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1. Introduction

Homotopy theorists have traditionally studied topological spaces and used methods which rely heavily on
computation, construction, and induction. Proofs often go by constructing some horrendously complicated
object (usually via a tower of increasingly complicated objects) and then proving inductively that we can
understand what’s going on at each step and that in the limit these steps do what is required. For this
reason, a homotopy theorist need the freedom to make any construction he wishes, e.g. products, subobjects,
quotients, gluing towers of spaces together, dividing out by group actions, moving to fixed points of group
actions, etc.

Over the past 50 years tools have been developed which allow the study of many different categories. The
key tool for this is the notion of a model category, which is the most general place one can do homotopy
theory. Model categories were introduced by the Fields Medalist Dan Quillen, and the best known reference
for model categories is the book Model Categories by Mark Hovey. Model categories are defined by a list
of axioms which are all analogous to properties that the category Top of topological spaces satisfies. The
most important property of a model category is that it has three distinguished classes of morphisms–called
weak equivalences, cofibrations, and fibrations–which follow rules similar to the classes of maps with those
names in the category Top (so the homotopy theory comes into play by inverting the weak equivalences to
make them isomorphisms). The fact that homotopy theorists need to be able to do lots of constructions is
contained in the axiom thatM must be complete and cocomplete. We’ll discuss these terms in more detail
later on.

Based on the fact that all the model category axioms come from topological spaces, one might think that the
only examples of model categories are topological things like simplicial sets. It’s true that these categories
are examples of model categories, but the surprising fact is that lots of other categories with no a priori
connection to topology also admit model category structures. For example, the category chain complexes
of modules over a ring admits a model structure, and this has been used to do computations which were not
possible without it (including the notion of Andre-Quillen cohomology). Another example is the category
of sets (which admits exactly 9 model structures), the topos of directed graphs, most any presheaf category,
the theory of flows in computer science, and a plethora of abelian categories which admit Ext and Tor
functors which behave nicely (c.f. Hovey’s theory of Cotorsion Pairs). The purpose of this paper is to
explore how one might do homotopy theory on manifold and Lie groups, and in particular to explore the
notion of cocompleteness in these categories. We’ll begin with the requisite category theory, then discuss
the work of a different Fields Medalist on finding a model structure on the category of schemes, and then
discuss how one might do something analogous for manifolds and Lie groups (and some alternative ways to
get around the cocompleteness issue).

2. Category Theory Background

Let C be a category (i.e. it has a class of objects and a class of morphisms satisfying the usual rules). Let
J be a small category (i.e. ob(J) and mor(J) are sets rather than classes). A diagram of type J in C is a

Date: December 17, 2012.
1



2 DAVID WHITE

functor F : J → C. We say J is the indexing category for the diagram. This definition means F picks out an
object of C for each j ∈ ob(J) and then assigns C-morphisms F( f ) for each J-morphism. For example, here
is an example for J and the corresponding diagram of type J in some C:

•
f //

g

��

• A
F( f ) //

F(g)
��

B

• C

Here A, B,C ∈ C are the images of the corresponding J-objects on the left. Here are two more exam-
ples:
• // • // • // . . . A1 // A2 // A3 // . . .

•
→
→ • A

→
→ B

Returning to the general picture, let F be a diagram of type J in C. Informally, the colimit of such a diagram
is the object of C which the diagram is “trying to be” in the same way that a limit of a sequence is the
number that the sequence is trying to be. Formally, the colimit of F is an object L ∈ C which has maps
φX : F(X)→ L for each X ∈ J such that for any f : X → Y in J, φY ◦ F( f ) = φX . Furthermore, this object L
is universal in the sense that if N is any other object in C which satisfies the condition we just placed on L
(i.e. has maps from all elements in the diagram, commuting with the diagram’s structure maps) then there is
a unique map L → N. This universality is saying that L is the “closest” object the diagram maps to. In the
first example above, the diagram with colimit included and universality demonstrated looks like:

A
f //

h
�� u

B

g
��

��

C

//

k // B
∐

A C

##
N

Here the dotted arrow exists by universality because of the existence of the curved arrows. This diagram is
commutative, which means the two paths from A to B

∐
A C are equal (i.e. g ◦ f = k ◦ h), the two from B to

N are equal, and the two from C to N are equal. The object B
∐

A C is called the pushout of f and h, and
the arrow u is notation to let us know this is a pushout diagram. Analyzing pushout diagrams is part of the
bread-and-butter work of anyone studying model categories and operads. The object B

∐
A C is a copy of B

glued together with a copy of C over the copy of A which sits in both. Thinking of pushouts and colimits
as gluing can be a useful point of view, and helps clarify why homotopy theorists want categories with all
colimits. The symbol

∐
without a subscript means disjoint union, and is known as the coproduct.

