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(1) Basic Graph Theory and graph coloring

(2) Pigeonhole Principle

(3) Definition of Ramsey Numbers

(4) Some bounds on Ramsey numbers

(5) Ramsey’s Theorem

(6) Erdos’s famous lower bound on R(n)

2. Basic Graph Theory

Definition 1. A graph G is a pair (V,E) where V is a set of points, called vertices, and E is a
set of pairs of points (vi, vj) called edges.

For us |V | will always be finite.

The complete graph on n vertices has n vertices and edges between all pairs of vertices.

Graphs are useful all over mathematics and computer science. Much of the world can be modeled
through graphs. For example, a group of people can make a friendship graph where there is an
edge if two people are friends. Or the internet is a graph with computers as nodes and edges if
they’re on the same network (or visiting the same websites, or whatever).

3. Graph Coloring

Definition 2. A coloring of a graph is an assignment of colors (living in some finite set {c1, . . . , cr})
to the edges of the graph.

You may have seen this defined before and probably with the nodes being colored such that no
edge connects two nodes of the same color. But for this talk I will need to be coloring the edges of
graphs and I will not insist that two adjacent edges are of different colors.

Ramsey Graph picture showing a 2-coloring of a graph which is almost a K6

4. Pigeonhole Principle

Proposition 1 (Pigeonhole Principle). If you are placing n + 1 pigeons into n holes, then some
hole will end up containing at least two pigeons (obviously this holds for placing m pigeons into n
holes whenever m > n).

If you are placing 2n−1 pigeons into 2 holes then some hole will end up containing at least n balls.
So if you have 2n− 1 people at a party then at least n are of the same gender.

Because combinatorics studies discrete objects (mostly finite), this is crucial to the field and many
proofs rely on it. The notion of placing pigeons into 2 holes is exactly the same as 2-coloring the
pigeons.
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5. Ramsey

Ramsey Theory generalizes the Pigeonhole Principle and solves the party problem above more
generally. The question is: what is the minimum number of guests that must be invited so that at
least n will know each other?

Definition 3. R(n) is the smallest integer m such that in any 2-coloring of Km there is a monochro-
matic Kn.

In the most general sense, Ramsey Theory asks how many elements are necessary to insure that
some property is met.

6. Known Ramsey numbers

Theorem 1 (Friendship Theorem). R(3) = 6, i.e. 6 is the smallest number such that any 2-coloring
of K6 has a monochromatic K3 (i.e. a monochromatic triangle)

This means at any party with at least six people, there are either three people who are all mutual
acquaintances (each one knows the other two) or mutual strangers (each one does not know either
of the other two).

Proof. First, R(3) ≥ 6 because here is a 2-coloring of K5 with no monochromatic triangle. It’s
always easier to find lower bounds on Ramsey numbers because it’s constructive.

Image here

Second, R(3) ≤ 6 because if a is a vertex of K6 then a has 5 edges touching it. By the Pigeonhole
Principle, three of them are the same color (e.g. as shown above) without loss of generality red.
Consider the three vertices b, c, d those edges connect to. If any edges between them are red (say
(b, c) is) then we’re done because 4abc is red. So none of these edges are red and they must all be
blue. This means 4bcd is blue. So we have a monochromatic triangle. �

7. Known and Unknown Ramsey Numbers

So we know R(3) = 6 and it’s trivial that R(1) = 1 and R(2) = 2 since any coloring of a K2 (i.e. 1
edge) has a monochromatic K2.

Fact: R(4) = 18. You can prove this at home. To do so you’ll need to find a 2-coloring of a
K17 without a monochromatic K4 and then prove that any 2-coloring of K18 has a monochromatic
K4.

Fact: 43 ≤ R(5) ≤ 49 and 102 ≤ R(6) ≤ 165. If you find better bounds you will have a very nice
paper. If you nail either one down you’ll probably get a PhD immediately!

Paraphrased from Paul Erdös: Aliens invade the earth and threaten to obliterate it in a year’s time
unless human beings can find the Ramsey number for red five and blue five. We could marshal the
world’s best minds and fastest computers, and within a year we could probably calculate the value.
If the aliens demanded the Ramsey number for red six and blue six, however, we would have no
choice but to launch a preemptive attack.

