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1. Abstract

Abstract: I’ll motivate the definition of a model category and give examples. I’ll then discuss monoidal
model categories, the types of objects one likes to study inside them, and how operads come into the picture.
I’ll review what’s known about the relationship between model categories and operads, and then state a new
theorem of mine in this vein. If there’s time at the end I’ll talk about how this result connects to the larger
problem I’ve been working on of understanding when Bousfield localization preserves strict commutative
monoids.

2. Review of last GSS talk

A category C = (Ob,Mor) is a class of objects and a class of morphisms (containing idA and f ◦ g). The
idea is to contain an entire theory of math. For example:

(1) (Groups, Group Homo’s)

(2) Abelian Groups

(3) Top

(4) Top∗

(5) HoTop∗

(6) Graphs

(7) R-mod

(8) Ch(R)

The yoga of category theory is that one must study maps between objects to study the objects. Applying
this to categories themselves leads you to functors F : CD, i.e. maps from objects to objects and morphisms
to morphisms compatible with idA and f ◦ g. For example, Forget:AbGp → Gp or Abelianization: Gp →
AbGp.

Thinking of localization as “formally inverting maps then we want to pick a set S of morphisms and
create a universal functor C → C[S 1] where those morphisms land in the class of isomorphisms, i.e. F( f )
is an iso for all f ∈ S . For example, Top→ HoTop.

This doesn’t say C[S −1] exists, and trying to construct it leads to set-theoretic issues (taking equiv relation
requires you to have a set). The solution is to invent model categories, i.e. categories with distinguished
classes of mapsW,Q,F satisfying axioms similar to those in Top. So again, the motivation is that we have
some classW of maps we wish were isomorphisms and we’re trying to find conditions on the categoryM
which allows us to force them to be isomorphisms (via a universal functor M → M[W−1] taking those
maps to isomorphisms).

Date: January 31, 2013.
1



2 DAVID WHITE

A model categoryM is the most general place one can do homotopy theory. W is the class to invert, e.g.
homotopy equivalences. But topology cares about more than just maps like this, so to actually construct
Ho(M) requires two other classes of maps. Cofibrations Q are like gluing on cells, and it lets you build
complicated objects from simple ones. If you think of Q as monomorphisms that’s fine. Fibrations F are
like covering spaces, or fiber bundles. It lets you take quotients. For model categories, the localization
M[W−1] exists and we denote it by Ho(M).

Examples of model categories:

(1) Top

(2) sSet (like simplicial complexes)

(3) Spectra (Xn) used in stable homotopy theory. There are many structures here, e.g. Symmetric
Spectra, S-modules, orthogonal spectra, G-spectra

(4) Ch(R) - this leads to Andre-Quillen cohomology, for which Quillen won the Fields

(5) DGA (graded algebra equipped with a map d : A → A which is degree −1 and has d(a · b) =

(da) · b + (−1)|a|a · (db))

(6) StMod - Daniel researched this

(7) EnlargedSchemes - used in Voevodsky’s proof of Milnor Conjecture, won Fields

3. Monoidal Categories

Idea: let’s add more algebra to the situation, to make things easier. A monoidal category is one with a
bifunctor ⊗ : C × C → C which is associative (⊗(⊗ × 1) = ⊗(1 × ⊗)) and has a unit S ∈ C together with
isomorphisms λA : S × A → A, ρA : A × S → A for all A ∈ C. We also need coherence diagrams, e.g. for
4-fold associativity and for associativity and unit
A ⊗ (S ⊗ B) α //

λ

&&

(A ⊗ S ) ⊗ B

ρxx
A ⊗ B

Examples: see above list. For Ch(R) it’s not just levelwise. (A ⊗ B)n =
⊕

i+ j=n Ai ⊗ B j

A monoid R ∈ C has µ : R ⊗ R→ R associative and η : S → R with

R ⊗ S
η //

ρ
$$

R ⊗ R

µ

��

S ⊗ R
ηoo

λ
zz

R

Think about the category of rings. We have η : Z → R for any R, and that picks out the identity element in
R via the image of 1. Think of µ as taking (a, b) 7→ a · b.

