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1. Localization in algebra

Localization is a systematic way of adding multiplicative inverses to a ring, i.e. given
commutativeR and multiplicative S ⊂ R (contains 1, closed under ∗, doesn’t contain 0), localization
constructs S−1R and a ring homomorphism j : R → S−1R that takes elements in S to units in
S−1R. It’s universal w.r.t. this property. Recall that S−1R is just R × S/ ∼ where (r, s) is really
r/s and ∼ says you can reduce to lowest terms without leaving the equivalence class. Ring just as
Q is. The map j takes r 7→ r/1, and given f you can set g(r/s) = f(r)f(s)−1.

Examples: (Z, 〈2〉) 7→ Z[1
2 ]. (Z,Z− pZ) 7→ Z(p) = {ab | p 6 | b}

This is NOT the right definition to a category theorist (no operation, so what’s a “multiplicative
inverses?”). Better: systematic way of formally inverting maps. We can’t do this for all
maps, but we can do it for maps of the form µs : R→ R which take r 7→ s · r for an element s, and
that’s equivalent to inverting the element s.

2. Localization of Categories

Thinking of localization as “formally inverting maps” then we want to pick a set T of morphisms
and create a universal functor C → C[T−1] where those morphisms land in the class of isomorphisms,
i.e. F (f) is an iso for all f ∈ T . Universal means we add the smallest number of new morphisms
possible (i.e. just those generated by T−1 via composition).

Example: If C is Top and T = {homotopy equivalences}, then C[T−1] is the homotopy category
HoTop.

To do this in general, note that given f : X → Y in T and g : X → Z, we get g ◦ f−1 : Y → Z,
i.e. we have to generate new morphisms based on the inverses I added. So what are the morphisms
C[T−1] between X and Y ? You can get there by any zig-zag, so you want to define C[T−1](X,Y ) =
{X ← • → • · · · • → Y }/ ∼ where this relation at least allows us to add in pairs of identities or
compose two when it’s allowed. PROBLEM: the collection of zigzags X ← • → • · · · • → Y is not
a set, so you can’t mod out by an equivalence relation. Even in the category Set we can pick any
set to be •, and there’s more than a set worth of choices there.

We’ve faced this problem before. HoTop is not concretizable because you can have a class of
morphisms between two objects. So to get around our problem here, we need to make C look more
like Top and make T look like homotopy equivalences.
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3. Model Categories

To get around this you are forced into homotopy theory again. You need restrictions on the
types of T you can invert. It worked for Top, so let’s generalize the properties we had there. This
leads to the concept of a Model Category (Quillen 1967). The idea is you have a special class of maps
W called the weak equivalences which satisfy some rules and generalize the homotopy equivalences
above. But algebraic topology is about more than just homotopy equivalences.

For instance, we care about vector bundles E → X (where the fibers are vector spaces) and more
general fiber bundles F → E → X. For these, the map E → X is a fibration. For example,
O(n)→ O(n)/O(n− 1). More generally, the quotient of any two Lie groups.

Another thing topology studies is when one space X can be built from another A by adjoining
cells. We use this for example to write Hn(X,A) ∼= Hn(X/A). Call such a map A → X a
cofibration.

Quillen’s brilliant idea was to focus on just these three types of maps, pick out their most important
properties, and use these properties to make a definition. A Model Category is a category M
with distinguished classes W,F ,Q satisfying those properties. The localization described above
for spaces works on any model category, i.e. you get a concrete way to make a universal functor
M → HoM taking W to isomorphisms. So functors M → C which do this induce functors
HoM→ C

Model categories let you apply ideas of homotopy theory much more generally. This transforms
algebraic topology from the study of topological spaces into a general tool useful in many areas
of mathematics. If you saw Krzystof Kapulkin’s talk, then you should know that model
categories were lurking in the background. An object X is fibrant if the map X → ∗ is a fibration.
Similarly, in Mike Hill’s talk the categories of spectra and equivariant spectra have model category
structures.

This viewpoint let’s you do homotopy theory in algebraic geometry, e.g. on the category of Schemes.
Voevodsky won a fields medal in 2002 by creating the motivic stable homotopy category from
a model category structure on an enlargement of Schemes to resolve the Milnor Conjecture. The
∞-categories of Joyal, much studied by Jacob Lurie, are a way to study categories of categories.
Homotopy plays a motivating role: model categories are one way to think about (∞, 1)-categories,
and they are very helpful for doing computations and constructions. Results in model categories
are prized because they suggest things which should be true for (∞, n)-categories.

4. Bousfield Localization

The localization above always lands in a homotopy category and always takes exactly the zig-zags
of weak equivalences to isomorphisms. What if we want to invert some map which is not a weak
equivalence? Let f be a map in M. Because the homotopy category is nice (admits a calculus of
fractions), we can do it. Bousfield’s Theorem (1978) says you can do this and you still get a
model category structure, but it’s technical and you have to be careful with how you generate W ′
from f . The category LfM is called the Bousfield Localization of M with respect to f . You
might think we’ve lost something by just considering one map f , but we haven’t. If you have a set
of maps T you wish to localize, it’s enough to localize f =

∐
α∈T α.
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5. What does L preserve?

