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We analyze the Zeno’s familiar paradox of the arrow using recently
developed non-Boolean derived logics for classical systems. We show
that the paradox depends upon a premise that is identically false
in such logics, so that the language of experimental propositions is
immune to the paradox.

Key words: logic, Zeno’s paradoxes, measurement.

1. ZENO’S ARROW

In a famous 1936 paper, von Neumann and Birkhoff [1] suggested
that some of the paradoxes of quantum mechanics could be addressed
by applying a nonstandard logic to propositions concerning quantum
mechanical systems. For example, the counter-intuitive results of the
familiar double-slit experiment illustrate the non-distributive charac-
ter of the quantum logic of von Neumann and Birkhoff. In [2] we have
shown that other theories besides quantum mechanics naturally lead



to derived logics of experimental propositions when an explicit ac-
count of measurement is included. In particular, we have shown that
a simple measurement theory for classical mechanics gives rise to
nonstandard derived logics. These classical phase space logics differ
from quantum logic in that it is negation that is nonstandard instead
of distributivity.

Our purpose here is to show that nonstandard derived logics for
classical mechanics can be applied to classical paradoxes in a way
analogous to the application of quantum logic to the counter-intuitive
features of quantum theory. In both situations, the connections of
experimental observation to the underlying theory is non-trivial. The
paradoxical aspects of each theory arise in part from the subtle nature
of the link between observation and theory. This is reflected in the
non-Boolean properties of the derived logics.

Although one does not usually dwell on this in an introductory
physics course, there are apparent paradoxes related to classical me-
chanics. The most famous of these are the paradoxes of motion put
forward by Zeno of Elea in about 500 B.C. These paradoxes sup-
ported the Eleatic contention that the universe was an undivided
and unchanging unity and that the analysis of space and time into
separate points and moments omitted essential aspects of that unity
[3]. For example, the paradox of the arrow runs:

... Zeno argues that an arrow in flight is always at rest.
At any given instant, he claims, the arrow is where it is,
occupying a portion of space equal to itself. During the
instant it cannot move, for that would require the instant
to have parts, and an instant is by definition a minimal
and indivisible element of time. If the arrow did move
during the instant it would have to be in one place at one
time of the instant, and in in a different place at another
part of the instant. [4]

If the arrow is at rest at any given instant, how can the arrow move?

Many resolutions to this paradox have been proffered. One of the
more widely accepted resolutions (cf. Salmon [4] and Griinbaum [5])
of the paradox of the arrow is the one proposed by Bertrand Russell,
which has come to be known as the “at-at” theory of motion. Wesley
Salmon gives the following description ([4], p. 41):

Let us now apply [the] conception of a mathematical func-
tion to the motion of an arrow; to keep the arithmetic
simple let it travel at the uniform speed of ten feet per
second in a straight line, starting from x = 0 at ¢ = 0.
At any subsequent time ¢, its position x = 10¢. ... The
requirement is that the arrow be at the appropriate point
at the appropriate time - nothing is said about the instan-
taneous velocity of the arrow as it occupies each of these



points. ...the motion itself is described by the pairing of
positions with times alone.

As an account of what one means when one says “the motion of
the arrow is described by a function” the “at-at” theory is certainly
correct. However,if one is concerned about how one arrives at such a
function, there is a problem. When a physicist states that a function
describes the flight of the arrow what is meant experimentally is that
a series of measurements has been performed and the given function
fits the observed data. If one is mindful of a physical theory of
measurement there is no way to arrive at a unique function as the
proper descriptor of the arrow’s flight.

In [2] we argue that in any physically motivated theory of mea-
surement for classical systems the following assumptions should be
reflected:

1. Observables are continuous phase space functions.

2. Values of observables cannot be determined with infinitely high
precision.

3. Only finitely many measurement outcomes are available at one
time.

The problem for the “at-at” theory is that no set of measurements
satisfying these three postulates suffice to specify a unique function
which describes the motion of the arrow. Certainly, given a finite set
of time and position measurements of the arrow, it is possible to find
a function consistent with them. But so will an uncountable infin-
ity of other functions. Indeed, it can be shown that, given any set of
measurements which satisfy the above postulates, one can find an un-
countable number of functions with almost any “nice” mathematical
properties (such as continuity, differentiability, or even analyticity)
which will provide an experimentally reasonable “at-at” description
of the arrow’s flight. Conversely, given a function which provides an
appropriate “at-at” description, no set of measurements which sat-
isfy the postulates will verify the given function to the exclusion of all
others. Thus, even though a function may satisfy the requirements
of the “at-at” theory, that function can not be uniquely provided
or verified by measurement. We may therefore say that the “at-at”
theory does not operate at the level of physical measurement.