We can restrict focus to the subcategory of monoids in C. Call this Mon(C). It’s objects are monoids and its
morphisms are monoid homomorphisms, i.e. f : R→ R′ such that f ◦µ = µ ◦ f . Passage from C to Mon(C)
is just like passage from S et to Group. It’s a passage that we have to make in order to “do algebra” in C.
Just having products on the category is not enough without having morphisms containing the information of
multiplication on monoids R.

A commutative monoid is a monoid along with a twist isomorphism τ : R ⊗ R → R ⊗ R which commutes
with µ, i.e. a · b = b · a.
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4. MonoidalModel Categories

Now let’s suppose we want to do homotopy theory on a category like this, i.e. that C above is really a
model categoryM. Well, we’d want to know that Ho(M) was also a monoidal category. Sadly, this does
not come for free. You need a coherence condition between the monoidal structure on M and the model
structure.

Given f : A→ B and g : X → Y , define the pushout product f�g to be the corner map in
A ⊗ X //

��

A ⊗ Y

��
B ⊗ X // Q2

$$
B ⊗ Y

Pushout product axiom: if f , g ∈ Q then f�g ∈ Q. Additionally, if either is inW then f�g ∈ W.

Unit Axiom: If Z is cofibrant then QS ⊗ Z → S × Z � Z is a weak equivalence.

These axioms assure you that Ho(M) is a monoidal category. Now suppose we want to study the monoids
inM using methods from homotopy theory, i.e. we want Mon(M) to be a model category. Informally, we
stacked algebra onto topology by shifting focus from model categories to monoidal model categories, and
now we’re stacking more topology onto that. We’ll need another axiom onM to make this work.

Monoid Axiom: For all Z, transfinite compositions of pushouts of maps in (idZ ⊗ Q ∩W) are weak equiv-
alences. Note that this follows if idZ ⊗ Q ∩W is a trivial cofibration.

This was proven by Schwede and Shipley in 2000. It applies to all the examples above. The proof involves
an analysis of pushouts in Mon(M) of maps of the form T X → TY where X → Y is a trivial cofibration
inM and T is the free monoid functor. The question of when CommMon(M) is a model category is much
more subtle, because the free commutative monoid functor Sym is harder to analyze. In the 2000’s several
people found examples of suchM, most famously Shipley’s positive model structure on Symmetric Spectra
and EKMM’s on S-modules. But no one had an axiom like the monoid axiom to work in general until
recently.

Σn-Equivariant Monoid Axiom: If h is a (trivial) cofibration then g�n/Σn = ∗ ⊗Σn g�n is a (trivial) cofibra-
tion.

Theorem: IfM is a monoidal model category satisfying the monoid axiom and the Σn-Equivariant Monoid
Axiom then CommMon(M) is a model category.

Something like this axiom first appeared in 2010 in Lurie’s work. The theorem also appeared, but in less
generality. The examples were not fully worked out. My contribution is making it work with a weaker
version of the axiom, generalizing the theorem to hold for more model categories, proving that it’s sufficient
to check this axiom on the generating (trivial) cofibrations, and working out the examples.

Examples: sSet, positive, DGA in characteristic 0, EKMM?, G-spectra?

Of course, a commutative monoid is just an element of CAlg(S ). One could also do CAlg(R) for R commu-
tative, and I have. Furthermore, R ' T induces a Quillen equivalence. Furthermore, ifM ' N is a Quillen
equivalence then CAlgM(R) ' CAlgN(F(R))
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5. Operads

The passage fromM to Mon(M) and fromM to CommMon(M) are both examples of passage to algebras
over an operad. An operad is a gizmo which keeps track of operations onM, i.e. keeps the data of what
rules those operations have to satisfy. Formally, it’s a sequence of sets O(n) with identity element in O(1),
associative composition rule O(n) × O(k1) × · · · × O(kn) → O(k1 + · · · + kn), and Σn actions on O(n) which
are compatible with composition. Think of O(n) as the n-ary operations onM

All we care about with operads is that they can act on objects in M and this results in categories of O-
algebras that we like. An O-algebra is A ∈ M equipped with coherent maps O(n) × An → A. If O(n) is
viewed as n-ary operations, then the map O(n) × An → A takes (µ, a1, . . . , an) to µ(a1, . . . , an). The fact that
O acts on A is what makes A have those maps (and satisfy those diagrams) to make it a monoid, commutative
monoid, etc.

