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1. Outline

(1) Localization

(2) Categories

(3) Localization in Categories

I do my research in the context of model categories, sometimes specializing to the category Spectra
in particular. I want to be able to apply algebraic ideas and methods to these categories, and I do
so by replacing algebraic concepts by their categorical analogs. Every talk I give includes diagrams
defining a ring object in a category. My research tends to be of the flavor: take some cool thing in
algebra and figure out how to develop that theory in alg. top. So you need the right definition and
proofs in algebra, then you need to define the analogous thing and try to lift the proofs.

Alg. Top ring-objects derived category qual talk thesis today
Algebra Rings R-mod homological dimension ideals localization

2. Localization

Localization is a way of studying an algebraic object “at” a prime. One may study an object by
studying it at every prime (the “local question”), then piecing these together to understand the
original object (the “local-to-global question”).

More abstractly, one studies a ring by localizing at a prime ideal, obtaining a local ring. One
then often takes the completion. From the point of view of the spectrum of a ring, the primes
are the points of a ring, and thus localization studies a ring (or similar algebraic object) at every
point, then the local-to-global question asks to piece these together to understand the entire space.
The failure of local solutions to piece together to form a global solution is a form of obstruction
theory, and often yields cohomological invariants, as in sheaf cohomology.

In abstract algebra, localization is a systematic method of adding multiplicative inverses to a ring.
Given a ring R and a subset S, one wants to construct some ring R∗ and ring homomorphism from
R to R∗, such that the image of S consists of units (invertible elements) in R∗. Further one wants
R∗ to be the ’best possible’ or ’most general’ way to do this in the usual fashion this should be
expressed by a universal property. The localization of R by S is often denoted by S−1R, or by RI
if S is the complement of a prime ideal I.

Another way to describe the localization of a ring R at a subset S is via category theory.
If R is a ring and S is a subset, consider the set of all R-algebras A, so that, under the canonical
homomorphism R→ A, every element of S is mapped to a unit. The elements of this set form the
objects of a category, with R-algebra homomorphisms as morphisms. Then, the localization of R
at S is the initial object of this category.
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Suppose S ⊂ R is a multiplicative set, i.e. 1 is in S and for s and t in S we also have st in
S. The construction proceeds as follows: on R × S define an equivalence relation ∼ by setting
(r1, s1) ∼ (r2, s2) iff there exists t ∈ S such that t(r1s2− r2s1) = 0.

We think of the equivalence class of (r, s) as the “fraction” r/s and, using this intuition, the set
of equivalence classes R∗ can be turned into a ring with operations that look identical to those
of elementary algebra: a/s + b/t = (at + bs)/st and (a/s)(b/t) = ab/st. The map j : R → R∗

which maps r to the equivalence class of (r,1) is then a ring homomorphism. (In general, this is not
injective; if two elements of R differ by a zero divisor with an annihilator in S, their images under
j are equal.)

The above mentioned universal property is the following: the ring homomorphism j : R → R∗

maps every element of S to a unit in R∗, and if f : R → T is some other ring homomorphism
which maps every element of S to a unit in T, then there exists a unique ring homomorphism
g : R∗ → T such that f = g ◦ j. The above S−1R satisfies this universal property, because given
f define g(r/s) = f(r)f(s)−1. This is well defined because r/s = r′/s′ implies x(s′r − r′s) = 0
so f(s′r) = f(r′s) so f(r)f(s)−1 = f(r′)f(s′)−1. This g is a ring homomorphism because the
operations on S−1R were defined with this in mind (they work just like in Q). Also, g(j(r)) =
g(r/1) = f(r)f(1) = f(r).

Examples:

(1) Given a commutative ring R, we can consider the multiplicative set S of non-zerodivisors
(i.e. elements a of R such that multiplication by a is an injection from R into itself.)
The ring S−1R is called the total quotient ring of R, often denoted K(R). S is the largest
multiplicative set such that the canonical mapping from R to S−1R is injective. When R
is an integral domain, this is none other than the fraction field of R.