One is then left to wonder about the status of the paradox of
the arrow at the level of measurement. If we are left with Zeno’s
paradoxical situation unresolved at the level of measurement, this
might be sufficient reason to avoid discussions of physically motivated
theories of measurement! Fortunately, this turns out not to be the
case. In [2] we discuss “derived logics” where at least some of the
propositions are sanctioned by results of measurements (this is what
is meant by our phrase “at the level of physical measurement”). We



will show that the premise for the paradox of the arrow is in fact
identically false in these logics. Before we demonstrate this, we will
first provide a brief description of these derived logics for classical
systems.

2. CLASSICAL PHASE SPACE LOGICS

One way to think about the implications of a measurement theory
is to discuss the derived logics of experimental propositions that result
from the theory. For classical systems, we have previously developed
“closed” and “open” phase space logics derived from a rudimentary
theory of classical measurements [2]. These logics, also called “falsi-
fiability” and “verifiability” logics, can be used to examine the basis
for the paradox of the arrow. In the following sections we will review
some of the properties of these logics, use them to analyze aspects of
the paradox of the arrow, and discuss some of the implications.

The measurement theory for the two classical phase space log-
ics that we develop is based upon the three postulates given above.
Postulate (1) expresses the fact that a classical measurement pro-
cess is itself a continuous dynamical evolution of a system of interest
and a measurement device. Postulate (2) implies that the value of
an observable is only localized within some open interval by a mea-
surement. A measurement therefore only localizes the state of the
system of interest to an open set in phase space. Postulate (3) sim-
ply indicates that the limitations imposed by Postulates (1) and (2)
cannot be evaded by limiting processes involving an infinite number
of measurements.

Thus classical measurements, in their most generic form, provide
the answers to questions of the form “Is the state of the system within
the open set O7” Two propositions about the state of the system
are experimentally equivalent if they cannot be distinguished from
one another by the answers to any finite set of such questions. They
are effectively the same proposition. There are at least two possible
senses in which two propositions are “indistinguishable” and thus
equivalent:

1. The assertions would be falsified by exactly the same measure-
ment results.

2. The assertions would be verified by exactly the same measure-
ment results.

A proposition in one of our derived logics is actually an equivalence
class of indistinguishable phase space propositions according to one
of the two senses above.

A phase space proposition can be identified with a subset of the
phase space X—mnamely, the set of points in phase space for which



the proposition is true. Therefore, a proposition in our derived logics
can be identified with an equ1valence class of phase space sets that
are indistinguishable by a finite number of open sets (which repre-
sent measurements). As before, there are two distinct meanings of
“indistinguishable”:

1. Two sets are indistinguishable if they intersect exactly the same
open sets. This means that the two corresponding phase space
propositions are consistent with exactly the same measurement
results, so this definition agrees with the “falsification” one
above. Two sets that are indistinguishable in this sense have
the same closure.

2. Two sets are indistinguishable if they contain exactly the same
open sets. This means that the two corresponding phase space
propositions are implied by exactly the same measurement re-
sults, so that this definition agrees with the “verification” one
above. Two sets that are indistinguishable in this sense have
the same interior.

We call the derived logic resulting from criterion (1) the closed phase
space logic (or falsifiability logic), and the logic resulting from crite-
rion (2) the open phase space logic (or verifiability logic).

We will describe the closed phase space logic and apply it to
analyze the paradox of the arrow. The corresponding discussion for
the open phase space logic will be provided in the Appendix.

The fact that propositions of our logics are identified with equiv-
alence classes of sets rather than the sets themselves requires us to
take care in defining the logical operators of negation (—), conjunction
(A), and disjunction (V). In the Boolean logic associated with raw
subsets of the phase space, these operations are defined in terms of
ordinary set operations: complement, intersection, and union. In the
derived logics, this approach must be modified to meet two require-
ments: first, the result of any operation must itself be an equivalence
class of sets; and second, each operation must be well-defined, i.e.,
must be independent of the equivalence class representatives that are
used for its definition.

In the closed phase space logic, this is done by defining opera-
tions in terms of the closures of the representative sets. For example,
suppose A and B are propositions in the closed phase space logic,
corresponding to equivalence classes [A,] and [B,] of subsets of the
phase space. The sets in each equivalence class have a common clo-
sure: A = A, for all sets A, and A, in the equivalence class A

(the overline “X” symbol reprepresents set closure).We can define

our logical operators as follows (the superscript “c” represents set
complementation):

A = [(A)],



AvB = [A,
ANB = [A,

Since all sets in a given equivalence class have the same closure, each
equivalence class contains exactly one closed set. This set can be
taken as the canonical representative for the equivalence class. In
each definition, we apply the usual set operations on the canonical
representative set for each proposition. The definitions are thus un-
ambiguous.

