
AN OVERVIEW OF LOCALIZATION IN STABLE HOMOTOPY THEORY

DAVID WHITE

THANK THE ORGANIZER, talk about keeping the exchange going (good for CV, practice in
foreign environment), this is colloquium-style so questions are encouraged, but super specific things
may get pushed off to the end.

I start by telling a bit about stable homotopy theory, to give a flavor of the world we’ll be working
in today. One of the key ideas in algebraic topology is to use algebraic invariants to distinguish
topological spaces. This leads to H∗, H

∗, and π∗. The first two are relatively easy to compute, but
they are coarse invariants: they don’t capture enough of the information of the space. The last is
really too difficult to compute in practice. So Stable Homotopy Theory aims to compute something
a bit simpler, namely πs∗ the stable homotopy groups. To define this we use the key theorem of
stable homotopy theory.

1. Motivation for Stable Homotopy Theory

Homotopy can be thought of as “throwing mud at X and seeing what sticks” because πn(X) =
[Sn, X]. Stable homotopy is harder to explain.

Recall: The reduced suspension Σ functor (DRAW THE PICTURE). A space is n-connected
if πk(X) = 0 for all 1 ≤ k ≤ n (call it 0-connected if it’s path connected).

Theorem 1 (Freudenthal Suspension Theorem (1937)). Let X be an n-connected pointed space (a
pointed CW-complex or pointed simplicial set). The inclusion X → ΣX induces a map

πk(X)→ πk+1(ΣX)

which is an isomorphism if k < 2n + 1 and an epimorphism if k = 2n + 1. Note: the first half of
these groups are zero, but they can be nonzero after πn+1(X)→ πn+2(ΣX).

We see immediately that if X is n-connected, then ΣX is n + 1-connected, since πi+1(ΣX) ∼=
πi(X) = 0 for all i ≤ n, i.e. for all i+ 1 ≤ n+ 1 (on the first subscript).

Now take X any path-connected space (same as 0-connected) and fix k. Starting with n = 1 and
increasing n at each step gives:

πk(X)→ πk+1(ΣX)→ πk+2(Σ
2X)→ πk+3(Σ

3X) . . .

For n > k + 1 we have πk+n(ΣnX) ∼= πk+n+1(Σ
n+1X), i.e. this chain of maps stabilizes. We can

thus define: πsk(X) = limn πk+n(ΣnX). If X is the sphere S0, i.e. 2 points, then this is called the
stable k-stem, πsk(S0), and is MUCH easier to compute than the unstable groups because all that
matters is the difference between n and k. Yet still the general pattern eludes us. Example: the
identity on S1 generates Z = π1(S

1) ∼= π2(S
2) ∼= π3(S

3) ∼= π4(S
4) . . . .
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Most of the modern theory looks at all the πsk(S0) simultaneously, because they form a graded ring
(under composition). We now have an algebraic object without a corresponding topological
object which gives it. The solution to this is to move from the category of topological spaces to a
new category where the objects are “stable” and where the homotopy functor spits out this graded
ring. This category is called Spectra (Lima, 1958), and its objects are sequences of spaces (Xn)
with structure maps ΣXn → Xn+1. We’ll talk more about categories later; for now, cool facts
about Spectra!

Spaces sit inside Spectra as follows: Given X, define (Σ∞X)n to be ΣnX. It’s a spectrum.

Rings sit inside Spectra, too: Given R and n ∈ N, the Eilenberg-Maclane space K(R,n) has
πn = R and πk = 0 for all k 6= n. Define a spectrum (HR)n = (K(R,n)).

Cohomology is a collection of functors Hn(−;R) :Spaces→GradedRings (with the cup product),
like looking at X through R-tinted glasses. These satisfy a bunch of nice properties, and we can use
these properties as Axioms (Eilenberg-Steenrod Axioms (1945)) to define when a functor is as
good as Hn. Call such functors (hn) generalized cohomology theories. It turns out these functors
are representable (this is the Brown Representability Theorem (1962)), i.e. hn(X) ∼= [X,En]
for some space En and (En) forms a spectrum. For example, Hn(−;R) is represented by the
K(R,n) above!

