
THE NORMALIZATION THEOREM

DAVID WHITE

1. Preliminaries

Recall the lambda calculus L ::= x|LL|λx.L. Recall how redexes (λx.M)N get normalized to
M [N/x]. A normal form is one without a redex subterm, i.e. one which cannot be beta reduced.
The following examples are for the untyped lambda calculus.

An example of a non-normalizing term is Ω = (λx.xx)(λx.xx). It is not in normal form but
beta-reduces to itself.

A strongly normalizing term is one such that any reduction sequence terminates (in a normal form).
An example is a term which is already in normal form, e.g. λx.x. Another example is a simple
redex (λx.xy)z.

A weakly normalizing term is one such that there is a reduction sequence which terminates in
a normal form. An example (from the slides) which is weakly but not strongly normalizing is
(λxy.y)Ω. This is because the lazy reduction realizes there is no x into which I should substitute
the Ω in y so this reduces to λy.y. But trying to evaluate the Ω will never yield a result. The lazy
way to beta-reduce is to reduce the left-most, outermost redex. This always works if the term is
weakly normalizing. The eager way is to do the outermost redex only when the right hand side is a
value (call-by-value). This does not always find the reduction of a weakly normalizing term.

Rewriting can be non-deterministic since you can choose different ways to reduce. Here is an
example. Consider (λxyz.yz)aΩ. As in the above example, lazy evaluation realizes the Ω doesn’t
matter and returns (λyz.yz)a, but eager evaluation gives (λxyz.yz)aΩ because it tries to reduce
Ω and gets Ω again. This is because it looks at the outermost redex (so can’t touch a) and can
only reduce when the term to which an abstraction is being applied (in this case Ω) is a VALUE,
which Ω is not. So it tries to reduce Ω. Church-Rosser says there is a term N which both of these
terms beta-reduce to. Indeed, (λyz.yz)a→β

1 λz.az and we get a normal form. On the other hand,
(λxyz.yz)aΩ→β

∗ λz.az using the two lazy steps as above. So both paths of reduction result in the
same normal term but the one which started with eager evaluation took longer.

Here is the picture for Church-Rosser, which says given M,N1, and N2 then N exists:

N1

 B
BB

BB
BB

B

M

==||||||||

!!B
BB

BB
BB

B N

N2

>>||||||||

Date: April 27, 2010.

1

2 DAVID WHITE

2. Typed Lambda Calculus

To get rid of the self-reference we introduced the typed lambda calculus. This does not allow
self-reference. To have tu you must know that if u has type α (denoted uα) then t has type
α→ β.

types::= c|α→ α|α ∗ α

v ::= xα|tα→βuα|λxα.tβ|(tα, tβ)

The types above are α, β, α→ β, and α ∗ β.

We have rules to deduce the type of a term based on the types of its subterms:

[x : α]
.
.
.
t:β

(λx.t):α→β

f :α→β u:α
fu:β

a:α b:β
(a,b):α∗β

u:α∗β
π1u:α

u:α∗β
π2u:β

You can also use the Curry Howard Isomorphism to take propositions to terms and proofs to types.
Here a ∧ b goes to a ∗ b, a→ b goes to a→ b, and a goes to a.

CH(A) = a : A

CH(B
A→B) = λx : A.CH(B)

CH(A→B A
B) = CH(A→ B)CH(A)

CH(A B
A∧B) = (CH(A),CH(B))

CH(A∧BA) = π1CH(A ∧B)

CH(A∧BB) = π2CH(A ∧B)

3. Weak Normalization for Simply Typed Lambda Calc

Note: if every term has a reduction to a normal form then we have proven that the question of
whether two terms are equal is decidable.

The naive proof idea is to induct on terms, but you can have simple terms with arbitrarily compli-
cated type. The idea to induct on types similarly fails. So we need the notion of degree:

For a type, ∂(T) = 1 if T is atomic, ∂(U ∗ V) = ∂(U → V) = max(∂(U), ∂(V)) + 1

For a redex, ∂(π1(u, v)) = ∂(π2(u, v)) = ∂(U ∗ V) while ∂((λx.v)u) = ∂(U → V)

For a term t we say the degree is d(t) = sup{∂(r) | t contains redex r}.

