
ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

DAVID WHITE

Outline of talk:

My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too
much detail. This will be a survey of

(1) Elimination Theory and review from last time (BRIEFLY)

(a) History and goals

(b) Geometric Extension Theorem

(2) Invariant Theory

(3) Dimension Theory

(a) Krull Dimension

(b) Hilbert Polynomial

(c) Dimension of a variety

(4) Syzygies

(a) Definition

(b) Free resolutions

(c) Hilbert’s Syzygy Theorem

(5) Intersection Theory

(a) Bezout’s Theorem

(b) Discriminant

(c) Sylvester Matrix

(d) Resultants

(e) Grassmannians

Recall basics of algebraic geometry: sets in affine space correspond to functions in k[x1, . . . , xn]
which vanish on those sets. This is given by I → V (I) (an affine algebraic set) and by V → I(V )
(an ideal). It was inclusion-reversing and had other friendly properties like I(V (I)) = I. An affine
variety was an affine algebraic set which could not be written as a union of two other non-trivial
affine algebraic sets.

Almost all the familiar algebraic geometry from affine space holds over to projective space but we
deal with homogeneous polynomials (all monomials of the same degree) so that they will be well-
defined on points. This is because for projective points (x0 : · · · : xn) is equivalent to (λx0 : · · · :
λxn) for all λ ∈ k \ {0}. But for homogeneous polynomials this just corresponds to multiplication
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by a constant since F (λx0 : · · · : λxn) = λdF (x0 : · · · : xn). As a projective point this is equal to
F (x0 : · · · : xn) but we needed homogeneity to have the same constant applied to all monomials.
Note that the point (0 : 0 : · · · : 0) is not in projective space.

To a projective algebraic set X we can associate an ideal (now homogeneous) J(X) of polynomials
vanishing on X. Similarly, to a homogeneous ideal J we can associate a projective algebraic
set X(J). The same basic facts from last semester hold for these operations. Note that the
object k[x0, . . . , xn]/J(X) is a (finitely generated) k algebra called the coordinate ring of X and is
sometimes denoted R(X). It’s also sometimes called the ring of regular functions and the functions
in R(X) are called regular. It’s a useful object because it gets rid of the problem of two different
functions being equal in X. We also get a surjection from k[x0, . . . , xn] to R(X) with kernel
J(X).

I’ll try to mention explicitly when we are in the projective setting, but sometimes my notation
will do the talking for me. If you see homogeneous as a condition in a theorem then we’re in the
projective setting. If you see X’s and J ’s then we’re in the projective setting. All day today k is a
field which will often be algebraically closed. When in doubt assume k is algebraically closed.

1. Elimination Theory

Elimination theory is the study of algorithmic approaches to eliminating variables and reducing
problems in algebra and algebraic geometry done in several variables. Computational techniques
for elimination are primarily based on Grobner basis methods. Recall from Becky’s talks that a
Grobner basis for an ideal I is a generating set {g1, g2, . . . } for I such that the leading terms of the
gi generate the leading term ideal of I.

Examples: Gaussian elimination, the Geometric Extension Theorem I mentioned in my last
talk. The theory of quantifier elimination can be thought of as a subfield of elimination theory,
and there is a beautiful connection to geometry in this example.

The goal of this theory is to solve problems by reducing the number of dimensions. The key fact
is that projection onto fewer coordinates preserves varieties. Last time I discussed the
Geometric Extension Theorem. This time I want to mention that intersection theory goes much
further and in fact relates to a topological invariant called the intersection form defined on the nth
cohomology group.

Definition 1. For a given ideal I ⊂ k[x0, . . . , xn], define It to be the t-th elimination ideal
I ∩ k[xt+1, . . . , xn]. This eliminates the variables x1, . . . , xk. Note that I2 is the first elimination
ideal of I1.

There is clearly a relationship between It and the projection of Z(I) onto the last n− t dimensions.
The following theorem is about how to extend partial solutions in the projected space to full
solutions in the original space. First note that given I = 〈f1, f2, . . . , fs〉 ⊂ k[x0, . . . , xn]. We can
write fi as fi(x) = xN1

1 gi(x2, . . . , xn)+ terms in which x1 has lower degree with coefficients being
polynomials in x2, . . . , xn.

