Localization and Ring Objects in Model Categories

David White

Wesleyan University

March 31, 2012

Localization Overview

2 Model Categories and Bousfield Localization

Monoidal results

Localization: systematically adjoin multiplicative inverses

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get: $S^{-1}R = R \times S / \sim$, e.g.

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Also get: universal ring homomorphism $R \to S^{-1}R$ taking S to units

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Also get: universal ring homomorphism $R \to S^{-1}R$ taking S to units, i.e. for any $f: R \to E$ taking S to units

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Also get: universal ring homomorphism $R \to S^{-1}R$ taking S to units, i.e. for any $f: R \to E$ taking S to units

 $\exists !g$ making diagram commute:

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Also get: universal ring homomorphism $R \to S^{-1}R$ taking S to units, i.e. for any $f: R \to E$ taking S to units

 $\exists !g$ making diagram commute:

How to generalize to categories? (No mult. inverses)

Localization: systematically adjoin multiplicative inverses

Setup: R = ring, $S \subset R$ multiplicatively closed

Get:
$$S^{-1}R = R \times S / \sim$$
, e.g. $(\mathbb{Z}^{\times})^{-1}\mathbb{Z} = \mathbb{Q}$, $\langle 2 \rangle^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$

Also get: universal ring homomorphism $R \to S^{-1}R$ taking S to units, i.e. for any $f: R \to E$ taking S to units

 $\exists !g$ making diagram commute:

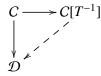
How to generalize to categories? (No mult. inverses)

Inverting s is the same as inverting the map $\mu_s(r) = s \cdot r$

Setup: C = category, T = set of morphisms.

Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.

Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.



Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.

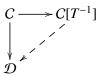
$$obj(C[T^{-1}]) = obj(C)$$

Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.

$$obj(C[T^{-1}]) = obj(C)$$

Example: Top[$\{\text{homotopy equivalences}\}^{-1}$] = HoTop

Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.

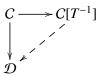


$$obj(C[T^{-1}]) = obj(C)$$

Example: $Top[\{homotopy equivalences\}^{-1}] = HoTop$

Adjoining f^{-1} forces us to adjoin many $g \circ f^{-1} \& f^{-1} \circ h$

Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.

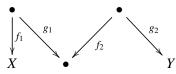


$$obj(C[T^{-1}]) = obj(C)$$

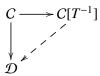
Example: $Top[\{homotopy equivalences\}^{-1}] = HoTop$

Adjoining f^{-1} forces us to adjoin many $g \circ f^{-1} \& f^{-1} \circ h$

$$C[T^{-1}](X, Y) = \text{Zigzags}/\sim$$



Setup: C = category, T = set of morphisms. Get: $C[T^{-1}]$ and universal $C \to C[T^{-1}]$ taking T to isomorphisms.



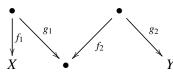
$$obj(C[T^{-1}]) = obj(C)$$

Example: $Top[\{homotopy equivalences\}^{-1}] = HoTop$

Adjoining f^{-1} forces us to adjoin many $g \circ f^{-1} \& f^{-1} \circ h$

$$C[T^{-1}](X, Y) = \text{Zigzags}/\sim$$

Oops! Zigzags is not a set



Can't localize an arbitrary C at an arbitrary T

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Can't localize an arbitrary C at an arbitrary T

Let C = M have all small (co)limits and distinguished classes of maps W, \mathcal{F}, Q satisfying some axioms.

Called: weak equivalences,

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$),

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W then $\mathcal{M}[W^{-1}] = \text{Ho}(\mathcal{M})$ exists and has the desired universal property

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W then $\mathcal{M}[W^{-1}] = \text{Ho}(\mathcal{M})$ exists and has the desired universal property

Some model categories: Spaces,

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W then $\mathcal{M}[W^{-1}] = \text{Ho}(\mathcal{M})$ exists and has the desired universal property

Some model categories: Spaces, Spectra,

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W then $\mathcal{M}[W^{-1}] = \text{Ho}(\mathcal{M})$ exists and has the desired universal property

Some model categories: Spaces, Spectra, Ch(*R*),

Can't localize an arbitrary C at an arbitrary T

Let $C = \mathcal{M}$ have all small (co)limits and distinguished classes of maps $\mathcal{W}, \mathcal{F}, Q$ satisfying some axioms.