The colimit of the second example above is called the direct limit or inductive limit by algebraists. This
is a confusing piece of terminology because it means the inverse limit in algebra is then an example of a
categorical limit (where all arrows are reversed so it’s the “closest” object which maps to the diagram). The
easiest way for me to remember the difference between colimits and limits is to remember that coproduct is
a colimit and product is a limit. The product maps to both factors, just like the limit does. The coproduct
is usually the disjoint union of the objects, and all objects map to it by inclusion. A category is called
cocomplete if it has colimits for all diagrams coming from small indexing categories J.

The colimit in the third example is called the coequalizer of the two arrows. The diagram with the colimit
included looks like A

→
→ B→ C. One place this type of colimit arises in practice is the tensor product. If R

is a commutative ring and M and N are R-modules, then we can compute the tensor product M ⊗R N as the
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coequalizer of the diagram M
∐

R
∐

N
→
→ M

∐
N where one of the two maps is the right-action of R on

M (i.e. takes M
∐

R → M) and the other is the left-action of R on N (taking R
∐

N → N). The universal
property of coequalizer exactly says that one can move multiplication by r ∈ R across the tensor product,
i.e. m ⊗ rn = mr ⊗ n.

A final example of colimit which we’ll discuss in more detail describes a group action on an object of C. So
let G be a finite group and let the indexing category J be the category G which has one object, |G| arrows
(one for each element of the group), and composition law given by the group law (i.e. fσ ◦ fτ = fσ·τ). In this
case a functor F : G → C simply picks out one object M ∈ C and lets G act on M via which automorphisms
of M are assigned to which group elements g ∈ G. The definition of functor assures us that the action law
g1 · (g2 · m) = (g1 ∗ g2) · m is satisfied. In the category of smoooth manifolds, the fact that G sits inside
Aut(M) tells us G is isomorphic to a group of diffeomorphisms, so the action map is necessarily smooth
even though the group G need not be a Lie group or have a smooth structure. The colimit of this diagram is
the object M/ ∼ where we have identified m1 and m2 if there is some g such that g · m1 = m2. This object
is also known as the orbit space or space of coinvariants MG, and is an important object in equivariant
homotopy theory.

3. Colimits and Schemes

In 2002 Vladimir Voevodsky won the Field Medal for his proof of the Milnor Conjecture ([9]). The Milnor
Conjecture relates the Milnor K-theory (mod 2) of a field F of characteristic , 2 to the Galois cohomology
of F with coefficients in Z/2Z. Voevodsky’s proof required him to be able to do homotopy theory in the
category of schemes, so he could do motivic cohomology on abelian varieties. One problem is that this
category is not cocomplete. For example, [4] shows that there is colimit to the diagram Spec(k(t))

→
→

A1∐A1 in the category of schemes because if it did exist the colimit would be A1 with every closed point
doubled, which is too non-separated to be a scheme. Interestingly, the category of affine schemes over a
field k does have all small colimits because its opposite category k-algebras has all limits. However, even
in this case one does not get the “right” colimits because the colimits miss important geometric information
(see [3], Example 2.1.1).

In order to fix this problem, Voevodsky had to embed the category S m/k of smooth schemes over k into
the category of presheaves of sets on S m/k, via the Yoneda embedding. This category is complete and
cocomplete. Applying the sheafification functor with respect to the Nisnevich topology on S m/k gives
another complete and cocomplete category S pc. We can see X ∈ S m/k sitting inside S pc as the colimit
of any Nisnevich cover of X. The maps X × A1 → X generate the A1-weak equivalences of S pc, where
cofibrations are monomorphisms. The Nisnevich topology is a special case of the notion of a Grothendieck
topology on a category. It sits between the Zariski and tale topologies, which also yield model structures.
Note that this is the treatment given by [11], whereas originally Voevodsky ([10]) used the category of
simplicial sheaves of sets in the Nisnevich topology on S m/k and defined weak equivalences by way of the
functor of points approach to schemes. He then gets the A1-weak equivalences above by applying Bousfield
Localization.