Theorem 1 (Geometric Extension Theorem). If the leading coefficients gi(x2, . . . , xn) do not vanish
simultaneously at the point (a2, . . . , an) (i.e. (a2, . . . ,an) /∈ Z(g1, . . . ,gs)), then there exists some
a1 ∈ k such that the partial solution (a2, . . . , an) extends to the complete solution (a1, a2, . . . , an) ∈
Z(I).
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2. Invariant Theory

This is what my other talk is about. Invariant Theory studies the actions of groups on algebraic
varieties and their corresponding polynomial equations. The point it to talk about the polyno-
mials left invariant under action of a general linear group. We define the ring of invariants as
k[x1, . . . , xn]G the polynomials fixed by G. This is finitely generated by homogeneous polynomials
when G is a finite matrix group. To prove this we define the Reynold Operator which tells the
average effect of a group on a polynomial. Then Grobner bases allow us to discuss uniqueness of a
representation in terms of these generators. We can then talk about G orbits and all our favorite
techniques from algebra come in to give structure to the geometry. The invariant theory of finite
groups has an intimate connection with Galois Theory. Related, but much harder, is geometric
invariant theory.

3. Dimension Theory

The notion of dimension of a variety V should match up with its dimension in linear algebra (based
on points, lines, planes, etc). But to define this properly we’ll need to use the connection between
varieties and algebra. We first define the dimension of a ring.

Krull Dimension

Let R be a ring and p ⊂ R a prime ideal. We define the height of p as h(p) = sup{s ∈ Z | ∃ p0 ⊂
· · · ⊂ ps = p a chain of prime ideals in R ordered by strict containment}. We then define dimk R =
sup{h(p) | p ⊂ R is a prime ideal}

A useful fact is that if I is an ideal in k[x1, . . . , xn] then dimV (I) = dim(k[x1, . . . , xn]/I)

Example: V = C1 has I(V ) = 〈0〉. Clearly dim C1 = 1 and dimk C[x]/〈0〉 = dimk C[x] = 1 because
chains have maximum length 1.

Example: I = 〈y − x2〉 in C[x, y] has dimension 2 because C[x, y]/〈y − x2〉 ∼= C[x]

Algebraic Dimension

There is another way to define dimension. Recall that the transcendence degree of a field extension
L/K is the largest cardinality of an algebraically independent subset S of L over K (meaning the
elements of S do not satisfy any non-trivial polynomial equations with coefficients in K). We’ll
denote the transcendence degree of an extension as t deg.

Given a variety V , define k(V ) as the quotient field of I(V ). This means taking f
g for all f, g ∈

I(V ), g 6= 0. We may then define dima V = tdeg(k(V )) where this extension is clearly to be
considered over k since that’s where the coefficients come from. This notion of dimension measures
the number of independent rational functions that exist on V .

Example: dima(An
k) = n because I(An

k) = k[x1, . . . , xn] = k(An
k). This field has x1, . . . , xn all

algebraically independent.

Example: dim(V (y2− x3)) = 1 because k[x, y]/(y2− x3) ∼= k[t2, t3] and k(V ) ∼= k(t). This field has
t algebraically independent.

It’s not easy to show but it turns out that Krull Dimension agrees with Algebraic Dimension.

Dimension of a variety

We now return to the question of dimension of a variety. Let us first consider the case where V is
affine, i.e. contained in An

k . A coordinate subspace will be one generated by standard normal
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vectors ej . For every monomial ideal I ⊂ k[x1, . . . , xn] we get V (I) as a union of finitely many
coordinate subspaces.

Example: V (xz, yz) = V (x, y) ∪ V (z) is the xy-plane and the z-axis. It’s dimension is 2.

All of this holds over to the projective case, but we need the ideal to be homogeneous and we need to
grade by degree. The ring k[x0, . . . , xn] is naturally graded by degree as ⊕d≥0k[x0, . . . , xn]d where
each k[x0, . . . , xn]d is the vector space of homogeneous polynomials of degree d (the monomials of
degree d form a basis). The dimension of k[x0, . . . , xn]d is the number of monomials of degree d
up to scaling by constants (which don’t matter in the projective setting). This is the number of
(n+ 1)-tuples such that α0 + · · ·+ αn = d which is

(
n+d
n

)
.