So Spectra is a category which contains all my favorite things: spaces, rings, and cohomology
theories. My research is often of the flavor: take some cool idea in algebra and see how well it
holds in this more general arena. You need the right proof in algebra, too, and then it takes
work to push the proof forward. So instead of studying rings we study ring objects in this category
(“ring spectra”), which act like rings (they are defined by commutative diagrams in the category).
It’s a fact that HR and hn are ring spectra. We may define this term at the end. This is the
subject of the area of research called Brave New Rings. Today’s goal will be to talk about how to
do localization here: in particular, can we localize one spectrum with respect to another? What
does it mean to localize with respect to a homology theory?

2. Localization

To answer this, let’s recall localization. It’s a systematic way of adding multiplicative inverses
to a ring, i.e. given commutative R and multiplicative S ⊂ R, localization constructs a ring S−1R
and a ring homomorphism j : R→ S−1R that takes elements in S to units in S−1R. It’s universal
w.r.t. this property, i.e. for any f : R→ T taking S to units we have a unique g:

R
j //

f

��

S−1R

g
||y

y
y

y
y

T

Recall that S−1R is just R × S/ ∼ where (r, s) is really r/s and ∼ says you can reduce to lowest
terms without leaving the equivalence class. Ring just as Q is. The map j takes r 7→ r/1, and
given f you can set g(r/s) = f(r)f(s)−1.

Examples: (Z,Z− {0}) 7→ S−1R = Q. (Z, 〈2〉) 7→ Z[12 ]. (Z,Z− pZ) 7→ Z(p) = {ab | p 6 | b}

This is NOT the right definition to a category theorist (no operation, so “multiplicative inverses?”).
Better: systematic way of formally inverting maps. Let’s focus on one map first. To invert s
you take the ring generated by R and s−1. It’s equivalent to require that multiplication by s map
µs : R→ R is invertible. Thus, define R∗ to be a ring containing s such that µs is an isomorphism
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and i : R → R∗ is universal. This is an example of finding the right proof in algebra to generalize
to category theory. It’s diagrammatic.

Proposition 1. R∗ ∼= s−1R

Proof. Certainly s ∈ s−1R as (s, 1). Also, µs is an isomorphism with inverse µs−1 . So by the
universal property of R∗, the map j : R→ s−1R gives g : R∗ → s−1R s.t. g ◦ i = j

Next, the element s has an inverse in R∗ because it’s µ−1s (1) as µ−1s (1) · s = µ−1s (1) · µs(1) =
(µ−1s ◦ µs)(1) = 1. So the universal property of s−1R gives h : s−1R→ R∗ and

R
i

||xxxxxxxxx
j

��

i

""FFFFFFFFF

R∗ g
// s−1R

h
// R∗

The bottom is the identity because the two triangles are the same. So h ◦ g = idR∗ . Same idea gets
g ◦ h. �

3. Localizing Categories and Model Categories

Recall that a category C is a class of objects and a class of morphisms which preserve the structure
of the objects. Invented by Eilenberg and Maclane (1945). Maclane was an undergrad at Yale and
from Connecticut. The yoga of category theory is that one must study maps between objects
to study the objects. Applying this to categories themselves leads you to functors F : C → D, i.e.
maps from objects to objects and morphisms to morphisms compatible with idA and f ◦ g.

Thinking of localization as “formally inverting maps” then we want to pick a set S of morphisms
and create a universal functor C → C[S−1] where those morphisms land in the class of isomorphisms,
i.e. F (f) is an iso for all f ∈ S.

Example: If C is Top, and we want to study it “up to homotopy” (i.e. when X h.e. Y we say
they are isomorphic), then we get the homotopy category and it’s easy to see it’s a category. What
we’ve done is send the set of maps {f | πn(f) is an iso∀ n} to isomorphisms in a universal way.
Universal because we added the smallest numbers of isomorphisms possible.

To do this in general, note that given f : X → Y in S and g : X → Z I now have g ◦ f−1 : Y → Z,
i.e. I have to generate new morphisms based on the inverses I added. So what are the morphisms
C[S−1] between X and Y ? You can get there by any zig-zag (DRAW IT), so you want to
define C[S−1](X,Y ) = {X ← • → • · · · • → Y }/ ∼ where this relation at least allows us to
add in pairs of identities or compose two when it’s allowed. PROBLEM: the collection of zigzags
X ← • → • · · · • → Y is not a set, even just in the category Set you have a proper class worth of
choices.

