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1. Abstract

Abstract: In my last GSS talk I discussed monoidal model categories, operads, and placing model structures
on algebras over an operad. This lets you do algebra in a model category in a very general way. One thing
people in algebra like to do is localization. Of course, localization of a category is already intrinsically tied
to the story of model categories, since the whole point of a model category is to allow you to invert the
weak equivalences. But what if you want to invert a map which is not a weak equivalence? Can you find
a new model structure where this map is a weak equivalence? The answer to this question (and the process
of moving from the old model structure to the new one) is called Bousfield Localization. I’ll motivate this
concept and then discuss my recent work on when Bousfield Localization preserves these model structures
on algebras over operads discussed last time. Most likely I’ll restrict attention entirely to commutative
monoids and try to give lots of examples and motivation.

2. Review of last GSS talk

A model category M is the most general place one can do homotopy theory. They solve the following
problem: given a category and a class of maps W to invert (e.g. homotopy equivalences), when can we
find a new category Ho(M) and a universal mapM→ Ho(M) takingW into the isomorphisms? Note that
universality implies the objects of Ho(M) are the same as the objects ofM, but if we pass to isomorphism
classes more objects will be identified than by isomorphisms inM.

To actually construct Ho(M) requires two other classes of maps: cofibrations Q are like gluing on cells, and
it lets you build complicated objects from simple ones. If you think of Q as monomorphisms that’s fine.
Fibrations F are like covering spaces, or fiber bundles. It lets you take quotients.

Examples of model categories:

(1) Top

(2) sSet (like simplicial complexes)

(3) Spectra (Xn) used in stable homotopy theory. There are many structures here, e.g. Symmetric
Spectra, S-modules, orthogonal spectra, G-spectra

(4) Ch(R) - this leads to Andre-Quillen cohomology, for which Quillen won the Fields

(5) DGA (graded algebra equipped with a map d : A → A which is degree −1 and has d(a · b) =

(da) · b + (−1)|a|a · (db))

(6) StMod - Daniel researched this

(7) EnlargedSchemes - used in Voevodsky’s proof of Milnor Conjecture, won Fields
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Quillen coined the phrase ”homotopical algebra” and used it to mean ”the study of model categories,” though
in his case this usually entailed Ch(R) and the derived category D(R).

A monoidal category is one with a bifunctor ⊗ : C × C → C which is associative and has a unit S . A
monoid R ∈ C has µ : R ⊗ R→ R associative and η : S → R with

R ⊗ S
η //

ρ
$$IIIIIIIIII R ⊗ R

µ

��

S ⊗ R
ηoo

λ
zzuuuuuuuuuu

R

Think about the category of rings. We have η : Z → R for any R, and that picks out the identity element in
R via the image of 1. Think of µ as taking (a, b) 7→ a · b. A commutative monoid is a monoid along with a
twist isomorphism τ : R ⊗ R→ R ⊗ R which commutes with µ, i.e. a · b = b · a.

We can restrict focus to the subcategory of monoids in C. Call this Mon(C). It’s objects are monoids and its
morphisms are monoid homomorphisms, i.e. f : R→ R′ such that f ◦µ = µ ◦ f . Passage from C to Mon(C)
is just like passage from S et to Group. It’s a passage that we have to make in order to “do algebra” in C.
Just having products on the category is not enough without having morphisms containing the information
of multiplication on monoids R. Similarly, let CMon(C) be commutative monoids in C. You can get much
more general algebraic structure via operads.

3. Bousfield Localization

So that’s one way to ”do algebra” in a model category, and we studied it last time. What if we want to
”do localization” in the (2-) category of model categories? The localization which comes for free for model
categories (M → Ho(M)) is unsatisfactory because it takes us out of the category of model categories.
Also, the class of maps you’re allowed to invert is fixed at the start. What if I want to invert some map
f <W? Because the homotopy category is nice (admits a calculus of fractions), we can do:

M

��

// ?????

��
Ho(M) // Ho(M)[ f −1]

We’d like a model category L fM which actually sits above Ho(M)[ f −1]. Because all three categories above
have the same objects, its objects are determined. It’s morphisms will be the same as those inM, but we
want f to become an isomorphism in Ho(M)[ f −1] so we need it to be a weak equivalences in L fM. So this
category must have a different model structure, whereW′ = 〈 f ∪W〉 and clearlyW ⊂ W′. You can’t
change onlyW because it’ll screw up the axioms. We want to keep the cofibrations fixed so we can build
things out of them and have the two model structures related, so we have to shrink the fibrations: F ⊃ F ′.
Bousfield’s Theorem (1978) says you can do this and you still get a model structure, but you have to be
careful with how you generateW′ from f .