(2) Let R = Z, and p a prime number. If S = Z − pZ, then R∗ = Z(p) = {a/b : p 6 |b} is the
localization of the integers at p. As a generalization of the previous example, let R be a
commutative ring and let p be a prime ideal of R. Then R - p is a multiplicative system
and the corresponding localization is denoted Rp. The unique maximal ideal is then p, so
Rp is a local ring. Localization corresponds to restriction to the complement U in Spec(R)
of the irreducible Zariski closed subset V(P) defined by the prime ideal P.

(3) If R = Z and S = 〈2〉 then S−1R is the dyadic rationals.

(4) If R = k is a field and 0 6∈ S then S−1R = k because all elements in S were already
invertible. If R = K[X] is the polynomial ring and S = {X} then the localization produces
the ring of Laurent polynomials K[X,X−1]. In this case, localization corresponds to the
embedding U → A1, where A1 is the affine line and U is its Zariski open subset which is
the complement of 0.

(5) S−1R = {0} if and only if S contains 0.

(6) Does localization always make the ring bigger? Equivalently, is R→ S−1R always injective?
No! The ring homomorphism R → S−1R is injective if and only if S does not contain any
zero divisors. Consider R = Q×Q and S = 〈(1, 0)〉. Then S−1R ∼= Q× {0} ∼= Q.

R-Mod: Let S a multiplicatively closed subset of R. Then the localization of M with respect to S,
denoted S−1M , is defined to be the following module: as a set, it consists of equivalence classes of
pairs (m, s), where m ∈ M and s ∈ S. Two such pairs (m, s) and (n, t) are considered equivalent
if there is a third element u of S such that u(sn− tm) = 0. One interesting characterization of the
equivalence relation is that it is the smallest relation (considered as a set) such that cancelation
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laws hold for elements in S. That is, it is the smallest relation such that rs/us = r/u for all s in
S.

Universal Property: There is a module homomorphism j : M → S−1M s.t. for any S-local
T with M → T there exists a unique module homomorphism S−1M → T making the triangle
commute. Again, j(m) = m/1 and again, this need not be injective. Key fact: S−1M = M ⊗R
S−1R, by the very definition of “extension of scalars.” Also: S−1R is a flat module over R.

Categories don’t have an operation, so there’s no a priori way to localize. However, another way to
think about localization of rings is as formally inverting maps. In particular, to invert s ∈ S you
take the ring generated by R and s−1. Equivalently, simply insist that the multiplication by s map
µs : R→ R be invertible.

Proposition 1. Suppose R∗ is a ring containing s on which µs is an isomorphism. Further,
suppose there is a unique ring homomorphism i : R→ R∗ and for any f : R→ T with µs : T → T
an isomorphism, there exists a unique g : R∗ → T such that g ◦ i = f . Then R∗ ∼= s−1R.

Proof. First, s−1R contains s and has µs an isomorphism (it’s inverse if µs−1 . Thus, the map
j : R → s−1R yields a unique map g : R∗ → s−1R such that g ◦ i = j. Next, R∗ is a ring where s
is invertible because µ−1s (1) · s = µ−1s (1) · µs(1) = (µ−1s ◦ µs)(1) = 1. So the universal property of
localization implies there’s a unique map h : s−1R→ R∗ such that h ◦ j = i:

R

i}}

i

!!
j
��

R∗
g // R∗

h // R∗

The bottom composition must be the identity on R∗ because the triangles are the same. Draw a
similar picture to prove g ◦ h is the identity on R∗. �

Going off this idea, let’s say M is S-local if µs : M → M is an isomorphism for all s ∈ S. A
map f : M → N is an S-equivalence if f∗ : Hom(N,T ) → Hom(M,T ) is an isomorphism for all
S-local T .

Proposition 2. j : R→ R[S−1] is an S-equivalence and R[S−1] is S-local.

Proof. We already provedR[S−1] is S-local. Let T be S-local. Then Hom(R[S−1], T )→ Hom(R, T ) ∼=
T sends f to f ◦ j to (f ◦ j)(1), i.e. to f(1/1). This is 1-1 because if f(1R[S−1]) = 0 then f must be
the zero map. This is a homomorphism because (f +g)(1) = f(1)+g(1) and (f ×g)(1) = f(1)g(1).
This is onto because for any t ∈ T we simply define f to take 1/1 to t. We needed T to be S-local
to even form Hom(R[S−1], T ), i.e. for these maps to be well-defined. �

Further Examples... Abelian Groups If H ≤ G then H−1G ∼= G because all h ∈ H already have
inverses in G, so the smallest group which G maps into and in which all elements of H have inverses
is G. You again have the universal property.