Note that the operad itself doesn’t know about A or evenM. It’s a single object which keeps track of “oper-
ations of type O” in any category. That’s why the theory of operads is also called Universal Algebra.

Examples:

(1) For any A ∈ C, we have an operad End(A) whose n-th space really is n-ary maps

(2) Similarly, we can do the linear isometries operad where the n-th space is linear isometries R∞×· · ·×
R∞ → R∞.

(3) O = Ass gives O − alg(M) = Mon(M)

(4) O = Com gives O − alg(M) = CommMon(M). Note that Comn = ∗ for all n, so it’s levelwise
cofibrant.

(5) O = A∞ gives homotopy coherent monoids, which always form a model category even without the
monoid axiom. This is a cofibrant operad

(6) O = E∞ gives homotopy coherent commutative monoids, which always form a model category even
without the equivariant monoid axiom.

(7) O = Lie gives Lie Algebras. L∞ is the homotopy coherent version.

(8) O to give Poisson algebras, Gerstenhaber algebras, Leibniz, Zinbiel, Batalin-Vilkovisky, etc

6. What’s known about model structures and operads

The category of operads is a model category. So we have a notion of cofibrant operad. Independently of
this, we can view a C-valued operad as sitting inside CΣ and so if C is a model category this carries the
projective model structure and lets us define the notion of Σ-cofibrant operad.

Berger and Moerdijk get a model structure on O-alg when O is cofibrant and M has a cofibrant unit, a
symmetric monoidal fibrant replacement functor, and a commutative Hopf interval. This is using the fibrant
side of things, so the proofs are very simple, but the hypotheses onM a bit restrictive.

John Harper gets a model structure on O-alg for O a cofibrant operad andM satisfying the monoid axiom.
This is using the cofibrant side of things, so the proofs involve complicated analyses of pushouts of O(X)→
O(Y) in O-alg.

Lesson: some cofibrancy hypothesis on O and some hypotheses onM are necessary to get a model structure
on O-alg. There are counter-examples forM not satisfying hypotheses.
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John Harper goes beyond his previous work and says that if all symmetric sequences and symmetric arrays
inM are cofibrant in the projective model structure then O-alg gets a model structure for all O. This is an
insanely strong hypothesis onM and appears to only be satisfied by rational DGAs. Still, it shows you can
get away with less cofibrancy on O if you’re willing to put more onM

7. New Result regarding levelwise cofibrant operads

Σn-Equivariant Monoid Axiom: If h is a (trivial) cofibration then g�n/Σn = ∗ ⊗Σn g�n is a (trivial) cofibra-
tion.

Operad version: If h is a (trivial) cofibration and Z ∈ MΣn is a — object then Z ⊗Σn g�n is a (trivial)
cofibration. See below regarding the blank.

Note thatMΣn is the category whose objects are objects inM equipped with a Σn action. For example, the
n-th power of any object inM. Or, if we want a free action, the n!-power.

We can fill in the blank in the operad version to make it a strong axiom or a weak axiom. If it’s a strong
axiom then it gives a homotopy theory on O-alg for very many O. If it’s a weak axiom it gives a homotopy
theory for a much smaller class of O. Some of these are known but some are new, and the applications are
new. Here is a table, where in the right-hand column the hypotheses written in any box include those in
the boxes above, i.e. the right-hand column is increasing in strength as you go down the table whereas the
left-hand column is decreasing in strength. Technical point: sometimes you don’t get a full model structure
but only a semi-model structure. But once you forget to ∞-categories this difference vanishes, so you still
have a homotopy theory in either case. There is an additional axiom which can be added to get from those
semi-model structures to model structures but I haven’t checked it on any examples yet so it might be overly
restrictive.

