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Basic Graph Theory

Definition
A graph G is a pair (V,E) where V is a set of vertices,
and E is a set of pairs of points (vi, vj) called edges.

For us |V | will always be finite.

Figure: A graph
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Complete Graphs

The complete graph on n vertices has n vertices and edges
between all pairs of vertices.

K4 K5
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Cycle Graphs

An n-cycle Cn has n vertices forming a regular n-gon and
edges around the perimeter.

C5 C6
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Graph Colorings

Definition
A coloring of a graph is an assignment of colors from a
finite set {c1, . . . , cr} to the edges of the graph.

Figure: A 2-colored graph

We will be interested in colorings which avoid
monochromatic subgraphs. This has no red triangle and no
blue triangle, but last edge will force a monochromatic
triangle.
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Pigeonhole Principle

Proposition (Pigeonhole Principle)
1 If you are placing n+ 1 pigeons into n holes, then some

hole will end up containing at least two pigeons.

2 If you are placing 2n− 1 pigeons into 2 holes then some
hole will end up containing at least n pigeons.

If you have 2n− 1 people at a party then at least n are of
the same gender.

The notion of placing pigeons into 2 holes is exactly the
same as 2-coloring the pigeons.
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Ramsey Theory

Ramsey Theory generalizes the Pigeonhole Principle:

What is the minimum number of guests that must be
invited so that at least n will know each other?

Definition
R(n) is the smallest integer m such that in any 2-coloring of
Km there is a monochromatic Kn.

R(1) = 1 and R(2) = 2: an edge is a monochromatic edge.

Generally: what is the smallest model guaranteed to contain
the submodel I desire?
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Theorem on Friends and Strangers

Theorem (Theorem on Friends and Strangers)

At any party with at least six people either three pairwise
know each other or three are pairwise strangers.

Equivalently: R(3) = 6

Proof.
Here is a 2-coloring of K5 with no monochromatic triangle.

Figure: R(3) ≥ 6
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Theorem on Friends and Strangers

Figure: R(3) ≤ 6

Proof.
A vertex has 5 edges touching it, so three of them are the
same color, say green.

Consider the three vertices those edges connect to.
If any edge is green then we have a green triangle.
So all of these edges must be red, giving a red triangle.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Theorem on Friends and Strangers

Figure: R(3) ≤ 6

Proof.
A vertex has 5 edges touching it, so three of them are the
same color, say green.
Consider the three vertices those edges connect to.

If any edge is green then we have a green triangle.
So all of these edges must be red, giving a red triangle.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Theorem on Friends and Strangers

Figure: R(3) ≤ 6

Proof.
A vertex has 5 edges touching it, so three of them are the
same color, say green.
Consider the three vertices those edges connect to.
If any edge is green then we have a green triangle.

So all of these edges must be red, giving a red triangle.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Theorem on Friends and Strangers

Figure: R(3) ≤ 6

Proof.
A vertex has 5 edges touching it, so three of them are the
same color, say green.
Consider the three vertices those edges connect to.
If any edge is green then we have a green triangle.
So all of these edges must be red, giving a red triangle.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Known and Unknown Ramsey Numbers

R(3) = 6.

R(4) = 18. To show R(4) > 17:

Find a 2-coloring of a K17 without mono K4. Try coloring
(i, j) red if i− j is a square modulo 17 and blue otherwise.

K4 ≤ 18: Any 2-coloring of K18 has a mono K4.

43 ≤ R(5) ≤ 49 and 102 ≤ R(6) ≤ 165 best bounds.

To prove R(5) 6= 43 need to consider all 2-colorings of K43.

There are
(
43
2

)
edges and each has two choices, so number of

colorings is 2(43
2 )≈ 21000. This is a HARD problem.
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Lower Bound on R(n)

Proposition

(n− 1)2 < R(n)

Need to show there exists a coloring of K(n−1)2 without a
monochromatic Kn. Have 4 < R(3) and 9 < R(4).