The above grading holds over to the case after we mod out by a homogeneous ideal, but there
is no longer a simple way to count the dimension for different d. Indeed, we get a function in
d, called Hilbert’s Function HFJ(d) = dim((k[x0, . . . , xn]/J)d) = dim(k[x0, . . . , xn]d)− dim(Jd)
(last equality due to Rank-Nullity Theorem). The Hilbert function of a variety X is HFJ(X)(d). It
is a non-trivial theorem (due to Hilbert’s) that when d >> 0 the Hilbert function is a polynomial.
We call this polynomial Hilbert’s Polynomial and denote it HJ(d). This polynomial only takes
on integers values, but the polynomial does not necessarily have integer coefficients.

We use this to define the dimension of a variety X: dimX = degHJ(X). This also holds for an
affine variety: dimV = degHI(V )

Proposition 1. (1) Given homogeneous J , HJ(d) is an invariant (of morphisms of X(J) for
instance). So is its constant term and the leading coefficient.

(2) In the affine setting, HFI(d) = HFLT (I)(d) for all d. This then holds over to the Hilbert
Polynomial case.

(3) If k is algebraically closed and I is an ideal in k[x1, . . . , xn], then dimV (I) = degHI(d)

(4) If V1 ⊂ V2 then dimV1 ≤ dimV2

(5) dimV = 0 iff V is a finite point-set

(6) If W and V are varieties then dim(W ∪ V ) = max(dimV,dimW ). This is especially useful
for irreducible decompositions.

The Hilbert polynomial of a graded commutative algebra or graded module is a polynomial in one
variable that measures the rate of growth of the dimensions of its homogeneous components. Same
invariants as above. The idea for calculating HM is by approximating M with free modules.

The Hilbert polynomial of a graded commutative algebra S = ⊕d≥0Sd over a field k that is generated
by the finite dimensional space S1 is the unique polynomial HS(t) with rational coefficients such
that HS(n) = dimk Sn for all but finitely many positive integers n. Similarly, one can define the
Hilbert polynomial HM of a finitely generated graded module M , at least, when the grading is
positive.

Singularities

With dimension well-defined we can talk about singularities. We’ll call a variety X non-singular
at p if dim Spank{5f1(p), . . . ,5fm(p)} = n− dimX

A ring R is regular (i.e. non-singular) if for each maximal ideal m ⊂ R we have dimkm/m
2 =

dimR where k = R/m. Of course, this all has connections to singularities in affine space and it’s
another reason why the coordinate ring of a variety is so useful.
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4. Syzygies

Definition 2. If f1 . . . , fr ∈ k[x1, . . . , xn] then a syzygy is any r-tuple (h1, . . . , hr) where hi ∈
k[x1, . . . , xn] for all i and h1f1+· · ·+hrfr = 0. The set of syzygies of f1, . . . , fr forms a k[x1, . . . , xn]-
module

More generally, a syzygy is a relation between the generators of a module M . The set of all such
relations is called the “first syzygy module of M”. The set of relations between generators of the
first syzygy module is called the “second syzygy module of M”...... The syzygy modules of M are
not unique, for they depend on the choice of generators at each step.

Syzygies appear when studying invariant theory as a way to define the ideal of relations which
consists of polynomials which give relations among the polynomials which generate the ring of
invariants. Syzygies also pop up in Buchberger’s Algorithm because they account for the bad
cancellations that mess up the division algorithm. It is a fact that if M is finitely generated over
k[x1, . . . , xn], this process terminates after a finite number of steps; i.e., eventually there will be no
more syzygies. This is why the algorithm terminates. The generalizes version of this statement is
Hilbert’s Syzygy Theorem, which is really a result of commutative algebra and homological algebra.
To understand it we need Free Resolutions mentioned by Daniel in his last talk.

Definition 3. Given a (finite, graded S-)module, M , a free resolution of M is an exact sequence
(possibly infinite) of modules

· · · → Fn → · · · → F2 → F1 → F0 →M → 0

with all the Fi’s are free (S-)modules (i.e. they all have a free basis or a linearly independent
generating set). The exactness condition means ker di = im di+1 where di : Fi → Fi−1

This is most interesting for us when M is a graded module then each di is a degree 0 map.

Theorem 2 (Hilbert’s syzygy theorem). Let k be a field and M a finitely generated module over
the polynomial ring k[x0, . . . , xn]. Then there exists a free resolution of M of length at most n+ 1.

A free resolution is minimal if for each i, a basis of Fi−1 maps onto a minimal set of generators for
coker di under the quotient map. Minimal free resolutions are heavily studied. It is a fact that they
are unique up to isomorphism, and the theorem above says that they always have finite length.
Interestingly, Grobner bases generalize to the situation of finite modules defined over polynomial
rings and so Buchberger’s Algorithm gives a way to compute the minimal free resolution of a finite
S-module M .