Easy facts:

(1) ∂(r) ≤ d(r) because r contains itself

(2) A redex of type T has ∂(r) > ∂(T) because ∂(U ∗ V) > ∂(U), ∂(V) and ∂(U → V) >
∂(U), ∂(V)

(3) d(t[u/x]) ≤ max(d(t), d(u), ∂(X)) because t[u/x] contains redexes of t and u (wherever
x occurred) as well as possibly new redexes (e.g. π1(x) → π1(u) = π1(u′, u′′) = u′ or

THE NORMALIZATION THEOREM 3

xv → uv = (λy.u′)v) which are of the form above for redexes and hence are bounded by
∂(X).

(4) t → u by replacing r by c implies d(u) ≤ d(t) because non-r redexes survive, redexes of c
are simpler than those of r by the above (d(c) ≤ ∂(X) < d(r)), and new redexes with same
inequality.

Lemma 1. Suppose ∂(r) = n is maximal in t. Then converting r to c gives strictly fewer redexes
of degree n since the only redexes in r which are duplicated have degree < n and since r is replaced
by smaller degree redexes.

Theorem 1. All terms are weakly normalzing (WN)

Proof. Let µ(t) = (n,m) where n = d(t) and m is the number of redexes of degree m. We proceed
by a double induction (on n and m). In the base case, n = 0 and the term is normal. We now
begin the second induction. Assuming P (k) holds for all k < n we must show P (n), i.e. for all m,
µ(t) = (n,m)⇒ t is weakly normalizing (WN). P (n) is equivalent to ∀m Q(n,m) where Q(n,m) is
that µ(t) = (n,m)⇒ t is WN. We proceed by induction on m. If m = 0 then there are no redexes
of degree n, so d(t) < n. Thus, Q(n, 0) is implied by ∀m Q(d(t),m) which is implied by P (d(t))
which we assumed.

Now let µ(t) = (n,m) and assume Q(k, `) holds for all k < n and for all ` or for k = n and all
` < m. So all terms with µ(t′) = (k, `) for such k, ` are WN. We must show t is WN. Choose a redex
of t of maximal degree and apply the reduction (t → u) from the lemma above. The lemma tells
us that we now have strictly fewer redexes of degree n (i.e. we have ` < m). Thus, we’ve reduced
Q(n,m) for t to Q(n, `) for u, which we assumed. So the one-step reduction t→ u composed with
this chain of reductions shows t is WN.

�

4. Strong Normalization for Simply Typed Lambda Calc

Lemma 2. t is strongly normalizing (SN) iff there is a number ν(t) bounding the length of every
normalization sequence beginning with t

Proof. If ν(t) exists then clearly all chains halt so t is SN. Conversely, consider the collection of
all chains starting at t. These can be arranged into a tree which is finitely branching because each
term has only finitely many subterms. Since t is SN each branch terminates, so Konig’s Lemma
tells us the tree is finite. Thus, letting ν(t) be the number of vertices of the tree plus 1 completes
the proof. �

Theorem 2. All terms are strongly normalizing (SN)

Note that this theorem and Church-Rosser imply the simply typed lambda calculus (STLC) is
consistent, i.e. you can’t prove x = y if x and y are distinct. This is because if x→∗ y then x = y
can be derived, so x ≡β y implies x = y =common ancestor. Conversely, if x = y then reducing
both to normal form and looking at Church-Rosser (normal forms are unique) proves x ≡β y.

Our proof will generalize to the case when the system is F (chapter 14) rather than the simply
typed lambda calculus. It also holds for Godel’s system T which includes the integers. Thus, this
theorem implies the axioms of Z are consistent, violating Godel’s Second Incompleteness Theorem
unless it’s proven using something not included in Peano’s Axioms. For this reason we introduce a
stronger form of induction based on the property of reduciblity (R).

4 DAVID WHITE

(*) If t is atomic then t ∈ R if t is SN. If t : U ∗ V then t ∈ R if π1(t), π2(t) ∈ R. If t : U → V then
t ∈ R if for all u ∈ R of type U , tu ∈ R of type V .

Note that this last case contains information not obtainable in Peano Arithmetic because it has a
universal quantifier which can’t be done by induction (so it’s not an arithmetic formula in t and
U → V).

Define a neutral term to be one which is not of the form (a, b) or λx.v. We will prove three
conditions hold on all terms by induction on the type:

(1) t ∈ R implies t is SN

(2) t ∈ R and t→∗ t′ implies t′ ∈ R

(3) If t neutral and every time we convert a redex we get t′ ∈ R then t ∈ R.