Partition K(n−1)2 into n− 1 disjoint red Kn−1’s. Color all
remaining edges blue. Clearly no red Kn. A blue Kn would
have n vertices in n− 1 groups so it needs 2 vertices in the
same red group (Pigeonhole Principle), so edge between
them is red not blue!

Constructive methods like this can give polynomial lower
bounds of any fixed degree, but nothing reaching cn.
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same red group (Pigeonhole Principle), so edge between
them is red not blue!

Constructive methods like this can give polynomial lower
bounds of any fixed degree, but nothing reaching cn.
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Upper Bound on R(n)

Proposition

R(n) ≤ 4n

Need to show that in ANY 2-coloring of K4n there is a
monochromatic Kn.

This requires a proof, not an example. There are MUCH
better bounds and they use sophisticated mathematics.

There are automated theorem provers, but Ramsey Theory
proofs need tricks not logic. Computer science will likely not
give better upper bounds than mathematics.

We will focus on constructing lower bound examples.
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Generalizing Ramsey numbers

Definition (Off-Diagonal Ramsey Numbers)

R(s, t) = minimal m such that for any 2-coloring of the
edges of Km

there is a red Ks or a blue Kt. R(n) = R(n, n)

R(2, s) = s for all s ≥ 2: either blue Ks or red edge

R(3, 4) ≤ 9: any K9 has red K3 or blue K4. R(3, 4) > 8:

Figure: R(3, 4) > 8
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A Useful Proposition

Proposition

R(s, t) ≤ R(s− 1, t) +R(s, t− 1),

so Ramsey numbers exist

R(s, t) = R(t, s). n1 = R(s− 1, t), n2 = R(s, t− 1),
n = n1 + n2. Any vertex x in any 2-coloring of Kn has
degree n− 1 = n1 + n2 − 1. There are either n1 red or n2

blue edges coming out of x (pigeonhole principle), switching
red and blue if necessary. Assume the first case.

Red neighbors form a Kn1 , so this graph either has blue Kt

or red Ks−1. With x this makes a red Ks. 2nd case similar.

R(4, 4) ≤ R(3, 4) +R(4, 3) = 9 + 9 = 18. Sharp
R(3, 5) ≤ R(2, 5) +R(3, 4) = 5 + 9 = 14. Sharp
R(3, 4) ≤ R(3, 3) +R(2, 4) = 10. NOT sharp!
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Generalizing Ramsey numbers

Theorem (Ramsey’s Theorem)

Given integers n1, . . . , nr there is a number
m = R(n1, . . . , nr) such that for any r-coloring of the edges
of Km

for some i there is a Kni monochromatic in color i.

Induction proof:
R(n1, . . . , nr) ≤ R(n1, . . . , nr−2, R(nr−1, nr))

R(3, 3, 3) = 17. Only non-trivial R(n1, . . . , nr) known.

R(s, t, 2) = R(s, t) because need to avoid green edge.

30 ≤ R(3, 3, 4) ≤ 31 is next closest to being finished

55 ≤ R(3, 4, 4) ≤ 79
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One further generalization

Definition
R(G1, . . . , Gr) is the smallest m such that for any r-coloring
of the edges of Km

for some i there is a monochromatic Gi

in color i.

R(K3,K3) = R(3) = 6 and R(K3,K4) = R(3, 4) = 9
R(C4, C4, C4) = 11, R(C4, C4,K3) = 12, R(C5, C5, C5) = 17

Our K8 coloring had a yellow C4.

R(G,H) ≥ (χ(G)− 1)(c(H)− 1) + 1 for χ = chromatic
number, c = size of largest connected component

R(Tm,Kn) = (m− 1)(n− 1) + 1 for any tree Tm
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Examples

Early K5 coloring shows R(C4, C4) > 5.

R(K3, C4) > 6 :



y y b b b
y y b b b
y y b b b
b b b y y
b b b y y
b b b y y


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EC Encoding

The adjacency matrix is symmetric,

so we only need to
store lower triangle and can use a single dimensional array.