Two propositions in this logic are especially important: that rep-
resented by the whole space X and that represented by the null set.
The equivalence class for the entire space is the “never falsifiable”
statement, so it is given a special name: [X]| = 1. Similarly, the
equivalence class of the null set is the “always falsifiable” statement,
so we denote it by [¢] = 0.

Many of the properties of classical logic also hold for the closed
phase space logic: V distributes over A and vice versa. However, the
nonstandard nature of negation induces several non-Boolean features
to this logic: the “Law of Noncontradiction” ( A A=A = 0 ) does
not hold in the closed phase space logic. On the other hand, tertium
non datur the “law of the excluded middle” ( AV —=A = 1) does
hold.! (According to a duality principle, the situation in the open
phase space logic is exactly reversed, with the law of noncontradiction
holding but not the law of the excluded middle.)

An example is in order. Suppose a particle is constrained to
move in one dimension, like a train on its track. At any moment, the
location and velocity of the train are only known to a finite precision.
Consider the following statement:

At time t = ty, the train is between 1240.1 and 1240.2
meters from the beginning of the track, and is traveling
between 21.2 and 21.3 meters per second.

(We will ignore the fact that time measurements can only be made
with finite precision. For our present purposes, this is an unnecessary
complication.)

This statement corresponds to a proposition in the closed phase
space logic, the equivalence class A of subsets of the phase space X
containing the closed set

A, ={(z,v) € X|1240.1 < 2 < 1240.2,21.2 < v < 21.3}.

We should point out that the equivalence class A contains a great
many other sets, such as

A, ={(x,v) € A,|z,v are both rational}.



A, and A, are equivalent because no measurement can distinguish
between the points in A, (which have rational phase space coordi-
nates) and the points in A,,.

In our analysis of the paradox of the arrow we will need the fol-
lowing properties of closed phase space logic:

~(-A)TA , -1=0,
~0=1, AN0O=0 .

(The symbol C represents containment of the canonical represen-
tative sets of the propositions.) A more complete discussion of these
properties can be found in Sec. II of [2].

3. ANALYSIS OF THE ARROW PARADOX

We begin our analysis of the arrow paradox by focusing on one
of Zeno’s premises. As Salmon puts it, “At any given instant ... the
arrow is where it is, occupying a portlon of space equal to itself.”
Thus, the tip of the arrow occupies a single point. Considering an
arrow moving in one dimension, we can say this as:

At any moment ¢t = tj, the position = of the tip of the
arrow is precisely x = xg.

To say that the tip is precisely at © = z¢ is in fact to assert that the
position takes this value and no other—that is, we really have

At any moment t = tj, the position = of the tip of the
arrow is r = xg. Furthermore, for any yo # xg, * # yo at
this moment.

Zeno depends on this more elaborate premise to argue that the arrow
is at rest during the moment.
That is, if we set

P = At the moment ¢t = ty, the position of the tip of the arrow is
precisely at © = z.

Q = At the moment t = t(, the position of the tip of the arrow is
at some other position x # xy.

Using this notation we see that the reformulation of Zeno’s premise
is of the form P A Q).

We now show that this stronger statement is false at the object
language level (that is, in the language of physical propositions that
are sanctioned by physmal measurements) when the object language



logic is the closed (falsifiability) phase space logic. In terms of the
mathematical structure of the logic, we see that

Q = [{(z,p) € X[z # xo}]

= [(z,p) € Xl|z # z0}]
~ [X] = L

Even though negation is not standard in closed phase space logic, we
do have =1 = 0; therefore, we may conclude that

PA-Q=PA0 = 0.

Hence this premise of the arrow paradox is false in the closed phase
space logic.

One might wonder why we chose to label the second conjunct as
—(@) instead of =(—P), which it certainly is. By using the new label we
are emphasizing the difference between —(—P) and P. Recall that,
in general, in the closed phase space logic we have that —=(=P) C P.
Thus, even though we can say that =() = —=(—P) is false—that is,
equivalent to the always falsifiable statement 0-—we can not conclude
that the statement represented by P is false.

Considering this situation in physical terms, we recall that the
outcome of a measurement localizes the system to some open set in
phase space. Any such set that includes points with = xy must
necessarily also include distinct points (an infinite number, in fact)
nearby. Thus, at the level of experiment, =P is never falsifiable, so
—-P = 1. Hence =Q) = —(=P) is equivalent to the “always false”
statement in the object language that uses the closed phase space
logic.

