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Definition 1: For a set P; in the topological space X, we define the propo-
sition corresponding to P; (denoted by P) to be the equivalence class
[P;] defined by the equivalence relation of having the interior and the
same boundary as P,. l.e., P; ~ P; (andso P; € [P] = P) if and
only if int P; = int P, and 0P; = 0F,.

The verification that the condition “same interior and same boundary as”
gives an equivalence relation is straightforward. Unfortunately, this definition
does not allow for definitions of connectives in terms of set operations as is the
case for other derived logics for classical systems which have been previously
described. This situation is remedied by the following two definitions and
result; these provide a useful characterization of almost all (this restriction

will be made clear by Definition 3.) of the equivalence classes:



Definition 2: Let S be a set in the topological space X. Then a point y in
the boundary of S is a recreant point if and only if y is not an adherent
point of S and every neighborhood of y contains a point of the interior

of 5¢. The set of all the recreant points of S is denoted by rctS.

Definition 3: Let S be a set in the topological space X. Then a point y
in the boundary of S is a penumbral point if and only if y is not an
adherent point of S and there exists a neighborhood U of y such that
int (ScapU) = O and int (S°capU) = (. The set of all penumbral
points of S is denoted by pnmb(S).

Theorem 1. The boundary of a set .S is the disjoint union of the adher-

ent, recreant, and penumbral points of S; i.e.,
0S = adh(S)Urct(S) U pnmb(S)

and adh(S) Nret(S) = rct(S) Npnmb(S) = adh(S) Npnmb(S) = 0.
Proof. By the definitions, the sets adh(S) and rct(S) are disjoint. If
x € adh(S) then each neighborhood of = has a nonempty intersection with

int .S. So, for every neighborhood U of x we have

mtSNU = mtSNintU =
mtSNU # 0,

thus x ¢ pnmb(S) hence adh(S) N pnmb(S) = @. Similarly, if = € rct(S)
then every neighborhood of x has a nonempty intersection with int S¢. So,

for every neighborhood U of x we have

ntS°NU = mtS°NintU =



mtS°NU # 0,

thus 2 ¢ pnmb(S) hence rct(S) N pnmb(S) = 0.

That adh(S) U rct(S) U pnmb(S) C 0S follows directly from the defi-
nitions; thus, we need only to prove the reverse containment. Assume that
x € 0S but x ¢ adh(S). Thus, there exists a neighborhood of U of = such that
UNintS = emptyset. Asx € 35, every neighborhood of x has a nonempty
intersection with S¢. Either, every neighborhood of x must intersect int S°
or there is a neighborhood V of x such that V' N int.S¢ = (. If the former
condition holds, z € rct(S). If the latter condition holds then W = (UNV)
is a neighborhood of x such that W Nint S = () and WNint S¢ = (). Thus,
x € pnmb(S). Thus, S C adh(S)Urct(S) U pnmb(S) and equality now
follows. O

Theorem 2. For sets S;, S, such that pnmb(S;) = 0 = pnmb(S;) the

condition [int (S;) U rct(S;)] = [int(S;) U rct(S;)] is equivalent to the
condition that int (S;) = int (S5;) and 9S; = 059;.
Proof. Suppose that [int (S;) U rct(S;)] = [int (S;) U rct(S;)] and let

x € int(S;). We wish to show that = € int (S5;). As the interior of a set
and its boundary are disjoint sets, it is the case that either x € int (S;) or
x € rct(S;), but not both. Assume that z € rct(S;), the contradiction we
obtain proves that z € int (.5;).

By definition, there exist neighborhoods N,; of x such that N,; C intS;
and N; of z such that N,; N intS? #+ (0. Asxz € N,; N Ny ; we know
that N;; N N,; # (. Also, since N,; N N, ; is a neighborhood of x and
r is a recreant point of S; we know that (N,; N N,;) N int S5 # 0. As

every set appearing in (N,; N N,;) N int S§ is open, we have that the set



U = (Ny N Ngj) N intS§ is an open set. We note that U C int (S;)
and that U C int (S5). Thus, every point of U is in int (S;) and so is not
in rct(S;). Also, every point of U is in int (S§) and so is not in int (S;) and
is not in J(5;), in particular, no point of U in rct(S;). Thus, there is some
point u € U such that u € (int (S;) U rct(S;)) and u ¢ (int (S;) U rct(S;)).
This contradiction of our assumption proves that x € int(5;). As z is an
arbitrary element of int (S;), we have shown that int (S;) C int(S;). A
symmetric argument proves that int (S;) C int (S;). Thus we have that
int (5;) = int (9;).

As the interior of a set and its boundary are disjoint this result also
yields the fact that [int (S;) U rct(S;)] = [int (S;) U rct(S;)] implies that
rct(S;) = rct(S;). Our result together with Theorem II1.5 of [?] also implies
that adh(S;) = adh(S;). That 0S; = 0S; now follows by Theorem 1 and
the condition that pnmb(S;) = 0 = pnmb(S;).

We now prove the converse: int (S;) = int (S;) and 0S; = 95; implies
that [int (S;) U rct(S;)] = [int (S;) U rct(S;)]. As pnmb(S;) = 0 = pnmb(S;)
and 05; = 0S5; we only need to show that adh(S;) = adh(S;) since Theorem
1. then implies that rct(S;) = rct(S;) and so the result will follow. Assume
that there is a point x such that x € adh(S;) but x ¢ adh(S;). As x ¢ S; we
conclude that there is a neighborhood U of x such that U NintS; = 0. As
int (S;) = int (S;) we then conclude that U Nint .S; = @ so x ¢ adh(S;) which
contradicts the assumption about x. Thus adh(S;) C adh(S;); a symmetric
argument shows that adh(S;) C adh(S;) and so adh(S;) = adh(S;) O

The condition placed on the penumbral points in Theorem 2. motivates

the following definition:

Definition 4: A proposition P is said to be proper if and only if pnmb(P;) =

4



() for every element P; of P).