Rings Need some conditions on R for it to exist. The right Ore condition for a domain R, and
any pair a, b of non-zero elements, is the requirement that the sets aR and bR should intersect in
more than the element 0. The left Ore condition is defined similarly. A domain that satisfies the
right Ore condition is called a right Ore domain. For every right Ore domain R, there is a unique
(up to natural R-isomorphism) division ring D containing R as a subring such that every element
of D is of the form rs−1 for r in R and s nonzero in R. Such a division ring D is called a ring of
right fractions of R, and R is called a right order in D.
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Topological Spaces We let A be a subring of the rational numbers, and let X be a simply
connected CW complex. Then there is a simply connected CW complex Y together with a map
from X to Y such that Y is A-local (all its homology groups are modules over A) and the map
is universal for (homotopy classes of) maps from X to A-local CW complexes. This space Y is
unique up to homotopy equivalence, and is called the localization of X at A.

3. Categories

A category is an algebraic structure that comprises “objects” that are linked by “arrows”. A cate-
gory has two basic properties: the ability to compose the arrows associatively and the existence of
an identity arrow for each object. In general, the objects and arrows may be abstract entities of any
kind, and the notion of category provides a fundamental and abstract way to describe mathematical
entities and their relationships. This is the central idea of category theory, a branch of mathematics
which seeks to generalize all of mathematics in terms of objects and arrows, independent of what
the objects and arrows represent. Virtually every branch of modern mathematics can be described
in terms of categories.

A category C consists of

• a class ob(C) of objects

• a class hom(C) of morphisms, or arrows, or maps, between the objects. Each morphism
f has a unique source object a and target object b where a and b are in ob(C). We write
f : a→ b, and we say “f is a morphism from a to b”. We write C(a, b) to denote the class
of all morphisms from a to b.

• for every three objects a, b and c, a binary operation C(a, b) × C(b, c) → C(a, c) called
composition of morphisms ((f, g)→ g ◦ f

Satisfying the axioms:

• (associativity) ho(gof) = (hog)of

• (identity) for every object x, there exists a morphism 1x : x → x called the identity mor-
phism for x, such that for every morphism f : a→ b, we have 1bof = f = fo1a.

An isomorphism is a morphism f : a→ b s.t. there exists g : b→ a and f ◦g = 1b, g ◦f = 1a.

Examples:

• Set, the category of sets and set functions. Isomorphisms are bijections.

• Grp, the category of groups and group homomorphisms. Isomorphisms.

• Ab, the category of abelian groups and group homomorphisms. Isomorphisms.

• Ring, the category of rings and ring homomorphisms

• CRing, the category of commutative rings and ring homomorphisms

• R-Mod, the category of R-modules and module homomorphisms

• Top, category of topological spaces and continuous maps. Homeomorphisms

• Top∗, category of topological spaces with a distinguished choice of basepoint and continuous
basepoint-preserving maps. Homeomorphisms
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• Banach spaces and bounded linear maps...but no localization here because no operation.
One case for non-commutative rings where localization has a clear interest is for rings of dif-
ferential operators. It has the interpretation, for example, of adjoining a formal inverse D−1

for a differentiation operator D. This is done in many contexts in methods for differential
equations.

The point is, the morphisms always preserve the structure of the objects. What if we want to create
a category of categories? Well, first we need to avoid some set-theoretic problems. A category C is
called small if both ob(C) and hom(C) are actually sets and not proper classes. There is a category
with small categories as objects, but what are the morphisms? They are functors, i.e. F : C → D
which associates to each object X ∈ C an object F (X) ∈ D and associates to each morphism
f : X → Y ∈ C a morphism F (f) : F (X)→ F (Y ) ∈ D such that

• F (idX) = idF (X) for every object X ∈ C

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z. Note that a
contravariant functor has F (g ◦ f) = F (f) ◦ F (g).