The following objection might be raised at this point: If the path
of the tip of the arrow can be described by some well-defined mathe-
matical function (in the strict mathematical sense) then the tip must
be located at some particular position at some particular time. But
how do we know that a particular mathematical function describes
the path of the tip of the arrow? The only things which sanction our
claims of truth or falsehood for certain propositions are the results
of measurements having limited precision. It may well be true (in
fact, if the theoretical set-up is a good one it must be true) that a
particular mathematical function describes the path of the tip of the
arrow to within experimental error; but to assert that what the arrow
is really doing is occupying particular positions at particular times is
to assert something beyond the ability of physical measurements to
determine.

We need not deny the existence of moments and exact positions.
However, if moments and exact positions do exist, we have no way
of asserting this at the object level, i.e., the level of experimental



propositions. In spite of these cautionary remarks, we do note that
the analysis of Zeno’s premise based on the closed phase space logic is
somewhat reminiscent of Aristotle’s approach to the paradox. Aristo-
tle denied that the paradox had any meaning in as much as moments
do not exist. As we have made the simplifying assumption that time
can be precisely determined, our analysis says of spatial positions
what Aristotle has to say of moments; we could make the analogy
closer by dropping our simplifying assumption. His argument is as
follows:

The third argument, the one just stated, is that the mov-
ing arrow is standing. This follows from assuming that
time is composed from nows; for if one does not grant
this, there will be no syllogism. [7]

This remark reminds us that there is a substantial difference be-
tween a point in R and an interval. This difference is worth keeping
in mind. The velocity at any moment of time is defined as a deriva-
tive; but this derivative is defined as the limit of average velocities
over smaller and smaller intervals of time. In other words, to define
instantaneous velocity we need to have the trajectory of the particle
alre)ady defined for an entire interval of time (albeit perhaps a small
one).

This raises interesting questions about causality. In classical
physics, the laws of motion are ordinary differential equations with
time as the independent variable. In Hamiltonian mechanics, for
example, we have first-order equations of motion for position and
momentum variables (g; and p;, respectively):

d OH  dp  OH

where H(p;,q;) is the Hamiltonian function. Initial values of ¢; and
p; determine a unique solution to these equations, so in a sense we
can say that the future trajectory of the system is determined by its
position and momentum at a single moment. The initial conditions
“cause” the future behavior of the system via the laws of motion.
However, the definition of the time derivatives on the left-hand side
of the equations of motion requires that the trajectory already be
defined for an interval of time that contains moments from both the
future and the past of the moment in question. Equations of motion
only make sense if the trajectory is “already exists” over an entire
interval of time.

Our approach to the paradox does bear some resemblance to the
“Aristotelian” resolution: there is an essential difference between ar-
bitrarily small scales and infinitely small scales. On the other hand,
while Aristotle claims that isolated moments do not exist, we make



no such strong claim. Our rudimentary measurement theory merely
implies that measurement does not sanction statements about points
and moments. We are therefore led to consider the logic of empir-
ical statements about physical systems. As was pointed out in [2],
the logic of physical systems is not necessarily the standard Boolean
logic.

Another way of putting this is that there are unobservable aspects
of mathematical models for classical mechanics. These unobservable
aspects reside in the relation of points to intervals—i.e., in the in-
finitesimal structure of IR . This can be seen by noting the develop-
ment of nonstandard analysis. Ordinary classical mechanics can be
recast using a nonstandard version of R that includes infinitesimal
quantities. By the transfer principle [8], we know that the calculated
results of such a theory would be identical to those of the standard
theory, so that the two theories would be observationally equivalent.
They differ only in the infinitesimal structure of the underlying math-
ematical model.

Once we confine ourselves to the results of measurements, which
cannot explore this infinitesimal structure, we will be led to use de-
rived logics, which need not be standard. They differ from ordinary
logic not only in the calculus of logical connectives but also in the
status of truth claims within the logic. In standard logic, the truth
value of a given statement is a priori relative to the logic. That is, the
claim that something is true is sanctioned by considerations outside
the logic. This contrasts with the situation concerning physical sys-
tems. The truth or falsity of a statement about a physical system is
sanctioned by measurement, and as measurement is itself a physical
process this truth or falsity is not a priori relative to the logic.

In the closed phase space logic, the non-Boolean nature of the
negation leads us to say that Zeno’s hypothesis about the arrow is
false at the level of the object language. In the language of the stan-
dard mathematical model, the statement concerning Zeno’s arrow is
perfectly true, and leads us to Russell’s “at-at” theory of motion. As
we have pointed out, however, the basic “at-at” statements of this
theory cannot be experimentally sanctioned.?