For atomic t, (1) is trivial. (2) holds because t is SN so all t′ are SN. For (3) we must show t is SN,
so take any reduction step. You end up at an SN t′ so set ν(t) = ν(t′) + 1 and you’ve got t SN by
the lemma.

For t : U ∗ V , (1) holds because π1(t), π2(t) ∈ R and so by induction (U and V are subtypes of
U ∗ V), both are SN and clearly ν(t) ≤ ν(πi(t)) because we can apply πi to a reduction chain for
t. So ν(t) is finite and t is SN. (2) holds because t ∈ R implies πi(t) ∈ R. So t →∗ t′ implies
πi(t) →∗ πi(t′) and by induction πi(t′) ∈ R. So t′ ∈ R. For (3) note that it IS possible to have
t : U ∗ V and also have t neutral because t need not be reduced (so it could be ab where b : B
and a : B → U ∗ V). Take any step πi(t) → πi(t′) (all steps from πi(t) are of this form because
πi(t) is not a redex because t is not a pair). Then there is a t → t′ and so by hypothesis t′ is
reducible. Thus, πi(t′) is reducible and πi(t) is neutral. By induction, πi(t) is reducible so by (*) t
is reducible.

For t : U → V , (1) holds because if x : U is a variable then x is neutral so induction and (3) tells
us x is reducible. Thus, tx is reducible and ν(t) ≤ ν(tx) because we could apply a normalization
chain for t to x and get one for tx. So ν(t) is finite and t is SN. (2) holds because if t→∗ t′, t ∈ R,
and u : U ∈ R then tu ∈ R and tu→∗ t′u. So by induction (on type V) t′u ∈ R for all u : U ∈ R.
So by (*), t′ ∈ R. For (3) let u : U ∈ R and show tu ∈ R so that by (*) we’re done. There are two
cases because tu cannot be a redex (t is not λx.v):

tu→ t′u via t→ t′ implies t′ ∈ R so t′u ∈ R.

tu → tu′ via u → u′ implies u′ ∈ R by the induction hypothesis (2) on U so ν(u′) < ν(u). Thus,
the induction hypothesis for u′ tells us tu′ ∈ R.

Either way tu converts into reducible terms only, so the induction hypothesis (3) tells us tu ∈ R
for all u.

Lemma 3. u, v ∈ R⇒ (u, v) ∈ R

Proof. We’ll induct on ν(u) + ν(v) and show π1(u, v) ∈ R. It could reduce to u ∈ R. Or it
could reduce to π1(u′, v) with u → u′. Then (2) tells us u′ ∈ R so ν(u′) < ν(u) and hence
ν(π1(u′, v)) < ν(u) + ν(v) is in R by induction. Finally, it could reduce to π1(u, v′) but this is
similar. So π1(u, v) converts to reducible terms only and by (3) must be reducible. Similarly,
π2(u, v) ∈ R. So (u, v) ∈ R. �

Lemma 4. If u : U ∈ R and v[u/x] ∈ R then λx.v ∈ R

Proof. We’ll induct on ν(u) + ν(v) and show (λx.v)u ∈ R. It could reduce to v[u/x] ∈ R. Or
it could reduce to (λx.v′)u with v → v′. Then (2) tells us v′ ∈ R so ν(v′) < ν(v) and hence

THE NORMALIZATION THEOREM 5

ν((λx.v′)u) < ν(u) + ν(v) is in R by induction. Finally, it could reduce to (λx.v)u′ but this is
similar. So (λx.v)u converts to reducible terms only and by (3) must be reducible for all u. So
λx.v ∈ R. �

Proposition 1. For a term t with free variables contained in x1 : U1, . . . , xn : Un, if u1 : U1, . . . , un :
Un are reducible then t[u1/x1, . . . , un/xn] ∈ R.

Proof. Induct on t. If t = xi we have a tautology. If t = πi(w) then by induction w[u/x] ∈ R.
So πi(w[u/x]) = t[u/x] ∈ R. If t = (v, w) then v[u/x], w[u/x] ∈ R. The first lemma above says
t[u/x] = (v[u/x], w[u/x]) ∈ R.

If t = wv then w[u/x], v[u/x] ∈ R so t[u/x] = w[u/x](v[u/x]) ∈ R. If t = λy.w has type V → W
then w[u/x, v/y] ∈ R for all v : V . The second lemma says t[u/x] = λy.(w[u/x]) ∈ R. �

To prove the theorem, let ui = xi. Then for any term t, t = t[x/x] ∈ R.

