BOUSFIELD LOCALIZATION OF MONOIDAL MODEL CATEGORIES

DAVID WHITE

1. OUTLINE

(1) Localization
(2) Categories
(3) Localization of Categories
e My research in the context of model categories, sometimes the category Spectra
e apply algebraic ideas and methods, replacing algebraic concepts by their categorical analogs.

e need the right definition and proofs in algebra, then lift the proofs.

Alg. Top | ring-objects | derived category qual talk thesis ‘ today ‘
Algebra Rings R-mod homological dimension | ideals ‘ localization ‘

2. LOCALIZATION

Studying an algebraic object “at” a prime, b/c it’s easier, e.g. solving eqn’s mod p

Piecing these together (“local-to-global question”), e.g. Chinese Remainder Thm. HARD
(obstruction theory)

In algebra, localization is a systematic method of adding multiplicative inverses to a ring. Given
commutative R and S C R, construct some ring S~!'R and ring homomorphism j : R — S™!R,
such that the image of S consists of units (invertible elements) in S~™'R. Make S~ R the ‘smallest’
ring with this property, i.e. make it satisfy a universal property: the ring homomorphism
j: R — ST'R maps every element of S to a unit in S™'R, and if f : R — T is some other ring
homomorphism which maps every element of S to a unit in T, then there exists a unique ring
homomorphism g : S~'R — T such that f = g o j.

Example: If R =Z and S = Z — {0} then S"!R=Q

Suppose S C R is a multiplicative set, i.e. 1isin S and for s and t in S we also have st € S. On
R x S define an equivalence relation ~ by setting (1, s1) ~ (r2, s2) iff there exists ¢ € S such that
t(r1s2 — r2sl) = 0. Think of the equivalence class of (r,s) as the “fraction” r/s and, using this
intuition, the set of equivalence classes S~'R can be turned into a ring with operations that look
identical to those of elementary algebra: r1/s1+712/s2 = (rls2+1r2sl)/sls2 and (r1/s1)(r2/s2) =
r1r2/s1s2. The map j : R — S™'R which maps r to the equivalence class of (r,1) is then a ring
homomorphism.

S~LR satisfies the universal property because given f define g(r/s) = f(r)f(s)~*. This is well
defined because r1/s1 = r2/s2 implies 2(s2r1 —r2s1) = 0 so f(s2r1) = f(r2s1) so f(r1)f(s1)~! =
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f(r2)f(s2)~L. This g is a ring homomorphism because the operations on S~!R were defined with
this in mind (they work just like in Q). Also, g(j(r)) = g(r/1) = f(r)f(1) = f(r).

Examples:

(1) f R =kisafieldand 0 € S then S~'R = k because all elements in S were already invertible.
If 0 € S then 0 becomes a unit, so 0+ 0~! =1, proving 1 = 0 and so S~'R = {0}.

(2) Let p a prime ideal, so R — p is a multiplicative system and the corresponding localization
is denoted R,. The unique maximal ideal is then p, so R, is a local ring. From the point of
view of the spectrum of a ring, the primes are the points of a ring, and thus localization
studies a ring at just one point.

(3) If R = K[X] is the polynomial ring and S = {X} then the localization produces the ring
of Laurent polynomials K[X, X ~!]. In this case, localization corresponds to the embedding

U — A', where A! is the affine line and U is its Zariski open subset which is the complement
of 0.

The ring homomorphism R — S~!R is injective if and only if S does not contain any zero divisors.
We see examples above where this holds and where it fails.

I’ll define categories later, but before that I need to let you in on a secret. This is NOT the right
definition of localization (to a category theorist). Categories don’t have an operation, so what does
“multiplicative inverse” mean?

Another way to think about localization of rings is as formally inverting maps. In particular,
to invert s € S you take the ring generated by R and s~!. Equivalently, simply insist that the

multiplication by s map us : R — R be invertible.

Proposition 1. Suppose R, is a ring containing s on which s is an isomorphism. Further, suppose
R, is universal with respect to this property, i.e. there is a unique ring homomorphism
i: R — Ry and for any f : R — T with pus : T — T an isomorphism, there ezists a unique
g: R, — T such that goi = f. Then R, = s~ 'R.

Proof. First, s 'R contains s and has js an isomorphism (it’s inverse if p,-1. Thus, the map
j: R — s7!R yields a unique map g : R, — s 'R such that g oi = j. Next, R, is a ring where s
is invertible because p; (1) s = puz (1) - us(1) = (us' o us)(1) = 1. So the universal property of
localization implies there’s a unique map h : s 'R — R, such that hoj = i:

, J

7
R, —’~ S 'R ~R,
The bottom composition must be the identity on R, because the two triangles are the same. This
proves h o g = idg,. Draw a similar picture to prove g o h is the identity on S™!R. g
We can use this alternate characterization of localization to generalize localization to modules, since
Ws acts on any R-module M.
Going off this idea, let’s say M is S-local if pus : M — M is an isomorphism for all s € S.