Formally, define X ∈ M to be f -local if X is fibrant and f ∗ : Map(B, X)→ Map(A, X) is a weak equivalence,
where f : A → B. These look like trivial objects to the eyes of f . Define g : C → D to be an f -local
equivalence if for all f -local X, Map(D,M) → Map(C,M) is a weak equivalence. This follows the idea in
algebra, where a module M is S -local if µs is an isomorphism for all s ∈ S . A map is an S -equivalence if
applying Hom(−,M) gives an isomorphism for all S -local M. It turns out R → R[S −1] is an S -equivalence
to an S -local object. We’d call that fibrant replacement in L f (M).

The identity mapsM
→
← L fM are a Quillen adjoint pair and prove that L fM satisfies a universal property

as the ”closest” model category toM in which f is a weak equivalence. The fibrant objects in L fM are the
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f -local objects. Bousfield localization gives a Quillen pair (L f ,U f ), which are both the identity functors on
objects and morphisms, and these induce (LH

f ,U
H
f ) on the homotopy level. The functor L f preserves many

nice properties, e.g. left properness, which is a standard hypothesis that lets you build things via pushouts
(aka gluing) in a way which is compatible with the homotopy theory.

4. Motivating Question

Bringing back the monoidal structure, recall that the right notion of monoidal in the model category context
involves a coherence condition between the monoidal structure onM and the model structure:

Given f : A→ B and g : X → Y , define the pushout product f�g to be the corner map in
A ⊗ X //

��

A ⊗ Y

��
B ⊗ X // Q2

$$I
IIIIIIII

B ⊗ Y

Pushout product axiom: if f , g ∈ Q then f�g ∈ Q. Additionally, if either is inW then f�g ∈ W.

Unit Axiom: If Z is cofibrant then QS ⊗ Z → S × Z � Z is a weak equivalence.

These axioms assure you that Ho(M) is a monoidal category. In a monoidal model categoryM, a strict com-
mutative ring object is an object [E] ∈ Ho(M) such that there exists a representative E ∈ M whose structure
diagrams (which make it a commutative ring object) commutes on the nose rather than up to homotopy. For
many years everyone assumed Bousfield localization preserved strict commutative ring objects, because it
works in S -modules and because Bousfield localization preserves E∞ algebras, A∞ algebras, and monoids.
Mike Hill (2011) showed that for the model category of G-equivariant spectra it does NOT preserve strict
commutative monoids. My goal is to find conditions onM and f under which Bousfield localization
does preserve strict commutative monoids. This means we’re asking for (UH

f ◦ LH
f )([E]) to be a strict

commutative monoid.

Reason we care: in the Hill-Hopkins-Ravenel proof of the Kervaire Invariant One Theorem the authors im-
plicitly assumed Bousfield localization in G-equivariant spectra does preserve strict commutative monoids.
The error was pointed out by Justin Noel, and the authors then found a counterexample to the claim. Mike
Hill was able to patch this by adding strong hypotheses which happened to be satisfied in his case and which
only work in G-equivariant spectra.

The Kervaire invariant problem is 45 years old. It asks in which dimensions n there are n-dimensional
framed manifolds of nonzero Kervaire invariant. The solution completes the work on ’exotic spheres begun
by John Milnor in the 1950s which led to his Fields Medal. This is a central part of the classification of
manifolds.

The Kervaire invariant of a manifold M is the Arf invariant of a particular quadratic form determined by
the framing on a Z/2Z homology of M. The quadratic form can be defined by algebraic topology using
functional Steenrod squares, and geometrically via the self-intersections of immersions S 2m+1 → M4m+2

determined by the framing, or by the triviality/non-triviality of the normal bundles of embeddings S 2m+1 →

M4m+2 (for m , 0, 1, 3) and the mod 2 Hopf invariant of maps S 4m+2+k → S 2m+1+k (for m = 0, 1, 3). So
really it’s measuring something about mapping spheres into manifolds or into other spheres and you can
reduce the problem to one about the existence of certain elements in the stable homotopy groups of spheres.
This is how it was eventually solved.
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5. New Results

Theorem 1. Suppose L fM is a monoidal model category such that CMon(L fM) and CMon(M) inherit
model structures in the usual way. Then the Bousfield localization preserves strict commutative monoids.

Proof. Consider UH
f : Ho L fM → M, the right derived functor of id: L fM → M. In general, UH

f ([X]) =

[R f X] where R f is fibrant replacement in L fM. Given [E] as above, UH
f (LH

f ([E])) = [R f QE]. We’ll show
this object can be represented by the commutative monoid R f ,mQmE where Qm is cofibrant replacement in
CMon(M) and R f ,m be fibrant replacement in CMon(L fM).

The map QmE → E is a weak equivalence in CMon(M), hence inM. The map QE → E is also a weak
equivalence inM and lifting gives a map (necessarily a weak equivalence) from QE → QmE.

Since QmE is a commutative monoid in M it must also be a commutative monoid in L fM, since the
monoidal structure of the two categories is the same. We may therefore do fibrant replacement on it in
CMon(L fM) and construct a lift:

QmE� _

��

// R f ,mQmE

����
R f QmE //

99

?