To get around this you are forced into homotopy theory again. You need restrictions on the
types of S you can invert. It worked for Top, so let’s generalize the properties we had there. This
leads to the concept of a Model Category (Quillen 1967). The idea is you have a special class of
maps W called the weak equivalences, and these generalize the homotopy equivalences above. But
algebraic topology is about more than just homotopy equivalences.

For instance, it also studies vector bundles E → X where the fibers are vector spaces. This
generalizes to a fiber bundle F → E → X, and we say E → X is a fibration. For example,
O(n)→ O(n)/O(n− 1) the quotient of any two Lie groups.
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It also studied when one space X can be built from another A by adjoining cells. We use this for
example to write Hn(X,A) ∼= Hn(X/A). Call such a map A→ X a cofibration.

Adding some axioms about how these classes of maps work together gives a Model Category, and
for suchM the localization described above works, i.e. you get a concrete way to make a universal
functor M → HoM taking W to isomorphisms. We now know the most general place you
can do homotopy theory, and this transforms algebraic topology from the study of topological
spaces into a general tool useful in many areas of mathematics.

Spaces and Spectra are model categories, with homotopy categories HoTop and the stable homo-
topy category SHC. Ch(R) is also a model category with homotopy category = the derived
category D(R), which is studied in algebraic geometry and elsewhere. Proving it’s triangulated
uses the model category structure. Given F , the model category structure helps you construct
from an induced functor between derived categories, e.g. the left derived functor of an
abelianization functor gives Quillen homology.

Voevodsky won a fields medal in 2002 by creating the motivic stable homotopy category from
a model category structure on an enlargement of Schemes to resolve the Milnor Conjecture.

The∞-categories of Joyal, much studied by Lurie at Harvard and MIT, are a direct generalization
of model categories, and so results in model categories are prized because they show the way for
∞-categories. Also, computations and constructions are much easier on the model category level
than on the ∞-level or on the homotopy level. These ∞ categories relate to spectra because S
plays the role of Z in the world of E∞-algebra (“derived” commutative algebra).

4. Back to spectra and our original goal

Suppose we want to localize at T = {f | hn(f) is an isomorphism ∀ n}. We can do this as
follows:

Spectra

��
SHC // SHC[T−1]

However, we’d like a model category which actually sits above HoSpectra[T−1]. Its objects must be
spectra again, and it’s morphisms will be morphisms of spectra, but it’ll have a different model
category structure. In particular, W ′ will now be 〈T 〉. We see that W ⊂W ′ because homotopy
isomorphisms also give isomorphisms on cohomology.

But you can’t just mess withW because it’ll screw up the axioms. We want to keep the cofibrations
fixed so we can build things out of them and have the two model structures related, so we have to
shrink the fibrations: F ⊃ F ′. Bousfield’s Theorem (1978) says you can do this and you still get
a model category structure, but you have to be careful with how you generate W ′ from T .

Thus, for all h and for all spectra X there is a spectrum Lh(X), which is h-local (i.e.
maps in from an h-acyclic are nullhomotopic, so it doesn’t fraternize with things h can’t see:
the mud doesn’t stick) the map X → Lh(X) is an h equivalence. Also, Lh(Lh(X)) = Lh(X).
Furthermore, Lh is characterized by these properties.

In case someone asks: Ch(X) → X → Lh(X) and Ch(X) is lim(h−acyclics Y which map to X),
except that’s too big to make a limit so do homotopy limit and just for finite Y .
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How to do this on a general model category? If we want to force a map f to become a weak
equivalence and still preserve the cofibrations then the fibrations must shrink. It turns out that
with mild conditions on M you can do this, even for a set of maps S:

M

��

//_____ ML

���
�
�

HoM // HoM[S−1]

Furthermore, this functor on top preserves a lot of nice properties of M. For many years every-
one assumed it preserved ring objects and commutative ring objects (now you need a monoidal
structure) because it does for Spectra. Mike Hill (2011) showed that for the model category of
G-equivariant spectra it does NOT preserve commutative ring objects. I’m now trying to
find conditions under which it will preserve them.

This problem is a good example of the sort of things a modern stable homotopy theorist thinks
about. Constructions and theorems are done on the model category level or the ∞-category level.
I hope this gave you a flavor for the field.
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