Hyp. on O Hyp onM
Cofibrant Cofibrantly generated, monoidal (i.e. Operad axiom for Z ∈ MΣn cofibrant inMΣn)

Σ-cofibrant monoid axiom
Levelwise cofibrant Operad axiom for Z ∈ MΣn cofibrant inM
Special case: Com Operad axiom for Z = ∗, i.e. Σn-equivariant monoid axiom

Arbitrary Operad axiom for all Z

The proofs of these rely on complicated analyses of pushouts. The key trick is shifting from O to the
enveloping operad OA for A ∈ O-alg and then using the hypotheses on OA[n]. We create a dictionary
between cofibrancy hypotheses O and cofibrancy of OA[n]. The bottom line is a weakening of Harper’s
hypothesis, and is easier to check.

Further things proved: for all but the last line we show you can check the hypothesis just on the generators.
Also, we proved that a Quillen equivalence O ' P implies O-alg ' P-alg is a Quillen equivalence.

Examples: for any O, O-alg is a model category forM = sS et,M = positive stable on symmetric spectra,
M = DGA over characteristic zero.

Hope: for any levelwise cofibrant O, O-alg is a model cat for M = S−modules, orthogonal spectra, and
G-spectra (perhaps with some hypothesis like in Hill’s theorem). Seems to be true, but not sure if it follows
from this method.

Hope: all O-alg for any excellent model category

8. Relation to Thesis

We wanted to know when Bousfield localization preserves strict commutative monoids
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Theorem 1. If CommMon(M) and CommMon(L fM) are model categories then localization preserves strict
commutative monoids

There are standard hypotheses on a model categoryM when one is working with Bousfield localization (co-
complete, cofibrantly generated, left proper, almost finitely generated, can choose domains and codomains
of generating (trivial) cofibrations to be cofibrant) and also when one is in a monoidal situation (pushout
product axiom, cofibrant objects flat, monoid axiom). I found that even under all these hypotheses, L fM

could fail to be a monoidal model category, though it is always a model category and monoidal. The coher-
ence fails. If we place an assumption on the map f to be inverted (just like Quillen had to do), we can get
around this.

Theorem 2. Under the standing hypotheses above, if for all domains and codomains K of I ∪ J, maps in
f ⊗ idK are f -local equivalences, then L fM is a monoidal model category.

This is really the right hypothesis, as can be seen from old work of Kelly. Similarly, the monoid axiom
can fail, so we add a hypothesis about how the cofibrations behave (which makes M a little bit more like
Top):

Definition 3. A homotopical cofibration is a map g : A → B such that every pushout square with g at the
top (i.e. g pushed out by some map A → W) is a homotopy cofiber square, i.e. the map from Z′ → Z is a
weak equivalence in the following diagram:
QA �
� //

��

!!

QB

  

��

A
g //

��

B

��

QW //

!!

Z′

  
W // Z

Hypothesis: “cofibrations ⊗X ⊂ homotopical cofibrations for any X.”

Theorem 4. Under the standing hypotheses onM and f , L fM satisfies the monoid axiom.

Now we add a hypothesis to preserve the equivariant monoid axiom, namely that Symn( f ) : An/Σn → Bn/Σn
is an f -local equivalence

Theorem 5. Under the standing hypotheses onM and f , L fM satisfies the Σn-equivariant monoid axiom.

Theorem 6. Under the hypotheses above, L f preserves strict commutative monoids (of course, this really
means L f then U f going back toM)

Future work: recover Hill’s theorem as a special case of this. Work out some examples for categories and
maps of interest.

Future work: figure out an axiom on the map f so that L f preserves the operad version of the Σn-equivariant
monoid axiom. Then we’ll know when O-alg in L f (M) is a model category, and when localization preserves
O-algebras. Need to check that the theorem about preservation holds in this generality.