5. Intersection Theory

Bezout’s Theorem

Recall from my last GSS talk:

Theorem 3 (Bezout’s Theorem). Let X and Y are two plane projective curves defined over a field
F (i.e. they are in P2

F ) that do not have a common component. Then the total number of
intersection points of X and Y with coordinates in an algebraically closed field E containing F ,
counted with their multiplicities, is equal to deg(X) deg(Y ).

(Draw a picture of two curves with an overlap and explain that this is what is meant by common
component)
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Discriminant

The discriminant of a polynomials is an invariant which is equal to zero if and only if the polynomial
has a multiple root in its splitting field. All day today let p(x) = anx

n + · · ·+ a0 and suppose this
has roots r1, r2, . . . , rk in the splitting field. Then the discriminant is a2n−2

n

∏
i<j (ri − rj)2. This

has been generalized far beyond polynomials and turns out to be a useful invariant all over algebraic
and analytic number theory. The discriminant of a quadratic ax2 + bx+ c is b2−4ac, which is what
appears under the radical in the quadratic formula and what determines if the quadratic has two
real roots, one real root, or no real roots. The discriminant of a cubic x3 + px + q is −4p3 − 27q2

which appears in the cubic equation.

Sylvester Matrix

The resultant is used to find common roots of polynomials. Let q(x) = bmx
m + · · · + b0. Then

the Sylvester matrix associated to p and q is then the (m + n) × (m + n) matrix obtained as
follows:

The first row is
(
an an−1 · · · a1 a0 0 · · · 0

)
The second row is the first row, shifted one column to the right; the first element of the row is
zero. The following (m − 2) rows are obtained the same way, still filling the first column with a
zero.

The (m + 1)-th row is
(
bm bm−1 · · · b1 b0 0 · · · 0

)
. The following rows are obtained the

same way as before using left shifts.

Thus, if we put n = 4 and m = 3, the matrix is:

Sp,q =



a4 a3 a2 a1 a0 0 0
0 a4 a3 a2 a1 a0 0
0 0 a4 a3 a2 a1 a0

b3 b2 b1 b0 0 0 0
0 b3 b2 b1 b0 0 0
0 0 b3 b2 b1 b0 0
0 0 0 b3 b2 b1 b0


This matrix alone is worth studying. For a taste of how interesting it is note that deg(gcd(p, q)) =
n+m− rankSp,q. But we are interested in the Sylvester Matrix only to get the resultant.

Resultant

We define the resultant of p and q as the determinant of the Sylvester Matrix:

res(p, q) = amn b
n
m

 ∏
(x,y): p(x)=0, q(y)=0

(x− y)


Obviously computing resultants is not something you want to do by hand or by computer. But
having resultants does make your life easier because they have some cool properties:

(1) The resultant is zero iff p(x) and q(x) have a non-constant common factor.

(2) When q is separable (i.e. all of its irreducible factors have distinct roots k), res(p, q) =∏
p(x)=0 q(x)

(3) res(p, q) = (−1)nm · res(q, p)

(4) res(p · r, q) = res(p, q) · res(r, q)
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(5) res(p(−x), q(x)) = res(q(−x), p(x))

(6) If f = p+ r ∗ q and deg f = n = deg p, then res(p, q) = res(f, q)

(7) If f,g,p,q have the same degree and f = a00 · p+ a01 · q, g = a10 · p+ a11 · q, then

res(f, g) = det
(
a00 a01

a10 a11

)n
· res(p, q)

(8) When f and g are curves in A2 viewed as polynomials in x with coefficients in y (i.e. viewed
in (k[x])[y]) then res(f, g) is a polynomial in y whose roots are the y-coordinates of the
intersection of the curves.

The resultant also gives an alternate way to define the discriminant of p. First, take the derivative
p′, then find the resultant of p and p′. This entails taking the determinant of the matrix

an an−1 an−2 . . . a1 a0 0 . . . . . . 0
0 an an−1 an−2 . . . a1 a0 0 . . . 0
...

...
0 . . . 0 an an−1 an−2 . . . a1 a0

nan (n− 1)an−1 (n− 2)an−2 . . . 1a1 0 . . . . . . 0
0 nan (n− 1)an−1 (n− 2)an−2 . . . 1a1 0 . . . 0
...