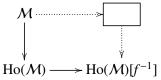
Called: weak equivalences, fibrations (e.g. $F \rightarrow E \rightarrow B$), cofibrations (e.g. satisfying homotopy extension property)

If we set T = W then $\mathcal{M}[W^{-1}] = \text{Ho}(\mathcal{M})$ exists and has the desired universal property

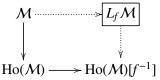
Some model categories: Spaces, Spectra, Ch(*R*), *G*-spectra (many model category structures)

Suppose we want to invert $f \notin W$. Because Ho(M) is nice:

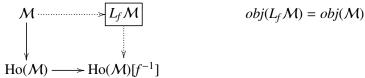
Suppose we want to invert $f \notin \mathcal{W}$. Because $Ho(\mathcal{M})$ is nice:



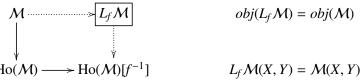
Suppose we want to invert $f \notin \mathcal{W}$. Because $Ho(\mathcal{M})$ is nice:



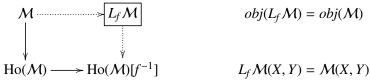
Suppose we want to invert $f \notin \mathcal{W}$. Because $Ho(\mathcal{M})$ is nice:



Suppose we want to invert $f \notin W$. Because Ho(M) is nice:

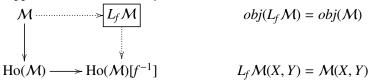


Suppose we want to invert $f \notin W$. Because Ho(M) is nice:



Under standard hypotheses on \mathcal{M} , $L_f \mathcal{M} = \text{model category}$.

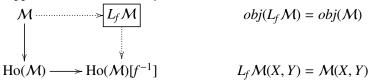
Suppose we want to invert $f \notin W$. Because Ho(M) is nice:



Under standard hypotheses on \mathcal{M} , $L_f \mathcal{M} = \text{model category}$.

$$W_f = \langle f \cup W \rangle \supset W$$

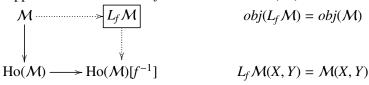
Suppose we want to invert $f \notin W$. Because Ho(M) is nice:



Under standard hypotheses on \mathcal{M} , $L_f \mathcal{M}$ = model category.

$$W_f = \langle f \cup W \rangle \supset W, Q_f = Q$$

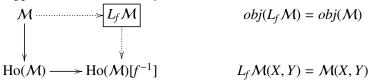
Suppose we want to invert $f \notin W$. Because Ho(M) is nice:



Under standard hypotheses on \mathcal{M} , $L_f \mathcal{M} = \text{model category}$.

$$W_f = \langle f \cup W \rangle \supset W, Q_f = Q, \mathcal{F}_f \subset \mathcal{F}$$

Suppose we want to invert $f \notin \mathcal{W}$. Because $Ho(\mathcal{M})$ is nice:



Under standard hypotheses on \mathcal{M} , $L_f \mathcal{M} = \text{model category}$.

$$W_f = \langle f \cup W \rangle \supset W, Q_f = Q, \mathcal{F}_f \subset \mathcal{F}$$

Note: localizing a set T of maps is the same as localizing $f = \coprod_{g \in T} g$, so it's fine to look at just L_f

 L_f preserves many standard properties of model categories.

 L_f preserves many standard properties of model categories. Does it preserve monoids?

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} .

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011).