4. Colimits, SmoothManifolds, and Lie Groups

Let Mn f d be the category of smooth manifolds, Top the category of topological spaces, and LieGp the
category of Lie groups. In order to do homotopy theory with manifolds, we’d like to know if Mn f d is
closed under colimits. The answer is no, and this should not come as a surprise since smooth schemes are
the algebraic analogue of smooth manifolds and are so poorly behaved. An explicit example is given in
[7]:
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Example 1. The pushout of R ← {0} → R is the union of the coordinate axes in R2 (i.e. it looks like a
cross). To show this, let P denote the union of the coordinate axes. Certainly the diagram maps to P, since
we can include the left copy of R as the x-axis (call this map i), the right copy as the y-axis (call this map
j), and {0} as {(0, 0)} where the two copies agree. If the diagram maps to any other space Y (say by maps f
from the left copy of R and g from the right copy) then there is a unique map from P to Y by sending a point
(i(a), 0) to f (a) and sending (0, j(b)) to g(b). This proves that P has the universal property of the pushout, so
P is the pushout. However, P is clearly not a manifold because the origin doesn’t have a locally euclidean
neighborhood.

There is one subtlety which the proof above leaves out. We computed the pushout in the category of topo-
logical spaces and saw that it’s not a manifold. But how do we know that the pushout in the category of
manifolds is the same as the pushout in the category of topological spaces? This is addressed in [7] and is
not very difficult. One must simply show that the map from the (manifold) pushout X into R2 which takes X
to P is an initial map in the category of Froelicher spaces (which sits between Mn f d and Top). The details
only take one paragraph, but would take us away from our goal of understanding pushouts in Mn f d so we’ll
omit them. The point of this example is that none of the following categories are cocomplete: (topological)
manifolds, smooth manifolds, complex analytic spaces, symplectic manifolds, and Lie Algebras. This is
unfortunate, because we often want to take quotients by submanifolds, glue manifolds together, or divide
out by group actions.

One way to fix this is to proceed as Voevodsky did and embed the category of manifolds as a full subcategory
of a cocomplete category. For Mn f d to be a full subcategory of some C simply means that all the mor-
phisms between two manifolds M and N are still morphisms between their images in C. This seems like too
much work, so perhaps a better way to fix this problem is to try and figure out which colimits the category
Mn f d does have. Perhaps if the manifolds and diagrams are sufficiently nice then colimits will again be
manifolds (e.g. if a group acts nicely then perhaps the orbit space will be a manifold). Still a third way (if
we only care about colimits which come from group actions) is to change what we mean by a group action.
This leads to the notion of an orbifold. We consider these three approaches in more detail below.

4.1. Specific Colimits of Interest in Mn f d. Before jumping into a Voevodsky-style embedding, let’s focus
on specific diagrams and especially nice manifolds to see what types of colimits we can get without leaving
the category Mn f d. In order to do this, we might need to restrict to a subclass of nicely behaved manifolds
and a subcollection of nice diagrams. One place this kind of philosophy came up historically was the
introduction of homogeneous spaces as manifolds M which have a transitive action of a group G. However,
what one does with homogeneous manifolds is not to mod out by the group action (which would yield
M/G) but rather to realize M as G/K where K is the stabilizer of a point. This is also a colimit construction,
and tells us that homogeneous manifolds are the manifolds which can be realized as a (nice) colimit in the
category of Lie Groups (since K is a Lie subgroup of G which acts on G by left multiplication).