That is, functors must preserve identity morphisms and composition of morphisms. Just like you
need to understand group homomorphisms to understand groups, you need functors to understand
categories. Functors preserve isomorphisms because Ff ◦ Fg = F (f ◦ g) = F (1b) = 1Fb and
Fg ◦ Ff = F (g ◦ f) = F (1a) = 1Fa.

Examples

• Forgetful functor: Grp→ Set.

• Free functor: Set→ Grp. Or free-abelian functor from Set→ Ab

• Abelianization: Grp→ Ab.

You can also have morphisms between the morphisms, and in Cat these are called natural trans-
formations. Formally, if F and G are functors from C to D then for each X ∈ C you have
ηX : FX → GX in D s.t.:

F (X)
Ff //

ηX
��

F (Y )

ηY
��

G(X)
Gf // G(Y )

Example: If K is a field, then for every vector space V over K we have a “natural” injective linear
map V → V ∗∗. These maps are “natural” in the following sense: the double dual operation is a
functor, and the maps are the components of a natural transformation from the identity functor
to the double dual functor. If V is finite dimensional this is a natural isomorphism. In linear
algebra, that “natural” just meant independent of choice of basis, but this way is even stronger
because it relates the two as abstract objects in a category where no one said anything at all about
a basis.

4. Localization on Categories

Using Prop 1: perhaps a better way to think of localization is “formally inverting maps.” This we
can do in category theory, and it makes a class of morphisms into isomophisms. You then need to
put in composites which use the new morphisms, just like you have to generate using R and s−1

above. For example, let C be Top∗ and consider the class of morphisms S which are homotopy
equivalences (i.e. f : X → Y s.t. there exists g : Y → X and f ◦ g ' 1Y and g ◦ f ' 1X).
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Then C[S−1] is HoC the category of topological spaces up to homotopy equivalence. Another
example is the definition of a derived category, which I’ve discussed before (you invert so-called
quasi-isomorphisms).

This viewpoint focuses on when a ring morphism R → R′ is really one of those structure maps
j : R → S−1R. As in the case of rings above, localization in categories gives a functor F : C →
C[S−1] such that if there is any other functor C → D sending morphisms in S to isomorphisms,
then there exists a unique functor C[S−1]→ D making the triangle commute. F is universal w.r.t.
the property that it takes s ∈ S to an isomorphism.

To construct C[S−1] we want to allow morphisms to be equivalence classes of zigzags, i.e. C[S−1](a, b) =
{a ← • → • ← • · · · • → b}/ ∼. Sadly, this is a proper class in general. But it worked above with
Top∗, and it will work again if we simply generalize that example. This leads to the notion of a
Model Category, i.e. a category M along with three classes of morphisms called weak equiva-
lences (W), fibrations (F), and cofibrations (C), satisfying some complicated axioms.

Think of this as the most general place you can do homotopy theory. For topological spaces, F is
Serre fibrations, W is weak homotopy equivalences, and C is harder to describe, but is determined
by the other two. Invented by Quillen, Hovey wrote the book on them, Daniel’s thesis defense
had him verifying those axioms all over the place. It’s not easy to get a flavor for what F and
C are in general, but W is the class you’re going to invert, so it’s always your choice of what a
“homotopy equivalence” should be. On the category Set there are 9 valid choices for W,F,C which
give different model category structures. In one, C are injections and F are surjections. In another
that’s switched. The point is: it gets pretty crazy. What model categories are good for is doing
this process and getting homotopy categories, plus doing constructions at the point-set level which
you know will carry over to the homotopy level.

Ok, so we know why we care about model categories. The problem is that the localization above
takes you out of the category M you’d been working in. It’s somehow not of the same flavor as
the ring localizations above. What if we want to study a space or a spectrum localized at p? How
can we reduce studying π∗ to a single prime using the localization above? The answer is: you
can’t. This is why we have Bousfield Localization. The idea here is to add to the class of weak
equivalences in a model category, knowing that these will BECOME isomorphisms in the homotopy
category. So suppose we have a class S of maps we’d like to turn into weak equivalences.