The localization functor Lf preserves the properties of being: Left Proper, Combinatorial (some-
times), Cellular , Enriched, Simplicial, Almost finitely generated (sometimes)

Last year I gave a talk on ring objects in the category of symmetric spectra. My advisor, Mark
Hovey, wrote one of two standard references on Model Categories. It should not come as a surprise
then that I’m thinking about ring objects in monoidal model categories. One question I want to
answer is when Lf preserves ring objects and commutative ring objects.

Mike Hill has an example in G-spectra which shows that strict commutative ring objects need
not be preserved by Bousfield localization. He also has a theorem giving some conditions on a
localization functor which force it to preserve strict commutative ring objects.

6. Monoidal Model Categories and Commutative Ring Objects

In a category with a product bifunctor ⊗ : C × C → C which is associative (i.e. ⊗ ◦ (⊗ × 1) ∼=
⊗ ◦ (1 × ⊗)) and has a unit object S (i.e. S ⊗ E ∼= E ∼= E ⊗ S), we can discuss objects E
which act like rings, i.e. have maps µ : E × E → E and η : S → E satisfying some diagrams,
e.g. associativity and unit. A commutative ring object is one which also has a twist map
τ : E ⊗ E → E ⊗ E and more diagrams. Note that every ring R has a map Z → R and every
function f : X → X has a map from the identity to that function by applying 1 on domain and f
on codomain.

If you only care about diagrams commuting up to infinitely coherent homotopy, then the answer
has been known for a long time: localization preserves A∞ and E∞ ring objects. Formally,
going from [E] ∈ HoM to [E′] ∈ HoLfM and then to [E′′] ∈ HoM you’ll have a representing
object for [E′′] which is A∞ or E∞ as [E] is.

strict ring object , strict commutative ring object

7. Preservation of Monoidal Model Categories

Standard hypotheses: (cocomplete, cofibrantly generated, left proper, almost finitely
generated, can choose domains and codomains of generating (trivial) cofibrations to
be cofibrant) and also when one is in a monoidal situation (pushout product axiom, unit axiom,
monoid axiom, cofibrant objects flat). To work in this area and get results with homotopy theoretic
meaning, we need

(1) & (2) ⇒ Ho(M) is monoidal (⊗ is a Quillen bifunctor)
(3) implies the monoids Mon(M) form a model category.

Theorem 1. If LfM satisfies (1)-(3) then Lf preserves strict monoids

I found that even under all these hypotheses, LfM could fail to be a monoidal model category,
though it is always a model category and monoidal. The coherence fails if M = F2[Σ3]-mod and
f : F2 → F2 ⊕ F2 ⊕ F2 taking 1 to (1, 1, 1)

If we place an assumption on the map f to be inverted (just like Quillen had to do), we can get
around this.
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Theorem 1. Suppose M is a cofibrantly generated, left proper, monoidal model category in which
cofibrant objects are flat. Let I and J denote the generating cofibrations and generating trivial
cofibrations respectively. Suppose that the domains of maps in I ∪ J are cofibrant. If f is a
cofibration such that f ⊗K is an f-local equivalence as K runs through the domains
and codomains of maps in I∪J, then the Bousfield localization LfM is a cofibrantly generated,
left proper, monoidal model category in which cofibrant objects are flat. Furthermore, the domains
of the generating cofibrations and generating trivial cofibrations in M are cofibrant.

Similarly, the monoid axiom can fail, so we add a hypothesis about how the cofibrations behave
(which makes M a little bit more like Top):

Definition 1. A homotopical cofibration is a map g : A→ B such that every pushout square with
g at the top (i.e. g pushed out by some map A → W ) is a homotopy cofiber square, i.e. the map
from Z ′ → Z is a weak equivalence in the following diagram:

QA �
� //

��

""

QB

!!

��

A
g //

��

B

��

QW //

!!

Z ′

!!
W // Z

Theorem 2. Suppose M is a cofibrantly generated, left proper, weakly finitely generated, monoidal
model category in which cofibrant objects are flat. Suppose “cofibrations ⊗X ⊂ homotopical
cofibrations for any X”. Suppose that f has SSet-small domain and codomain. Then
LfM satisfies the monoid axiom.

This gives a model category structure on Mon(M) and Mon(LfM). We can thus ask the question
of when LT (E) is a (commutative) ring object.

Theorem 3. Under the hypotheses from the two theorems above, Lf preserves ring objects (of
course, this really means Lf then Uf going back to M)

8. Commutative Monoids

Theorem 2. If LfM is a monoidal model category with CommMon(LfM) a model category, then
Lf preserves strict commutative monoids

We are trying to find a model category structure on CommMon(M) and on CommMon(LfM). If
we can get this, then the proof above will generalize and tell us that Lf preserves commutative
ring objects. Σn-equivariant monoid axiom: Transfinite compositions of pushouts of maps
J�n ⊗Σn X ⊂ W for all X

This implies pushouts of maps Qn ∧X → L∧n ∧X are trivial cofibrations for all X. Some debate
with Hovey. Might need pushouts of cubes with X’s interspersed, e.g. X ∧K ∧X ∧L · · · ∧X. This
would require a slightly different Σn-equivariant monoid axiom.

Next: Lf preserves Σn-equivariant monoid axiom. Then: Generalize to coloured operads.
After that: Applying results to examples, especially G-spectra.
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