A better example of the type of result we’re seeking is the small point that the coproduct (disjoint union)
of two manifolds of dimension d is a manifold of dimension d, but the coproduct of manifolds of different
dimension is not a manifold. In the pushout example above we also had manifolds of different dimensions
appearing (namely {0} is 0-dimensional while R is 1-dimensional). This leads to the conjecture that diagrams
with manifolds of the same dimension might have colimits which are manifolds. This turns out to be false,
as the following example (from [8]) shows:

Example 2. Let R∗ denote R − {0}. Consider the diagram R∗
∐

R∗
→
→ R

∐
R where one of the two arrows

sends the first R∗ to the first R and the second R∗ to the second, and the other arrow swaps the two. The
colimit of this diagram is the coequalizer of these two arrows, i.e. the smallest thing R

∐
R can map into

which makes the two arrows equal each other. This object is two copies of R glued together along the subset
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R∗. Topologists know this space as the “line with two origins” because that’s what it looks like. This is
known to be a non-Hausdorff space, so can’t be a manifold.

As with the previous example, to be fully rigorous, one would have to show that the pushout in Top matches
that in Mn f d, by way of Froelicher spaces. We’ll omit this detail now and forever, because the method is
the same as in [7] and the details are there. This example shows that even very nice diagrams (e.g. with
only two objects and morphisms which are open injections) of manifolds of the same dimension can fail to
have colimits. The only way this example could have been nicer is if the manifolds were connected (since
R∗ is not). However, the same logic works for the diagram C∗

→
→ C where one map is inclusion and the

other is inclusion followed by z 7→ 1/z. Again, the result is not Hausdorff because the images of z = 1 and
z = −1 cannot be separated (any ball containing z = 1 will intersect any ball containing z = −1 after the
gluing).

So far we’ve shown that Mn f d is poorly behaved with respect to even very nice pushouts and coequalizers.
A simple example to show it’s poorly behaved with respect to direct limits is the sequence R → R2 →

R3 → . . . , where the colimit R∞ is not a manifold. The only colimits of interest left are the ones which
come from group actions. The subject of group actions on manifolds has been studied much more than the
other types of colimits. For example, in Riemannian Geometry these considerations give a slick proof that
π1(M) is countable for any manifold M, by viewing elements of π1 as acting via Deck Transformations. If
we plan to mod out by the group action, then for point-set topological reasons (i.e. to get the quotient to be
Hausdorff) we need to know that the action is properly discontinuous. This means the action is proper, i.e.
G × M → M × M via (g,m) 7→ (m, gm) is a proper map (inverse images of compact sets are compact) and
that G is discrete.

Let us first consider group actions where the group G is not a Lie group (though of course we must still have
G ≤ Aut(M) = Di f f eo(M,M)). We’ll assume the action is proper, so that M/G is Hausdorff. Quotients
of second countable spaces need not be second countable, but open quotients (i.e. when π : M → M/G
is open) are. Because of how M/G is defined, the quotient map is always open. To see this, note that
π−1(π(U)) =

⋃
g gU is open and π is a quotient map, so π(U) is open in M/G. However, even though M/G

is Hausdorff and second countable, there are many proper actions where M/G is not a manifold (not even a
topological manifold). An example can be found in [2]:

Example 3. Let Z/2Z act on RP3 by the antipodal map. Then RP3/G � C(RP2), the cone on RP2. To see
this, let points on C(RP2) be denoted by ([x, y, z], t) where RP2 × {0} is the cone point p. The map RP3/G →
C(RP2) is induced by the map RP3 → C(RP2) given by (x, y, z) 7→ ([x, y, z], (x2 + y2 + z2)) and (0, 0, 0) 7→ p.
This map is continuous and descends to a map RP3/G → C(RP2) because negating coordinates does not
matter (because all coordinates get squared). So we have a continuous bijection between compact Hausdorff
spaces, i.e. a homeomorphism. However, C(RP2) is not a topological manifold (with or without boundary)
because any neighborhood U of p has Hk(U,U p) � Hk(C(RP2),C(RP2)p) � Hk1(RP2) by excision. This
proves U cannot be homeomorphic to Rn for any n.