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S,

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$,

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$, $\eta : S \to E$,

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$, $\eta : S \to E$, commutative diagrams

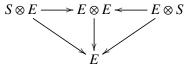
 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$, $\eta : S \to E$, commutative diagrams

$$E \otimes E \otimes E \longrightarrow E \otimes E$$

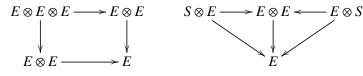
$$\downarrow \qquad \qquad \downarrow$$

$$E \otimes E \longrightarrow E$$



 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

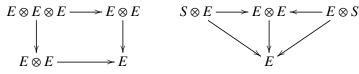
Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$, $\eta : S \to E$, commutative diagrams



Morally: a(bc) = (ab)c and $1 \cdot a = a = a \cdot 1$

 L_f preserves many standard properties of model categories. Does it preserve monoids? Yes for A_{∞} and E_{∞} . No for strict commutative (Hill, 2011). Goal: Figure out when it does

Given associative $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ with unit S, a monoid E has $\mu : E \otimes E \to E$, $\eta : S \to E$, commutative diagrams

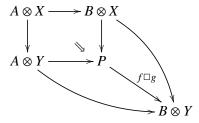


Morally: a(bc) = (ab)c and $1 \cdot a = a = a \cdot 1$

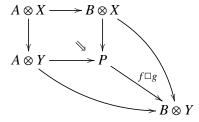
Commutative *E* also has twist $\tau : E \otimes E \to E \otimes E$.

• Pushout Product Axiom: Given $f: A \to B$ and $g: X \to Y$ cofibrations, $f \Box g$ is a cofibration. If $f \in W$ then $f \Box g \in W$.

• Pushout Product Axiom: Given $f: A \to B$ and $g: X \to Y$ cofibrations, $f \Box g$ is a cofibration. If $f \in W$ then $f \Box g \in W$.

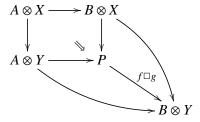


• Pushout Product Axiom: Given $f: A \to B$ and $g: X \to Y$ cofibrations, $f \Box g$ is a cofibration. If $f \in W$ then $f \Box g \in W$.



② Unit Axiom: For cofibrant X, $QS \otimes X \rightarrow S \otimes X \cong X$ is in W

• Pushout Product Axiom: Given $f: A \to B$ and $g: X \to Y$ cofibrations, $f \Box g$ is a cofibration. If $f \in W$ then $f \Box g \in W$.



- **②** Unit Axiom: For cofibrant X, $QS \otimes X \rightarrow S \otimes X \cong X$ is in W
- **③** Monoid Axiom: Transfinite compositions of pushouts of maps in $\{\text{Trivial-Cofibrations } \otimes id_X\}$ are weak equivalences.

(1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)

- (1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)
- (3) implies the monoids $Mon(\mathcal{M})$ form a model category.

- (1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)
- (3) implies the monoids $Mon(\mathcal{M})$ form a model category.

 $X \in \operatorname{Ho}(\mathcal{M})$ is a *strict monoid* if there is a monoid $R \in \mathcal{M}$ commuting "on the nose" such that $R \cong X$ in $\operatorname{Ho}(\mathcal{M})$.

- (1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)
- (3) implies the monoids Mon(M) form a model category.

 $X \in \text{Ho}(\mathcal{M})$ is a *strict monoid* if there is a monoid $R \in \mathcal{M}$ commuting "on the nose" such that $R \cong X$ in $\text{Ho}(\mathcal{M})$.

Localization *preserves strict monoids* if the composition $Ho(\mathcal{M}) \to Ho(L_f \mathcal{M}) \to Ho(\mathcal{M})$ takes X to a strict monoid

Monoidal results

- (1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)
- (3) implies the monoids Mon(M) form a model category.

 $X \in \text{Ho}(\mathcal{M})$ is a *strict monoid* if there is a monoid $R \in \mathcal{M}$ commuting "on the nose" such that $R \cong X$ in $\text{Ho}(\mathcal{M})$.

Localization *preserves strict monoids* if the composition $Ho(\mathcal{M}) \to Ho(L_f \mathcal{M}) \to Ho(\mathcal{M})$ takes X to a strict monoid

Theorem

If $L_f \mathcal{M}$ satisfies (1)-(3) then L_f preserves strict monoids

- (1) & (2) \Rightarrow Ho(\mathcal{M}) is monoidal (\otimes is a Quillen bifunctor)
- (3) implies the monoids Mon(M) form a model category.

 $X \in \text{Ho}(\mathcal{M})$ is a *strict monoid* if there is a monoid $R \in \mathcal{M}$ commuting "on the nose" such that $R \cong X$ in $\text{Ho}(\mathcal{M})$.