Shardul Rao’s thesis (1997) attempted to use EC to
construct lower bounds. His encoding uses the above
encoding as well as a permutation to represent the order in
which edges are colored. Contains more information, but is
it useful? Coloring order doesn’t matter.
For this permutation encoding we need an order-based GA.
Rao experimented with three crossovers:

Partially matched cross-over
Order cross-over
Cycle cross-over

A lookup table is used to get values of i and j from given
edge e = (i, j).
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Cycle Cross-over

Insists c[i] = p1[i] or c[i] = p2[i] for all i.

Put c[1] = p1[1]. Find where p2[1] appears in p1. Call this
place i and put c[i] = p1[i]. Find where p2[i] appears in p1.
Call this place j and put c[j] = p1[j]. Continue till p2[x]
appears in the child, i.e. when you’ve reached a cycle
between the parents. Put c[a] = p2[a] for all remaining a.

Example: p1 = (2 3 5 6 4 1 7 8) and p2(1 4 2 3 6 5 8 7)
c = (2 x x x x 1 x x) = (2 x 5 x x 1 x x) and
p1[3] = 5⇒ p2[3] = 2 = p1[1], giving a cycle:
c = (2 4 5 3 6 1 7 8)

Example: p1 = (1 2 3 4 5 6 7 8 9) and p2 = (4 1 2 8 7 6 9 3 5)
c = (1 x x 4 x x x x x) = (1 x 3 4 x x x 8 x)
= (1 2 3 4 x x x 8 x) and p1[2] = 2⇒ p2[2] = 1 = p1[1],
giving a cycle: c = (1 2 3 4 7 6 9 8 5)
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Selection and Mutation

Tournament Selection:

run two tournaments and record
winners and losers. Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only
replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size

Mutation is not explicitly described in the thesis. We can
assume it makes a small random change, say swapping an
edge color. Changing the order doesn’t matter.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Selection and Mutation

Tournament Selection: run two tournaments and record
winners and losers.

Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only
replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size

Mutation is not explicitly described in the thesis. We can
assume it makes a small random change, say swapping an
edge color. Changing the order doesn’t matter.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Selection and Mutation

Tournament Selection: run two tournaments and record
winners and losers. Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only
replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size

Mutation is not explicitly described in the thesis. We can
assume it makes a small random change, say swapping an
edge color. Changing the order doesn’t matter.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Selection and Mutation

Tournament Selection: run two tournaments and record
winners and losers. Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers.

Each generation only
replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size

Mutation is not explicitly described in the thesis. We can
assume it makes a small random change, say swapping an
edge color. Changing the order doesn’t matter.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Selection and Mutation

Tournament Selection: run two tournaments and record
winners and losers. Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only
replaces the worst pair

(steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size

Mutation is not explicitly described in the thesis. We can
assume it makes a small random change, say swapping an
edge color. Changing the order doesn’t matter.



Applying
Genetic

Algorithms
to Ramsey

Theory

David
White

Wesleyan
University

Selection and Mutation

Tournament Selection: run two tournaments and record
winners and losers. Tournament is filled randomly and all
individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only
replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.
Cons: very little exploration, VERY slow convergence, new
parameter of tournament size
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Selection Code

best fitness = -9999
worst fitness = 9999

for i = 0 to tournament size-1 do
get a random j (no repeats allowed)
if fitness[j] > best fitness then

best fitness = fitness[j]
winner = j endif

if fitness[j] < worst fitness then
worst fitness = fitness[j]
loser = j endif

end

Note the random filling of the tournament. Might be better
to bias this towards getting some of the highest and some of
the lowest fitness individuals.
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Fitness Function

We wish to find coloring which has no monochromatic Gi in
color i,

so we should lower the fitness by 1 each time there is
a mono Gi in color i.

We should also lower the fitness by 1 if more colors are used
than some fixed user parameter no of colors. This is all
Rao’s fitness function does.

1 hero is a function which gets the individual with best
fitness when called.