A map f: M — N is an S-local equivalence if f*: Hom(N,T) — Hom(M,T) is an isomorphism
for all S-local T'.

Note: f* is like the S-localization of f, so an S-equivalence is one which goes to an iso after
S-localization
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Proposition 2. j: R — S7'R is an S-equivalence and S™'R is S-local.

Proof. We already proved S~!R is S-local. Let T be S-local. Then Hom(S™'R,T) — Hom(R,T) =
T sends f to fojto (foyj)(1),ie. to f(1/1). Thisis 1-1 because if f(1g-15) = 0 then f must be
the zero map. This is a homomorphism because (f+¢)(1) = f(1)+g(1) and (f x g)(1) = f(1)g(1).
This is onto because for any ¢t € T' we simply define f to take 1/1 to t. We needed T to be S-local
to even form Hom(S™!R, T), i.e. for these maps to be well-defined. O

R-Mod: Let S a multiplicatively closed subset of R. Then S™'M = M x S/ ~ where (m, s) ~ (n,t)
if there is u € S such that u(sn —tm) = 0.

Universal Property: There is a module homomorphism j : M — S~'M s.t. for any S-local
T with M — T there exists a unique module homomorphism S~'M — T making the triangle
commute. Note: S™'M = M ®p S~'R, by the very definition of “extension of scalars.”

3. CATEGORIES

Category comprises “objects” linked by “arrows”. Two basic properties: the ability to compose
arrows and the existence of an identity arrow for each object. The objects and arrows may be
abstract entities of any kind, so category theory is a fundamental and abstract way to describe
all kinds of mathematical entities and their relationships, independent of what the objects
and arrows represent.

A category C consists of
e a class ob(C) of objects

e a class hom(C) of morphisms (arrows) between the objects. Each f has a unique source
object a and target object b in ob(C). Write f : a — b. Write C(a,b) to denote the class of
all morphisms from a to b.

e for every three objects a, b and ¢, a binary operation C(a,b) x C(b,c) — C(a,c) called
composition of morphisms: (f,g) — go f

Satisfying the axioms:
e (associativity) ho(gof) = (hog)of

e (identity) for every object x, there exists a morphism 1, :  — x called the identity mor-
phism for x, such that for every morphism f : a — b, we have 1yof = f = fol,.

Examples:
e Set, the category of sets and set functions. Isomorphisms are bijections.
e Grp, the category of groups and group homomorphisms. Isomorphisms.
e AD, the category of abelian groups and group homomorphisms. Isomorphisms.
e CRing, the category of commutative rings and ring homomorphisms
e R-Mod, the category of R-modules and module homomorphisms
e Top, category of topological spaces and continuous maps. Homeomorphisms

e Top,, category of topological spaces with a distinguished choice of basepoint and continuous
basepoint-preserving maps. Homeomorphisms
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e Banach spaces and bounded linear maps...but no localization here because no operation.
e Graphs and graph homomorphisms.
An isomorphism is a morphism f : a — bs.t. there exists g : b — a and fog = 13, gof = 1,.

Morphisms preserve structure of objects. The fundamental observation is need to un-
derstand maps to understand objects. The “maps between categories” are functors, i.e.
F : C — D which associates to each object X € C' an object F(X) € D and associates to each
morphism f: X — Y € C a morphism F(f): F(X) — F(Y) € D such that

e [(idx) = idp(x) for every object X € C

e F(go f) = F(g) o F(f) for all morphisms f : X — Y and g : Y — Z. Note that a
contravariant functor has F'(go f) = F(f) o F(g).

Functors preserve isomorphisms because F'f o Fg = F(fog) = F(1) = 1pp and Fgo Ff =
F(go f) =F(la) = 1ra.
Examples

e Forgetful functor: Grp— Set.

e Free functor: Set— Grp. Or free-abelian functor from Set— Ab

e Abelianization: Grp— Ab.

4. LOCALIZATION OF CATEGORIES
Think of localization as “formally inverting maps,” sending a class of morphisms into isomophisms.
Example: C is Top, and § is the class of homotopy equivalences (i.e. f: X — Y s.t. there exists
g:Y = X and fog~ 1y and go f ~ 1x). Then C[S™!] is HoC the category of topological spaces
up to homotopy equivalence. Another example is the definition of a derived category, inverting
quasi-isomorphisms.

