, or for a robot exploring an unfamiliar terrain. My favorite example is the Roomba,
which rolls around your house and vacuums the carpets. Early models were known to get stuck
in corners or to end up running in circles. If the robot has unlimited memory then you could just
give it a map of the room and it would never get trapped or confused. In practice, the robot
has limited memory, and for AI programmers, the less used the better. For us, the room is
[n]× [n].

Date: April 27, 2012.

1

2 DAVID WHITE

One option is to give the robot no memory. At a given vertex it picks a direction uniformly at
random, i.e. with probability 1/4 on the internal nodes, 1/3 on the sides, and 1/2 in the corners.
The path of the robot is then a simple random walk. The problem is that we have no control over
where it goes, how long it takes to cover all the ground, or how many times it re-vacuums the same
spot. It turns out that this method will explore all n2 vertices, but will take O(|V | log2 |V |) time
on average.

Leszek Gasieniec from Liverpool (Go-She-Nietz) considered another way to explore, where we give
the robot 2 bits of memory and help it out by labeling the edges in the room. From each
vertex, label the outgoing edges by 0, 1, 2, 3 in such a way that each label is used once. Note that
this means an edge can have two different labels; one from each direction. The robot only has to
remember the label it just walked on and it can decide it’s next label. When the robot enters a
vertex by label i ∈ {0, 1, 2, 3}, it should exit following label i + 1 mod 4. Practically, this means
the robot can distinguish between the edges at any given vertex, i.e. has a local orientation. If you
know that G = Z2 and you know where you start then it is not difficult to assign a labeling so that
the robot explores a unique vertex at each step, i.e. vacuums the whole room in O(|V |) = O(n2)
time. One way is the spiral out from the center. If you don’t know what the room looks like (i.e.
on a general G) then there is a way to assign a labeling to explore in O(|V |) time but it requires
the nodes to have a large memory and do a lot of work updating their labelings, so it might be
infeasible from the point of view of applications.

Let’s try to reduce the amount of memory we’re requiring and make the labeling scheme easier.
We’ll just assign the labels randomly, all at once, and see what happens. This process is called the
Basic Walk. Note that all the randomness is in the initial labeling. Once that’s fixed and the
starting vertex is chosen it’s deterministic. Examples:

Note that with an arbitrary labeling a robot can become trapped, e.g. in a 4-cycle, and then
you don’t get to see all the nodes (i.e. you leave some dirty spots). We want to investigate the
likelihood of this occurring. Here’s an open question: what’s the expected length of the largest
cycle? Does it cover a constant fraction of the nodes? Gasieniec conjectured it would. This is
an asymptotic question, so we need to let n → ∞. Another pro of letting n → ∞ is that we get
a closer approximation to a true room, since you can think of this as making a finer and finer
mesh. The analogous question to the open problem on [n]× [n] is exactly the recurrence question,
except we must replace “recurrence” with “gets trapped.” DRAW THE SQUIGGLY LINE AND
CYCLE

RECURRENCE THEOREMS IN VARIOUS RANDOM WALKS 3

Example 2. A labeling in Z2 where any basic walk escapes to infinity:
...

•
2

1

3

4 •

1

3

2 •

1

3

4 •

1

3

2 •
3

1

4

•
2

1

4 •
1

2 •
1

4 •
1

2 •
1

4

. . . •
2

3

4 •
3

2 • 4

3

• 2

3

• 4

3

. . .

•
2

1

4 •
1

2 •
1

4 •
1

2 •
1

4

•
2

4

3

• 2

3

• 4

3

• 2

3

• 4

3

...

The reader can easily verify that every starting vertex and port number leads to an infinite staircase
which moves in the directions specified by the first two steps and which gets further away from the
starting location with every step. It is clear how this generalizes to Zd with a staircase consisting of
a sequence of moves, one in each of the d directions. This example generalizes to create an infinite
family of examples where the basic walk escapes to infinity from any starting vertex and any initial
label. We simply add in blocks of 4 columns which act like plateaus for the robot to move east or
west for 4n steps between a given north-south step on the staircase.