The trajectory of the arrow is a mathematical idealization that
cannot be fully justified on empirical grounds. Any finite set of mea-
surements of finite precision can only provide an approzrimate trajec-
tory for the arrow, and no approximate trajectory (however precisely
determined) is exact. Thus, the notion of an exact trajectory is prob-
lematic even in classical mechanics. In quantum theory, of course,
exact trajectories do not even exist, and the notion of a trajectory
breaks down on small scales (determined by the size of h).

Indeed, Richard Schlegel [9] has given a quantum mechanical res-
olution to Zeno’s paradox of the arrow. Schlegel’s resolution depends
on the uncertainty relations, in that precise information about the



arrow’s velocity excludes precise information about the arrow’s posi-
tion, and vice-versa. Schlegel, like the present work, builds his res-
olution by considering what can be measured. We have argued that
one does not need the machinery of quantum mechanics to produce a
resolution along these lines; classical mechanics, if viewed though the
proper logical lenses, can also provide a resolution to Zeno’s arrow
paradox.

4. APPENDIX: THE ARROW IN OPEN
PHASE SPACE LOGIC

In the open (verifiability) phase space logic, propositions are as-
sociated with equivalence classes of subsets of the space, but now two
subsets are equivalent if and only if their interiors are equal. In this
logic, a proposition A is verifiable only if there is some measurement
of finite precision which can localize the system to an open set in
phase space entirely contained in every set in A. This means that
any statement of the form “the position is x = xy” is unverifiable
and therefore false (equivalent to 0) in an object language which uses
the open phase space logic. This is due to the fact that the subset
of phase space determined by the property x = xg has an empty
interior.

The operations in the open phase space logic are defined in terms
of the interiors of the representative sets. All sets in a given equiv-
alence class have the same interior, so this is the only open set in
that equivalence class. If we denote the equivalence class of A, in
the open phase space logic by

A° = [Au]o = [int(Ay)ls,
the logical operators are defined as follows:

=A% = [(int(AL)) T,
A°V B = [int(A,) Uint(B,)l.,
A° A B° = [int(A,) Nint(B,),.

In a way that is also analogous to the closed phase space logic, the
“always verifiable” proposition [X], is denoted by 1 and the “never
verifiable” proposition [¢], by 0. The closed and open phase space
logics are related by a “duality theorem” (cf. Sec. II of [2]).

One of the conjuncts of the revised statement of the arrow paradox
asserts that the tip of the arrow is at one particular point at one
particular time. This statement defines a “thin” subset of the phase
space, a subset with empty interior, so that it is in the equivalence



class [¢], the “never verifiable” proposition. This time, we can state
Zeno’s premise in the form

Pe /O\i Qo

in the object language. In this case we see that

SO

Q° = [{(z,p) € X[z # 20},

[e]

Q% = [(int({(z,p) € X|z # x0}))]o
= [{(z.p) € Xl|z = zo}]o
= [¢l, = 0.

Note that in the open phase space logic we have P° éi (i P°) as well

as 0 == (2 1). Thus, in the open phase space logic version, both
conjuncts of the premise are assigned the always false (i.e., never
verifiable) truth value.
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NOTES

1. It may seem odd to the reader that we claim here that negation
is nonstandard but that tertium non datur does hold in closed
phase space logic. That the former is true is proved by exhibi-
tion of an example. Let us suppose that our topological space
is R*and let A = [{(0,y)|ly € R }]; i.e., A is the class of all

subsets of R ? whose closure is the y axis. This implies that

A = [{(z,y)lz # 0} = {(z,y)lx # 0}]
— X]=1.

But, as we note in the text, =1 = 0 and so =(=A) = -1 =0
giving us an example of =(—A) # A. That tertium non datur
holds is proved as follows. By the definitions of V and — we
have

AV =A = [A]V[(A)],

where A,, and A, are arbitrary representatives of A. Let us
choose both to be the canonical closed representative Ar. Then

AV —-A=[ArU(Ar).

Since V U V¢ = X for any subset V of X, and since V C V, it

follows that Ar U (Ar)¢ = X. Thus, AV —-A =1, and tertium
non datur holds.

2. These considerations lead us to wonder whether dynamical laws
might be re-phrased in terms that better reflect the experimen-
tal facts of life. Instead of merely constructing derived logics,
we might also calculate using a mathematics based on func-
tions with experimentally meaningful domains and ranges—
for example, we might describe a “generalized trajectory” as a
function from regions of time to regions of phase space. Such
an analysis is beyond the scope of the present paper.