Universal Property: Localization in categories gives a functor F : C — C[S™!] universal w.r.t.
the property that it takes s € S to an isomorphism.

Just like you have to generate using R and s~! in rings, you need to formally add all composites
which use the new morphisms. So now you could have an isomorphism {a «— ¢ — e < e---¢ — b},
call it a zigzag.

To construct C[S™!] we want to allow morphisms to be equivalence classes of zigzags, i.e. C[S™!](a,b) =
{a+ o — e« o---0— b}/ ~. Sadly, this is a proper class NOT A SET so we can’t do equiv-
alence relations. It worked above with Top,, and it will work again if we simply generalize that
example. This leads to the notion of a Model Category, i.e. a category M along with three
classes of morphisms called weak equivalences (W), fibrations (F), and cofibrations (C), satisfying
some complicated axioms. It’s the most general place you can do homotopy theory. What
model categories are good for is doing this process and getting homotopy categories, plus doing
constructions at the point-set level which you know will carry over to the homotopy level.

For topological spaces, I is Serre fibrations, W is weak homotopy equivalences, and C' is harder to
describe, but is determined by the other two. It’s not easy to get a flavor for what F and C are
in general, but W is the class you're going to invert, so it’s always your choice of “homotopy
equivalence.” On the category Set there are 9 valid choices for W, F, C which give different model
category structures. In one, C are injections and F' are surjections. In another that’s switched.
The point is: it gets pretty crazy.
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Ok, so we know why we care about model categories. The problem is that the localization above
takes you out of the category M you’d been working in. It’s somehow not of the same flavor as
the ring localizations above, mainly because S~'R was still a ring. What if we want to study a
space or a spectrum localized at p? How can we reduce studying m, to a single prime using the
localization above? The answer is: you can’t. This is why we have Bousfield Localization. The
idea here is to add to the class of weak equivalences in a model category, knowing that these
will BECOME isomorphisms in the homotopy category. So suppose we have a class S of maps we’d
like to turn into weak equivalences.

Following Prop 2, define M € M to be S-local if M is fibrant and for all s : X — Y € &,
s*¥ T MY, M) - M(X, M) is a weak equivalence. This s* is just like mult by s.

An object M is fibrant if the map M — x* is a fibration (here * is the terminal object).

A map f: A— B is an S-local equivalence if for all S-local M, f*: M(B,M) — M(A, M) is a
weak-equivalence.

The (left) Bousfield localization of M w.r.t. S is a new model category structure on M with
the same cofibrations as M and with weak equivalences equal to S-local equivalences. Denote this
model structure M. Note that weak equivalences of M are still weak equivalences, but now there
are more of them.

w.e.(M) C w.e.(Mp)
cof(M) = cof(Mr)
fib(M) > fib(Mp)

The identity functor gives a Quillen adjoint pair (i.e. a functor which preserves the model category
structure):

1: M & My, : 1. Fibrant X go via weak equivalence to LX, the L-locals (analogs of ST1R.

F : HoM & HoM;p, : U and F takes the images in HoM of maps in § into isomorphisms in
HoMy,, and My, is the smallest model category with this property, i.e. if there’s another N then
we get a unique left Quillen functor: My — N.

It’s not that surprising that localization in algebra is a special case of this, since we defined it in
complete analogy. What is amazing is that completion in algebra is also a special case. Algebraic
geometers often need to localize and then complete, and they are unrelated operations. In algebraic
topology the situation is often far more complicated than that for algebra, but in this one case it’s
simpler. Completion often takes the form in algebra of an inverse limit. There has to be a topology
running around in order for complete to make sense (Cauchy sequences converge).

5. MYy WORK

To really generalize algebra, you need a notion of a ring in a category. A category is said to be
monoidal if there is a bifunctor ® : C' x C'— C which is associative (®(® x 1) = ®(1 x ®) and
has a unit object e along with A\; :e®a — a and p, : a ® e — a s.t.

a®(e®c) & (a®e)®c

LA




6 DAVID WHITE

You also need coherence diagrams for 4-fold associativity. A ring object R € C has u: ROR — R
which is associative and n: e — R s.t.

exc 1 c®c cRe

N

C

My task: find conditions on M and on the functor L (equiv: on the class &) such that a commuta-
tive ring object R € M goes to a commutative ring object in LR € LsM. We know already that
Ho(R) — Ho(LR), but not on the level of model categories. This really comes down to understand-
ing those functors F' and U from before, and using the fact that they are derived functors of much
nicer functors. It also involves proving LsM is monoidal, and that the category of (commutative)
ring objects forms a model category.
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