3. Quasirandom and Self-Avoiding

Obviously, a big property of the Basic Walk is that it’s all defined locally. There is another model
you may have heard of which is similarly defined locally. It’s the Rotor Router model of Jim
Propp, and it’s an example of a quasirandom analogue of a random walk on a directed graph,
i.e. it’s deterministic and designed to give the same limiting behavior but with faster
convergence. Place a rotor at each v, like what balls come out of at the batting cages. Next, fix a
rotor pattern e1, e2, . . . , ed(v) running through all edges out of v and point the rotor via e1. When v
is first visited, the particle exits by e1 and then the rotor rotates to e2. When v is next visited, the
particle exits by e2 and we repeat this process. These rotor routers have been studied quite a bit
in the past 10 years, and have found numerous applications, e.g. load balancing. It’s supposed to
be “better than random” because the central limit theorem behavior is achieved immediately,
e.g. on [n] it will have exactly half the particles (every other particle) leave by the left as by the
right, which the CLT predicts but only with an error depending on the number of trials.

Differences from Basic Walk: It doesn’t matter where you enter v from, you will leave by the
direction the rotor points. The scheduling policy is purely local and deterministic–there is no
randomness at all. You can’t trap in any way. Also, there is a theorem which says it behaves like
the simple random walk enough that it’ll have the same recurrence/transience behavior (in terms
of number of times the origin is visited if you start a large number of particles at once) so it’s
recurrent in Z2 and transient in Zd for d > 2.

4 DAVID WHITE

Professor Johanna Franklin (University of Connecticut) gave a talk here in March on ”Randomness
and applied recursion theory” discussing how to formally state which properties a random sequence
should not have and how randomness corresponds to computational strength. These quasirandom
processes have some of those properties, but lack the others (e.g. statistical randomness). You’ll
probably hear more about them in the future.

Another big property of the Basic Walk is its ability to get trapped. The robot problem is not a
random walk. It acts like one at vertices which have never been visited before, but appears to act
like a self-avoiding random walk at vertices which have been visited before. This is because
if the walk previously left a vertex by label 2 and if it comes in by a label other than 1, then it
must avoid the edge previously traveled. As soon as the robot uses the same edge in the same
direction it’s in a cycle. Self avoiding random walks can also get trapped. What’s known is that
for d ≤ 2 the walk is expected to get trapped and for d ≥ 5 there’s enough space and it’s expected
to escape. Based on this and the example above, the problem group conjectured that the robot
would get trapped (this is the analog of recurrence) in Z2 but would escape in sufficiently high
dimension.

4. New Results for exploration with memory

Polya didn’t have the option for his walk to get trapped in a small space. This option exists for the
robot and it’s exactly what we want to study. Indeed, for the d = 1 case (line) we have a simple
argument to see that the robot always gets trapped. Trap on line and grid...(Images: on line it’s
a labeling where the label from m to m + 1 is 1 and the label from m + 1 to m is 2. On grid it’s
4-cycle and a trap configuration where center vertex is entered from below by label i and the path
goes left on i+1, back to center on i+2, right by i+3, and back to center by i, so the trap bounces
the robot back and forth forever among these three vertices.)

To avoid this trap on the line, the labels must alternate 1, 2, 1, 2, 1, 2, This occurs with proba-
bility 0 = limn→∞(1/2)n. For d = 2 there are many ways for the robot to get trapped. Above are
two. Because these traps are small and local (they don’t depend on how far you’ve come on the
random walk), they occur with constant, nonzero probability. We’ll use these traps to prove the
following theorem:

Theorem 3. In Z2, the robot will get trapped with probability 1, i.e. the process is not transient.

Shells Method. The trap with 3 vertices occurs with constant probability c > 0. Draw concentric
squares Sn (shells) of side length 2n centered at the origin. Let En be the event that the walk
reaches Sn and the first time it does so is not a trapping configuration. Note that this “first vertex
hit” cannot be a corner because corners are not adjacent to interior vertices. Because the trap
exists entirely on the shell, it is independent of the walk up to that point.

Let E be the event that the walk escapes to infinity. It’s not hard to see E =
⋂
En because to

escape to infinity you must never trap and you must pass each Sn. These En are not independent,
but because E1 ⊂ E2 ⊂ E3 . . . , we can still write P (E) =

∏
P (En|En−1). The probability of a

path from Sn−1 to Sn existing is ≤ 1. The probability that the first vertex on Sn hit is not a
trap is 1 − c. Thus, P (En|En−1) ≤ 1 ∗ (1 − c) and so P (E) ≤

∏
1− c = 0 because c > 0 implies

1− c < 1. �

This is not so surprising, since it’s the same for Polya and for self-avoiding random walks. Much
more surprising is that the method of proof generalizes to show:

RECURRENCE THEOREMS IN VARIOUS RANDOM WALKS 5

Theorem 4. For all d, in Zd, the robot will get trapped with probability 1, i.e. the process is not
transient.