...
0 0 . . . 0 nan (n− 1)an−1 (n− 2)an−2 . . . 1a1


We then define D(p) = (−1)

1
2
n(n−1) 1

an
R(p, p′)

Many of these invariants are useful for solving problems.

p(x) = ax2 + bx+ c so p′(x) = 2ax+ b and we have n = 2,m = 1, n+m = 3. Thus, the Sylvester
Matrix is 3× 3: a b c

2a b 0
0 2a b


The determinant is ab2 +0+4a2c−0−2ab2−0 = 4a2c−ab2. Thus, D(p) = (−1)

1
2
2(2−1) 1

aR(p, p′) =
(−1)( 1

a)(4a2c− ab2) = b2 − 4ac as desired.

Grassmannians

Define G(r, n) = {r dimensional subspaces of An}. Define GrPn = {r-planes in Pn} = G(r+ 1, n+
1).

(1) G(1, n+ 1) = Pn

(2) G(2, 3) = G1P2 = (P2)∗ ∼= P2 = {lines in 2-space}.

(3) Gn−1Pn = {hyperplanes in Pn} = (Pn)∗ ∼= Pn

A line in G(a, b) can be written as an a× b matrix of basis vector rows. A line L can be represented
by an r×n matrix in G(r, n). This allows us to represent L by MA where M is an r× r invertible
matrix.

In this way G(r, n) can be thought of as an r(n − r)-dimensional manifold via G(r, n) = {r × n
matrices of A of rank r}/(A ∼MA)
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Plücker Embedding

We can embed G(r, n) as a projective algebraic set in PN where N =
(
n
r

)
− 1. The idea here is to

represent L by its list of r × r minor determinants:

(1) Fix a matrix representative for each L ∈ G(r, n)

(2) For column indices 1 ≤ j1 < · · · < jr ≤ n define Lj1,...,jr as an r × r submatrix formed
by columns j1, . . . , jr. Take all possible determinants of these submatrices (this gives

(
n
r

)
determinants)

(3) Each determinant becomes a coordinate in PN , starting with the zero coordinate. Call this
point Λ(L)

It is a fact (but I won’t show it) that choosing a different representative for L only changes Λ(L)
by a scalar multiple, i.e. this process is well-defined.

For each I : 1 ≤ i1 < · · · < ir−1 ≤ n and each J : 1 ≤ j1 < · · · < ji+1 ≤ n define

PI,J =
r+1∑
λ=1

(−1)λx(i1, . . . , ir−1, jλ)x(j1, . . . , ĵλ, . . . , jr+1)

Where ĵλ means omit jλ. This thing will be called a Plücker relation and it’s a polynomial. The
variety associated to the collection of these PI,J is exactly the image of G(r, n) under the Plücker
Embedding.

More generally, Schubert Calculus deals with solving various counting problems of projective ge-
ometry (part of enumerative geometry). Schubert cells are locally closed sets in a Grassman-
nian defined by conditions of incidence of a linear subspace in projective space with a given flag
A0 ( A1 ( · · · ( Ar. A Schubert variety is a certain subvariety of a Grassmannian, usually with
singular points. Intersection theory of these cells answers questions like

“How many lines meet four given lines in R3?” (answer: consider surface of lines meeting L1, L2, L3.
It’s a quadric hypersurface and has 2 points of intersection with L4 corresponding to two lines)

Examples:

The Plücker embedding of G(1, 2) is P1 because N =
(
2
1

)
− 1 = 2− 1 = 1 and because by definition

G(1, 2) = G0P1 the space of points in P1. The Plücker embedding of G(1, n) is Pn−1 because
N =

(
n
1

)
− 1 = n− 1 and because by definition this space is all lines through the origin in An, i.e.

all points in Pn−1.

For G(2, 4) we have N =
(
4
2

)
− 1 = 5. We can label the points x12, x13, x14, x23, x24, x34 (there are

six because P5 have six coordinates). Then the Plücker relation is x12x34−x13x24 +x14x23 and the
image sits in P5. Moreover, any line L ∈ G(2, 4) can be written as(
a1 a2 a3 a4

b1 b2 b3 b4

)
The Plücker embedding gives (a0b1−a1b0, a0b2−a2b0, a0b3−a3b0, a1b2−a2b1, a1b3−a3b1, a2b3−a3b2).
The surface is a 4-dimensional manifold.
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