This example actually shows even more than we expected, because the group which is acting is a Lie group.
So quotients of manifolds by Lie groups need not be manifolds. The standard way to fix this is to place more
restrictions on the type of action. The key hypothesis (in addition to the action being properly discontinuous)
which one often needs is that the action is free, which means fixed-point free (i.e. all stabilizer groups are
trivial). Under these hypotheses, we have the following general theorem ([1])

Theorem 4. Suppose a discrete group G acts on a Cp manifold M in a Cp way (i.e. all action maps θg
are Cp). Suppose the action is free and properly discontinuous. Then there is a unique Cp structure on the
quotient M/G (taken in Top) such that the projection π : M → M/G is a local Cp isomorphism. Moreover,
M/G has the universal property that any G-equivariant Cp map out of M factors uniquely through M/G.
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In the classical setting, p would be∞ and this theorem would still hold. When the group G is a compact Lie
group then one can often say more. For instance, the Quotient Manifold Theorem says

Theorem 5. If a Lie group G acts smoothly, freely, and properly on M ∈ Mn f d then M/G is a topological
manifold of dimension equal to dim M − dim G and has a unique smooth structure making π : M → M/G a
smooth submersion.

Indeed, this unique smooth structure makes M into a principal G-bundle over M/G. Note that here proper
but not properly discontinuous is needed. This is one benefit of working in the Lie group context. Another
benefit of working in the Lie group context is that any continuous action of a compact Lie group on a
topological manifold is proper. However, it is disappointing that even Lie group actions must be free in
order to conclude that the orbit space is a manifold.

In homotopy theory, cofibrant things are built from free things. So if there was a homotopy theory on this
category then perhaps one might be able to weaken the hypothesis that the action be free to some kind of
cofibrancy hypothesis. This type of weakening appears in my thesis in the context of fairly general model
categoriesM. In particular, we call an object M ∈ M Power Cofibrant if a certain technical condition holds
which causes M to become cofibrant in the projective model structure MG on objects with group actions
and which causes M/G to be an object in the underlying categoryM. Basically, this is replacing the idea of
“acting freely” with the more general idea of a homotopy colimit equaling a colimit. If one could introduce
more homotopy theory to the categories Mn f d or LieGp then this notion might lead to a weakening of
the theorem above. This goal–along with the realizations that Mn f d and LieGp are poorly behaved under
basically all types of colimits no matter how nicely we set them up–leads us to try Voevodsky’s approach of
embedding Mn f d and LieGp into a cocomplete category and working there instead.

4.2. Embedding into a cocomplete category. Let TopMn f d the category of topological manifolds. In
[3], Dan Dugger followed Voevodsky’s model with TopMn f d as opposed to S m/k as input. Again using
Grothendieck topologies and sheaves, he found the universal model category into which TopMn f d embeds
and proved it’s Quillen equivalent to the model category of topological spaces (Quillen equivalence is the
correct notion of equivalence for model categories). This is a bit disappointing because it means all the
geometric data is lost in the embedding, so homotopy theorists will have a hard time proving anything new
about manifolds using this perspective. One neat corollary to Dugger’s work is that any manifold is the
colimit of its atlas, but this doesn’t help us much in understanding which category colimits of manifolds
should live.

For smooth manifolds, the correct cocomplete category in which to embed Mn f d is Di f f . Unlike in the
situation for TopMn f d, we now retain some geometric information in Di f f . So this may be a place where
homotopy theory can find non-trivial applications. We describe the objects of Di f f :

Definition 6. ([5]) A Diffeological Space is a set X with a family of maps U → X (called plots) for each
open U ⊂ Rn and each n, such that for every open U,V ⊂ Rn we have

(1) Every constant map U → X is a plot

(2) If U → X is a plot and V → U is smooth, then the composition V → X is a plot

(3) If U =
⋃

Uα and U → X is a map such that every restriction Uα → X is a plot, then U → X is a
plot

The morphisms in Di f f are maps X → Y such that for all plots U → X the composition U → Y is a plot.
The category of smooth manifolds embeds as a full subcategory of Di f f where charts are plots and smooth
maps of manifolds give maps in Di f f . Furthermore, Di f f is closed under limits and colimits, which is
easily seen by noting that the forgetful functor to S ets preserves both limits and colimits because it has both
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left (discrete diffeology) and right (indiscrete diffeology) adjoints. For example, if Y is a quotient of X then
we can declare f : U → Y to be a plot if for all p ∈ U there is a neighborhood V where f is of the form
V → X → Y . Similarly, if A is a subset of X then we can declare f : U → A to be a plot if U → A→ X is a
plot.