5. Proof of Konig’s Lemma

Given a finitely branching tree T with no infinite branch, we prove T is finite. Suppose T is infinite
and let v be a vertex. Then v has paths to all vertices in T , but v has only finitely many neighbors.
By the pigeonhole principle, one of the neighbors of v (call it v2) must connect to infinitely many
vertices without going through v. The same logic holds for v2 and gives a vertex v3 which connects
to infinitely many others without going through v1 or v2. Continue in this way. We now have an
infinite branch v, v2, v3, . . . and it has no repeated vertex because of how it was constructed. So
this path contradicts the hypotheses on T .

6. Some Logic

Various systems of typed lambda calculus including the simply typed lambda calculus, Jean-Yves
Girard’s System F, and Thierry Coquand’s calculus of constructions are strongly normalizing.

A lambda calculus system with the normalization property can be viewed as a programming lan-
guage with the property that every program terminates. Although this is a very useful property, it
has a drawback: a programming language with the normalization property cannot be Turing com-
plete. That means that there are computable functions that cannot be defined in the simply typed
lambda calculus (and similarly there are computable functions that cannot be computed in the
calculus of constructions or system F). As an example, it is impossible to define the normalization
algorithms of any of the calculi cited above within the same calculus.

A system Turing Complete if and only if such system can simulate a single taped Turing Machine.
So it needs recursion, which we’ve thrown out of the simply typed lambda calculus.

Various typed lambda calculi have been studied: The types of the simply typed lambda calculus
are only base types (or type variables) and function types σ → τ . System T extends the simply
typed lambda calculus with a type of natural numbers and higher order primitive recursion; in
this system all functions provably recursive in Peano arithmetic are definable. System F allows
polymorphism by using universal quantification over all types; from a logical perspective it can
describe all functions which are provably total in second-order logic. Lambda calculi with dependent
types are the base of intuitionistic type theory

6 DAVID WHITE

Theorem 3 (Godel’s First Incompleteness Theorem). Any effectively generated theory capable of
expressing elementary arithmetic cannot be both consistent and complete. In particular, for any
consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is
an arithmetical statement that is true, but not provable in the theory

Theorem 4 (Godel’s Second Incompleteness Theorem). For any formal effectively generated theory
T including basic arithmetical truths and also certain truths about formal provability, T includes a
statement of its own consistency if and only if T is inconsistent.

Peano’s Axioms:

The first four axioms describe the equality relation. The next four deal with 0 and the successor
function S. The last is induction.

(1) For every natural number x, x = x. That is, equality is reflexive.

(2) For all natural numbers x and y, if x = y, then y = x. That is, equality is symmetric.

(3) For all natural numbers x, y and z, if x = y and y = z, then x = z. That is, equality is
transitive.

(4) For all a and b, if a is a natural number and a = b, then b is also a natural number. That
is, the natural numbers are closed under equality.

(5) 0 is a natural number.

(6) For every natural number n, S(n) is a natural number.

(7) For every natural number n, S(n) = 0 is False. That is, there is no natural number whose
successor is 0.

(8) For all natural numbers m and n, if S(m) = S(n), then m = n. That is, S is an injection.

(9) If K is a set such that 0 is in K and for every natural number n, if n is in K, then S(n) is
in K, then K contains every natural number.

7. Generalizing the theory

All of this theory generalizes to the case of rewrite systems, which consist of a set of objects and
a set of relations on how to transform those objects. These systems do not provide an algorithm
for changing one term to another; they give a set of possible rule applications. You can also study
abstract rewriting systems (ARS) which generalize the β-reduction we studied earlier.

Logic is an example of such a system with not-not-elim, DeMorgan (¬(A ∨ B) → ¬A ∧ ¬B), and
distributivity ((A ∧B) ∨ C → (A ∨ C) ∧ (B ∨ C).

An object x ∈ A is called reducible if there exist some other y ∈ A and x → y; otherwise it is
called irreducible or a normal form. An object y is called a normal form of x if x ∗→ y, and y is
irreducible. If x has a unique normal form, then this is usually denoted with x ↓.

An ARS has the Church-Rosser Property if and only if x ∗↔ y implies x ↓ y. In words, the Church-
Rosser propery means that the reflexive transitive symmetric closure is contained in the joinability
relation.

An abstract rewriting system is said to be terminating or noetherian if there is no infinite chain
x0 → x1 → x2 → · · ·