Erdös was one of the most prolific publishers of papers in mathematical history, second only to
Leonhard Euler; Erdös published more papers, while Euler published more pages.
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8. Erdös Probability Method

All the proofs in the last slide were upper bounds. There are many creative constructive lower
bounds (e.g. giving polynomial lower bounds of any fixed degree), but nothing reaching cn for any
c > 1. This is achieved only by the Erdös Probability Method and the following two facts:

The probability of the union of events is at most the sum of their probabilities with equality iff the
events are pairwise disjoint

Only the empty set has probability zero.

The key fact is that if the probability of an event occurring is strictly greater than 0, then there
must exist some model in which the event occurs. This can be used to prove:

Theorem 2. If
(
m
n

)
< 2(n

2)−1 then m < R(n)

Corollary 1. For n ≥ 3, 2
n
2 < R(n)

The best asymptotics for m come easily from the corollary and we get

m = 2
n
2 · n

e
√

2
< R(n)

The proof of the theorem is as follows. The probability space is the space of 2-coloring of the
edges of Km, which has N = 2(m

2 ) elements. A subset of n vertices in Km yield a monochromatic
Kn with probability p = 1

2(
n
2)−1

. Therefore the probability of having a monochromatic Kn is at

most p ·
(
m
n

)
. This is strictly less than 1 from the hypothesis on m, so the probability of having no

monochromatic Kn is positive. Therefore there must exist a 2-coloring with no monochromatic Kn

which implies m is a lower bound on R(n) without actually having to find the coloring!

9. Generalizing Ramsey numbers

Theorem 3 (Ramsey’s Theorem). Given integers n1, . . . , nr there is a number m = R(n1, . . . , nr)
such that for any r-coloring of the edges of Km there exists an i such that 1 ≤ i ≤ r and there
exists a complete Kni monochromatic in color i.

That R(n1, . . . , nr) is the generalized Ramsey Number. For example, R(3, 4) = 9, i.e. 9 is the
minimal m for which any 2-coloring of Km contains a red triangle or a blue K4. Easy exercises:
R(3, 5) = 14, R(3, 6) = 18, R(3, 7) = 23, R(3, 8) = 28

The only non-trivial case known exactly with r = 3 is R(3, 3, 3) = 17. This isn’t that hard to show
and it’s the smallest non-trivial case because any time 2 appears we reduce to r = 2 since the third
color can’t be used at all.

10. Some Bounds

(1) Easy to show: (n− 1)2 < R(n) ≤ 4n

(2) Relatively easy to show and very useful: R(s, t) ≤ R(s− 1, t) + R(s, t− 1)

(3) R(n1, . . . , nc) ≤ R(n1, . . . , nc−2, R(nc−1, nc))

(4) Theorem of Erdös-Szekeres: R(s, t) <
(
s+t−2
t−1

)
. Corollary of (2).

(5) R(n) ≤ 4R(n− 2, n) + 2
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(6) R(n) ≤ R3(6, n) is a non-trivial exercise due to Kiran Kedlaya.

(2) and (3) can be used to prove Ramsey’s Theorem.

11. References

Advanced Combinatorics packet by András Gyárfás (from my class with him in the Budapest
Semesters in Mathematics program)

12. Extensions of Ramsey Numbers

They extend to directed graphs: let R(n) be the smallest number m such that any Km with
singly-directed arcs (also called a tournament) contains an acyclic (also called transitive) n-node
subtournament. For directed graphs, R(n) is computed up to n = 6 and there are sharper bounds
above.

They extend to hypergraphs (where edges can have more than 2 nodes) and you get Rt(n1, . . . , nr)
to be the smallest m such that if the edges of Kt

m are r-colored in any way, then for some i you
have a monochromatic Kt

i in color i.

They extend to infinite graphs. Theorem: Let X be some countably infinite set and color the
elements of X(n) (the subsets of X of size n) in r different colors. Then there exists some infinite
subset M of X such that the size n subsets of M all have the same color.

13. An alternate construction of Ramsey numbers

R(s, t) is the smallest n such that for every graph G with |G| = n either G contains Ks or G
contains Kt. Here G has as vertices the edges of G and connects two if they were adjacent (shared
a vertex) in G. Note that G = G for all graphs. Ramsey used this construction and some set theory
to originally prove his theorem.
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