Localization *preserves strict monoids* if the composition $Ho(\mathcal{M}) \to Ho(L_f \mathcal{M}) \to Ho(\mathcal{M})$ takes X to a strict monoid

Theorem

If $L_f \mathcal{M}$ satisfies (1)-(3) then L_f preserves strict monoids

 $L_f \mathcal{M}$ can fail Pushout Product Axiom: $\mathcal{M} = \mathbb{F}_2[\Sigma_3]$ -mod and $f : \mathbb{F}_2 \to \mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{F}_2$ taking 1 to (1, 1, 1)

Preservation of Monoidal Structure

The Unit Axiom is trivially preserved by L_f because $Q_f = Q$

Preservation of Monoidal Structure

The Unit Axiom is trivially preserved by L_f because $Q_f = Q$

Theorem

If M is a cofibrantly generated, left proper, monoidal model category with cofibrant objects flat and generating (trivial) cofibrations I and J having cofibrant domains, and if $f \otimes K$ is an f-local equivalence for all (co)domains K of maps in $I \cup J$, then $L_f M$ is a monoidal model category with cofibrant objects flat and domains of $I_f \cup J_f$ cofibrant.

Preservation of Monoidal Structure

The Unit Axiom is trivially preserved by L_f because $Q_f = Q$

Theorem

If M is a cofibrantly generated, left proper, monoidal model category with cofibrant objects flat and generating (trivial) cofibrations I and J having cofibrant domains, and if $f \otimes K$ is an f-local equivalence for all (co)domains K of maps in $I \cup J$, then $L_f M$ is a monoidal model category with cofibrant objects flat and domains of $I_f \cup J_f$ cofibrant.

Theorem

Assuming further that \mathcal{M} is weakly finitely generated, that f has SSet-small (co)domain, and a technical condition on $Q \otimes -$, then $L_f \mathcal{M}$ satisfies the monoid axiom.

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

John Harper suggested a Σ_n -equivariant monoid axiom

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

John Harper suggested a Σ_n -equivariant monoid axiom: Transfinite compositions of pushouts of maps $J^{\square n} \otimes_{\Sigma_n} id_X$ are in $\mathcal{W} \ \forall \ X$

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

John Harper suggested a Σ_n -equivariant monoid axiom: Transfinite compositions of pushouts of maps $J^{\square n} \otimes_{\Sigma_n} id_X$ are in $\mathcal{W} \ \forall \ X$

This gets CommMon(–) to be a model category, and should work for more general coloured operads

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

John Harper suggested a Σ_n -equivariant monoid axiom: Transfinite compositions of pushouts of maps $J^{\Box n} \otimes_{\Sigma_n} id_X$ are in $\mathcal{W} \ \forall \ X$

This gets CommMon(–) to be a model category, and should work for more general coloured operads

Next: L_f preserves Σ_n -equivariant monoid axiom

Theorem

If $L_f \mathcal{M}$ is a monoidal model category with CommMon($L_f \mathcal{M}$) a model category, then L_f preserves strict commutative monoids

John Harper suggested a Σ_n -equivariant monoid axiom: Transfinite compositions of pushouts of maps $J^{\square n} \otimes_{\Sigma_n} id_X$ are in $\mathcal{W} \ \forall \ X$

This gets CommMon(–) to be a model category, and should work for more general coloured operads

Next: L_f preserves Σ_n -equivariant monoid axiom

After that: Applying results to examples, especially *G*-spectra.

References

- Carles Casacuberta, Javier J. Gutiérrez, Ieke Moerdijk and Rainer Vogt, Localization of algebras over coloured operads, Proceedings of the London Mathematical Society 101 (2010), 105-136
- Carles Casacuberta, personal communication
- John Harper, personal communication
- John Harper, Homotopy theory of modules over operads and non-Sigma operads in monoidal model categories, J. Pure Appl. Algebra, 214(8):1407-1434, 2010
- Michael Hill, Notes from Lecture at Oberwolfach, September 19, 2011
- Stefan Schwede and Brooke Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000), 491-511.
- Brooke Shipley, A convenient model category for commutative ring spectra,
 Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemp. Math., pages 473483. Amer.

David White Wesleyan University