In some ways Di f f is even nicer than Top. For instance, Di f f is Cartesian closed, meaning the space of
smooth maps between any two diffeological spaces is a diffeological space. This fails for manifolds and fails
for topological spaces (unless we restrict attention to compactly generated weak hausdorff spaces and use
the compact-open topology on C(X,Y)). Furthermore, Di f f is locally presentable but Top is not (this term
means there is a set S of small objects and every object can be obtained as a colimit of a diagram of objects
in S ). Finally, Di f f admits lots of geometry, e.g. dimension, differential forms, de Rham cohomology,
tangent spaces, tangent bundles, etc. So the category Di f f is worth studying in its own right, and also
permits the types of constructions (quotients, etc) which homotopy theorists need. The first step towards
bringing homotopy theory to this category would be to find a model structure on Di f f . This was mostly
done in Enxin Wu’s 2012 thesis [12] but has not yet been completed. It’s a problem which I might work on
at some point if it remains open.

It is worth noting that the category of Lie Groups sits inside the category of smooth manifolds, and also
embeds as a full subcategory of Di f f . Furthermore, Lie groups are particularly nice in Wu’s proposed model
structure on Di f f ; they are fibrant, which means they carry information which is important to the homotopy
theory of Di f f . More generally, any homogeneous space is fibrant and one can prove from this fact that all
manifolds in Di f f are fibrant, since the way in which Mn f d embeds in Di f f sends individual manifolds
to homogeneous spaces. The proof of this fact is to note that for any M, the group of self-diffeomorphisms
G = Di f f (M,M) is a smooth group. So letting H be the (smooth) subgroup of diffeomorphisms which fix
any point gives M � G/H. This proof shows the strength of Di f f , since the G above can be less rigid than
a Lie group would be in general, but still works for this construction.

4.3. Orbifolds. The final way to deal with the lack of colimits in Mn f d (and in particular the fact that we
can’t mod out by group actions) is to change the notion of a group action. Since manifolds are defined
locally, perhaps we should allow local group actions, which can be different (and even different groups) in
each chart. This idea leads to the notion of an orbifold. An orbifold is a topological space which is locally a
quotient of Euclidean space by the linear action of a finite group. So if one starts with a G-manifold M then
M/G is an orbifold, but not all orbifolds arise this way because general orbifolds allow different groups to
act in different neighborhoods. Furthermore, even though orbifolds fix the problem that Mn f d is not closed
under passage to coinvariants, the category Orbi of orbifolds is not cocomplete. So moving from Mn f d to
Orbi gives some colimits (those related to group actions) but not all (e.g. pushouts and coequalizers can
fail).

Because this is a paper on colimits, we shall not spend much more time on orbifolds. We mostly mention
them for completeness. To a homotopy theorist, passage from Mn f d to Orbi is a nice step, but passage
all the way to Di f f is what should be done. So far geometers have found more use for orbifolds than for
diffeologic spaces so there are good arguments for studying both categories. In particular, orbifolds let you
keep more geometric information than diffeologic spaces and it’s often easier to get back to facts about
manifolds from facts about orbifolds, but orbifolds do not permit methods from homotopy theory as nicely
as diffeologic spaces.

5. Conclusion

I began this project with the hope of classifying which diagrams in Mn f d and LieGp admit colimits in
Mn f d. Unfortunately, even very nice diagrams of very nice manifolds (copies of R in fact!) do not admit
colimits which are manifolds. Since colimits are so poorly behaved in Mn f d, one can’t even ask about



8 DAVID WHITE

colimits of Lie groups. Still, many have gotten around these difficulties, e.g. via schemes and diffeologies.
Indeed, getting around the lack of colimits was fundamental in Voevodsky’s Fields Medal winning work.
Perhaps in the future others will find yet more clever ways to deal with these difficulties, or perhaps homo-
topy theory will become even more general so that the lack of colimits no longer presents an obstacle, e.g.
if the work in [12] yields an appropriate ∞-category. Time will tell, and I for one am excited to see what
happens.
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