Proof. For d = 3 each vertex is degree 6 and a trap can be found using only 3 neighbors (i.e. a
trap can be found on a cubical shell around the origin). The trap occurs with constant probability
c′ > 0 and so the probability of escape is ≤ (1 − c′) ∗ (1 − c′) ∗ · · · = 0. The same idea works for
d > 3 as you can always find a trap on the surface of the hypercube and this means independence
of the previous steps is no problem. This is because a vertex on Sn will have 2d− 2 neighbors on
the shell and only needs d to make a trap.

Also worth noting: this proves that the probability of escape from the origin is zero. By symmetric,
the probability of escape from any fixed vertex is zero. Pr(∃ vertex which the walk can escape to
infinity from) = 0 because it’s a countable union of events, each of probability zero. �

5. Other locally finite graphs

To generalize this proof to other graphs you’d need them to have shells, and this comes down to
expander properties. A graph which fails to have shells is the hexagonal lattice (think chicken-wire
or honeycomb). We found a proof there for trapping and it generalizes to show that any regular
graph has trapping basic walk. The trick is to use spires of length d where d is the degree. What
about graphs which are not regular? Well, a third proof works in that case:

Theorem 5. On any locally finite graph G with all vertex degrees bounded by a constant D, the
basic walk cycles with probability 1.

Star Method. The pigeonhole principle guarantees us that there are infinitely many vertices v
with a neighbor w of degree d(w) ≥ d(v). This is because every time a vertex v only has neighbors
of smaller degree, all those neighbors have a neighbor (v) with larger degree. If the basic walk is
to have any chance of escaping to infinity, then it must be the case that infinitely often the robot
moves from a vertex v to a vertex w such that d(v) ≥ d(w). Here we are using the hypothesis of
bounded degree, which means the robot cannot move from a vertex of degree 1 to one of degree 2,
then one of degree 3, etc. Such a chain would eventually hit a vertex of degree D and then need
to move to one of degree ≤ D. We label these steps of the robot (from larger degree to smaller
degree) by w1 → v1, w2 → v2, . . . , where we do not assume wi 6= wj for i 6= j but we do assume
vi 6= vj by simply removing the pairs (wi, vi) where vi has appeared in the list before. Clearly this
will not change the fact that there are infinitely many such pairs.

Whenever the basic walk takes a step wi → vi from the list above, we consider the event Ei that the
configuration Cvi is achieved. Let N denote the set of neighbors of vi which are not wi. Because
d(vi) < D, |N | < D. Furthermore, d(x) < D for all x ∈ N , so

P (Ei) =
1

d(v)
∗
∏

x∈N(v)

1

d(x)
> c =

1

D
∗
(

1

D

)D

> 0

In order for the basic walk to escape to infinity, this event must be avoided for infinitely many vi.
So the probability p that the basic walk escapes to infinity satisfies p ≤ (1− c) ∗ (1− c) ∗ · · · = 0,
proving that the basic walk cycles with probability 1. �

The final question I will consider is whether or not this hypothesis of bounded degree is necessary.
It’s clear that finite degree is necessary to even define the process.

6 DAVID WHITE

Example 6. T is the tree where every vertex in level n has 2n children. As usual, the root is in
level 0.

•

•

• •

...
...

...
...

...
...

...
...

Proof. Start a basic walk from the root in the tree above, using the fact that the initial step is
determined because the root has degree 1. Define an event P to be “for each i, the robot is distance i
away from the root at step i” i.e. ”all steps are away from the root.” Certainly, Pr(escape) ≥ Pr(P)
since P is a way for the robot to escape. Define events Pi to be “at step i the robot is distance
i from the root.” So P0 ⊂ P1 ⊂ P2 ⊂ . . . , P =

⋂
Pi, and Pr(P) =

∏
Pr(Pn|Pn−1). Because each

vertex has only one arc pointing back at the root, Pr(P0) = Pr(P1) = 1, Pr(P2|P1) = 1−1/3 ≥ 1/2,
Pr(P3|P2) = 1− 1/5 ≥ 1/4, . . . , Pr(Pn|Pn−1) = 1− 1/(2n−1 + 1) ≥ 1/2n. Thus:

Pr(P) ≥
∞∏
n=2

1− 1

2n
and taking logs we get ln(Pr(P)) ≥

∞∑
2

ln

(
1− 1

2n

)
To prove Pr(P) > 0 we must prove this sum is greater than −∞. We’ll use the Taylor Series
expansion of ln(1− x) around 0:

ln(1− x) = −x− x2

2
− x3

3
− . . . for − 1 ≤ x < 1

For x of the form 1/2n and n ≥ 1 this equality holds. Thus:

ln(Pr(P)) = −
∞∑
2

1

2n
− 1

2

∞∑
2

1

22n
− 1

3

∞∑
2

1

23n
− · · · − 1

k

∞∑
2

1

2kn
− . . .

≥ −
∞∑
2

1

2n
−
∞∑
2

1

22n
−
∞∑
2

1

23n
− · · · = − 1/22

1− 1/2
− 1/24

1− 1/22
− 1/26

1− 1/23
− · · · ≥ −

∞∑
n=1

1

2n
= −1

To show 2−2k/(1− 2−k) ≤ 2−k as needed in the last inequality, note that 1− 2−k ≥ 1/2 ≥ 2−k so
that 2−2k/(1− 2−k) ≤ 2−2k/(2−k) = 2−k.

Undoing the log, we see that P(escape)≥ Pr(P) ≥ eln(Pr(P)) ≥ e−1 > 0. This proves there is a
positive chance that the robot escapes, i.e. the process is transitive. �

Theorem 7. As n→∞, a basic walk on Kn is expected to visit at least (1− 1/e) ∗ n nodes

Proof. We prove a stronger statement, namely that n/e of the nodes are visited within just the
first n − 1 steps. Restricting to the first n − 1 steps guarantees that cycles are impossible, since
any cycle in a d-regular graph a cycle requires at least d arcs. Label the vertices 0, 1, 2, . . . , n − 1

RECURRENCE THEOREMS IN VARIOUS RANDOM WALKS 7

and assume that the starting vertex v0 is labeled by 0. Consider the sequence of vertex numbers
(v0, v1, v2, . . .) visited by the robot.

Let v be a vertex chosen at random. Then P (v = v0) = 1/n and P (v = v1 | v 6= v0) = 1/(n − 1),
since there are n − 1 possible steps the robot could take after v0. For the same reason, P (v =
v2 | v 6= v0, v1) = 1/(n − 1). Step 3 is more complicated, because it is possible that v2 = v0, in
which case the arc v2 → v1 already has a label. So there are two ways to get v = v3:

Pr(v = v3) = Pr(v = v3 | v2 = v0, v 6= v0, v1)+Pr(v = v3 | v2 6= v0, v 6= v0, v1, v2) =
1

n− 1
∗ 1

n− 2
+
n− 2

n− 1
∗ 1

n− 1

>
1

n− 1
∗ 1

n− 1
+

n− 2

n− 1
∗ 1

n− 1
=

1

n− 1

In general, the probability that vi+1 = v given that vi has been visited k times will be 1/(n− k) ≥
1/(n− 1). This proves that Pr(v not visited on i-th step) = vi 6= v) ≤ 1− 1/(n− 1) for all i, which
implies

Pr(v not visited in first n− 1 steps) =
n−1∏
i=1

Pr(vi 6= v) ≤
(

1− 1

n− 1

)n−1

As n→∞, this bound tends to 1/e. Thus, the expected number of vertices missed is n/e, i.e. the
expected number of vertices visited is at least (1− 1/e) ∗ n. �

Conjecture 8. The expected number of arcs traversed by a basic walk on Kn is 1.8 ∗ n as n→∞.

6. Future Directions

• In Z2, what is the expected length of time it takes the robot to hit a cycle? (i.e. the
expected number of steps taken). What is the expected number of vertices visited? The
number of edges used per vertex visited?

• Return to the case of the finite grid and find the expected number of vertices visited on a
walk. If it’s less than n2 (seems extremely likely) then this process is not good for vacuuming
the room.

• As n→∞ can we prove that for all k < n there must be a path of length k with probability
1? Note that there is a labeling where every vertex is in a 4-cycle.

• What’s the expected size of a cycle, i.e. a trap more complicated than those considered
above? What if there are big holes in the graph? Maybe this forces very long cycles to go
around those holes.