Following the equivalent formulation of localization from Prop 2, define M ∈M to be S-local if M
is fibrant and for all s : X → Y ∈ S, s∗ :M(Y,M)→M(X,M) is a weak equivalence. An object
M is fibrant if the map M → ∗ is a fibration (here ∗ is the terminal object). A map f : A→ B is an
S-local equivalence if for all S-local M , f∗ :M(B,M)→M(A,M) is a weak-equivalence.

The (left) Bousfield localization of M w.r.t. S is a new model category structure on M with
the same cofibrations asM and with weak equivalences equal to S-local equivalences. Denote this
model structure LSM. Note that weak equivalences of M are still weak equivalences, but now
there are more of them. The identity functor gives a Quillen adjoint pair:

1 :M →← LSM : 1. Here LX of fibrant X are the L-locals, and X ' LX. This yields:

F : HoM →← HoLSM : U and F takes the images in HoM of maps in S into isomorphisms in
HoLSM, and LSM is the smallest model category with this property, i.e. if there’s another N
then we get a unique left Quillen functor: LSM→N .

It’s not that surprising that localization in algebra is a special case of this, since we defined it in
complete analogy. What is amazing is that completion in algebra is also a special case. Algebraic
geometers often need to localize and then complete, and they are unrelated operations. In algebraic
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topology the situation is often far more complicated than that for algebra, but in this one case it’s
simpler. Completion often takes the form in algebra of an inverse limit. There has to be a topology
running around in order for complete to make sense (Cauchy sequences converge).

Formally, a localization is an idempotent and coaugmented functor L : C → C. A coaugmented
functor is a pair (L, i) where L : C → C is an endofunctor and i : Id→ L is a natural transformation
from the identity functor to L (called the coaugmentation). A coaugmented functor is idempotent
if, for every X, both maps L(iX), iL(X) : L(X)→ LL(X) are isomorphisms. It can be proven that
in this case, both maps are equal. Universal Property: ηX : X → LX is initial among morphisms
from X to L-local objects, and terminal among L-equivalences with domain X. Localizations of
more complicated categories must preserve more structure. For Model Categories j must be left
Quillen s.t. the left derived Lj takes images in HoM of elements in S to isomorphisms in HoLSM .
Furthermore, for any N with this property (i.e. M → N and the Lf property), there’s a map from
LSM → N making the triangle commute.

People seek to understand subcategories S which are kerL. Bousfield invented all this to localize
with respect to a given homology theory, i.e. X → LEX where E is a homology theory. It
works:

• If E = HQ then a spectrum X is E-local iff π∗X are rational vector spaces.

• In chain complexes, say a projective A∗ is Z/pZ acyclic if each Hn(A∗) is a Z[1/p]−module.
Say B∗ is Z/pZ-local if every map from an A∗ as above is nullhomotopic. Then the Z/pZ-
localization of a projective X∗ is holim←X∗ ⊗ Z/pnZ, i.e. the homotopy completion.

5. My Work

To really generalize algebra, you need a notion of a ring in a category. A category is said to be
monoidal if there is a bifunctor ⊗ : C × C → C which is associative (⊗(⊗ × 1) = ⊗(1 × ⊗) and
has a unit object e along with λa : e⊗ a→ a and ρa : a⊗ e→ a s.t.

a⊗ (e⊗ c) α //

λ

&&

(a⊗ e)⊗ c

ρ
xx

a⊗ c

You also need coherence diagrams for 4-fold associativity. A ring object R ∈ C has µ : R⊗R→ R
which is associative and η : e→ R s.t.

e⊗ c
η //

λ

$$

c⊗ c c⊗ e

ρ
zz

η
oo

c

My task: find conditions onM and on the functor L (equiv: on the class S) such that a commuta-
tive ring object R ∈ M goes to a commutative ring object in LR ∈ LSM. We know already that
Ho(R) 7→ Ho(LR), but not on the level of model categories. This really comes down to understand-
ing those functors F and U from before, and using the fact that they are derived functors of much
nicer functors. It also involves proving LSM is monoidal, and that the category of (commutative)
ring objects forms a model category.
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