2 The individual we’re working with is p[who], an array.

You could improve on Rao by making a smarter fitness
function. His does not take into account how badly a graph
fails, and it only has the −1 rather than something more
sophisticated.
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Checking for mono Ga

How to check for a monochromatic triangle in color a:

for k = 0 to N − 1 do
if i, j, k are distinct then

if a = color(i, j) = color(i, k) = color(j, k) then
return false

endif
endif

end
return true

Checking for other Ga is similar and easy.
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Implementation

initialize population and set fitness[i] =fv(i) for all i
trial = 0

while true
trial++
if trial ≥ LOOPS then break endif
tournament(t size, p1, c1)
tournament(t size, p2, c2)
make children(p1, p2, c1, c2)
if MUT RATE ≥ 0.0 then mutate(c1), mutate(c2) endif
fitness[c1] =fv(c1), fitness[c2] =fv(c2)
if hero≥ MAX HERO then break endif

end

The mutation code must be a typo because he later claims
mutation rate did matter in experiments. But he does not
show us the data or statistics so we can’t be sure.
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Statistics

There are five parameters that affect performance:

Population size
Mutation rate (unless there was no typo)
Tournament size
Max number of loops allowed
Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover
and each seed value, but he shows no statistics whatsoever.

He couldn’t see the effect of tournament size, population
size, and mutation rate because the majority of solutions
were found in the initial population, BEFORE evolution! So
this “EA” was really just brute force!
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were found in the initial population, BEFORE evolution! So
this “EA” was really just brute force!
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Results

Mutation rate on all good runs was 0.001,

the lowest
possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for R(C4, C4, C4),
R(C4, C4,K3), R(C4,K3,K3), and R(C5, C5, C5). He used
special seed values for these based on prior results.

He found new bounds on never before investigated numbers:
R(C4, C4,K3,K3) ≥ 25 and R(C5, C4,K3) ≥ 13. How much
does this matter?

He found numerous different colorings to prove these, but
one coloring suffices for a proof.
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How to improve on this

Because there is so little exploration, the seed matters a
TON.

This is why the best solutions found were usually
found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a
harder question. Other subgraphs than Cn’s and Kn’s?
Classical R(s, t) and R(n) numbers?
To make Rao’s algorithm better, look into:

Better way to fill the tournament
Better selection method in general to encourage more
exploration. Make it less steady-state.
Actually using mutation
Make the fitness penalty smarter than just −1
Smarter search space with fewer obvious bad colorings
Ask about Ramsey numbers of directed graphs or
hypergraphs.
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Is there any hope?

Will EAs be able to make progress on finding lower bounds
for Ramsey numbers?

Definitely not if they are basically
doing brute force!

Currently, the best lower bounds mathematics has come up
with are non-constructive. They are proven to exist using
probability theory. But just because humans can’t find
clever colorings doesn’t mean computers can’t.

If nothing else this is a good hard problem like TSP to test
a new EA implementation on. It’s a great “Humies”
problem because humans have basically given up on finding
optimal colorings. Just waiting for a break-through.

No one has attacked Ramsey theory using EAs in even a
remotely clever way. Plenty of room for improvement. We
finish with some ideas for how to do this.
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Currently, the best lower bounds mathematics has come up
with are non-constructive. They are proven to exist using
probability theory. But just because humans can’t find
clever colorings doesn’t mean computers can’t.

If nothing else this is a good hard problem like TSP to test
a new EA implementation on. It’s a great “Humies”
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Other attacks

Geoffrey Exoo (1998) used simulated annealing.

Went from
random search to Tabu search. The annealing was very fast,
and he didn’t play with that parameter, so there is room for
improvement. But he improved bounds on R(5, t) for
9 ≤ t ≤ 15

Try the “evolving non-determinism” algorithm from sorting
networks. This found solutions lacking symmetry which the
best humans missed.

Be greedy but smart: fill in as many edges in color 1 as
possible first without monochromatic G1. While doing so,
try to space out your edges to break up uncolored Kn’s

Use a hierarchical GA: solve smaller instances of the
problem and then combine solutions. If R(G1, G2) = n avoid
an uncolored Kn when you have only 2 colors left.
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