Using this lift we can draw a much more complicated diagram where all the arrows are weak equivalences
in L fM and those in the triangle of fibrant replacements are weak equivalences inM because those objects
are local:

QE //

��

QmE

��

xxrrrrrrrrrr

R f QmE

%%LLLLLLLLLL

R f QE //

::ttttttttt
R f ,mQmE

The triangle commutes because the bottom map is defined as the composite. The square commutes in HoM
and demonstrates that R f QE is isomorphic in HoM to the commutative monoid R f ,mQmE. This proves
Bousfield localization preserves strict commutative monoids. �

It’s a bit unfair to just assume CMon(L fM) is a model category. After all, it can be very difficult to get your
hands on L fM. We’d rather have hypotheses onM and f to make sure this situation happens. Recall from
last time that there is an axiom on L fM which will guarantee CMon(L fM) is a model category:

Σn-Equivariant Monoid Axiom: If h is a (trivial) cofibration then g�n/Σn = ∗ ⊗Σn g�n is a (trivial) cofibra-
tion.

Theorem 2. If C is a monoidal model category satisfying the monoid axiom and the Σn-Equivariant Monoid
Axiom then CommMon(C) is a model category.

Thus, we need to prove L fM is a monoidal model category satisfying the monoid axiom and the Σn-
Equivariant Monoid Axiom.

There are standard hypotheses on a model categoryM when one is working with Bousfield localization (co-
complete, cofibrantly generated, left proper, almost finitely generated, can choose domains and codomains
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of generating (trivial) cofibrations to be cofibrant) and also when one is in a monoidal situation (pushout
product axiom, cofibrant objects flat, monoid axiom). Assume these from now on.

5.1. L f (M) is a monoidal model category. I found that even under all the standing hypotheses, L fM

could fail to be a monoidal model category, though it is always a model category and monoidal (i.e. the
coherence fails). If we place an assumption on the map f to be inverted (just like Quillen had to do), we can
get around this.

Theorem 3. Under the standing hypotheses above, if for all domains and codomains K of I ∪ J, maps in
f ⊗ idK are f -local equivalences, then L fM is a monoidal model category.

Proof. It’s sufficient to check the pushout product axiom on generating cofibrations. So suppose h : X → Y
is an L fM trivial cofibration and g : K → L is a generating cofibration in L fM. We must show h�g is an
L fM trivial cofibration.

The hypothesis that the generating (trivial) cofibrations have cofibrant domain is preserved by localization,
so we can assume K and L are cofibrant. Because h is a cofibration, K ⊗ h and L ⊗ h are cofibrations.

The hypothesis that cofibrant objects are flat says if α is a weak equivalence and X is cofibrant then X ⊗ α
is a weak equivalence. This property is preserved by localizations satisfying the hypothesis of the theorem.
Incidentally, this property implies the unit axiom, so now we have the unit axiom on L fM. Because cofibrant
objects are flat in L f M, K ⊗ h and L ⊗ h are also weak equivalences.

K ⊗ X

u

� � ' //

��

K ⊗ Y

��

��

L ⊗ X
' //

' //

(K ⊗ Y)
∐

K⊗X(L ⊗ X)
h�g

((QQQQQQQQQQQQQ

L ⊗ Y

�

5.2. Monoid Axiom. Next we deal with the Monoid Axiom: For all Z, transfinite compositions of pushouts
of maps in (idZ ⊗ Q ∩W) are weak equivalences.

We add a hypothesis about how the cofibrations behave (which makesM a little bit more like Top):

Definition 4. A homotopical cofibration is a map g : A → B such that every pushout square with g at the
top (i.e. g pushed out by some map A → W) is a homotopy cofiber square, i.e. the map from Z′ → Z is a
weak equivalence in the following diagram:
QA � � //

��

!!C
CC

CC
CC

C QB

  A
AA

AA
AA

A

��

A
g //

��

B

��

QW //

!!C
CC

CC
CC

C Z′

  
W // Z

Hypothesis: “cofibrations ⊗X ⊂ homotopical cofibrations for any X.”
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Theorem 5. Under the standing hypotheses onM and f , L fM satisfies the monoid axiom.

I’d like to find a better hypothesis–one which deals with f and is easier to check. However, for the examples
of interest this is either known to be true or unnecessary because a different proof shows the monoid axiom
is preserved. So we have it for sSet and Top, and we have it for all monoidal categories of spectra as long as
the localization is really LE for some object E.

5.3. Equivariant Monoid Axiom. Now we add a hypothesis to preserve the equivariant monoid axiom,
namely that Symn( f ) : An/Σn → Bn/Σn is an f -local equivalence

Theorem 6. Under the standing hypotheses onM and f , L fM satisfies the Σn-equivariant monoid axiom.

6. FutureWork

Recover Hill’s theorem as a special case of this. Work out some examples for categories and maps of
interest.

Figure out an axiom on the map f so that L f preserves the operad version of the Σn-equivariant monoid
axiom. Then we’ll know when O-alg in L f (M) is a model category, and when localization preserves O-
algebras. Need to check that the theorem about preservation holds in this generality.
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