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Abstract. This module introduces students to the use of matrix algebra in
population ecology. In particular, it examines the construction of population

projection matrices from life table graphs, how the population projection ma-

trix can be used to determine population growth rates λ, and how manipulat-
ing the population projection matrix can be used to determine which aspects

of the population projection matrix are most responsible for driving λ. This

module will allow students to gain a better understanding of 1) the underlying
matrix algebra of population projection matrices, 2) the linkages between vi-

tal rates (e.g., survivorship, fecundity) and λ, 3) relationships between stable
age distributions and λ, and 4) the use of life table response experiments to

determine the importance of each vital rate for determining λ.

1. Overview

This module is designed for two populations of students. One target group is
students in an introductory finite mathematics course and the other population
is students in an upper-level course in ecology [2]. Completion of the module
requires no prior knowledge of matrix algebra, nor does it assume prior knowledge
of population growth models or life tables. Thus, this module is appropriate for
either a finite mathematics or ecology course.

To make the module as accessible as possible, the module includes a Microsoft
Excel R© spreadsheet that allows students to explore the computation of λ and sta-
ble age distributions, as well as to conduct life table response experiments: Age-
BasedEx.xlsx, StableAgeDistribution.xlsx.

2. Introduction: Life Tables

For population ecologists and conservation biologists one of the most important
parameters to understanding population dynamics is the population growth rate.
A population growth rate is determined by the birth or fecundity rate, the number of
babies born in a given time, and death or mortality rate, the number of individuals
dying in a given time.

While it might appear fairly easy to find the fecundity rate and mortality rate
of a population, the population ecologists job of understanding the dynamics of a
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population is made difficult by the fact that both the birth rate and the death rate
for an individual can change over the course of its life, and this change can have
implications for how fast a population grows.

For many species, ecologists can use life tables to estimate population growth rates
(see Table ??). Life tables use basic arithmetic, addition and multiplication, to
calculate an estimate of population growth rate (R0). For example, to calculate R0

we use the age-specific fecundity, mx (the average number of female offspring the
typical female has at age x), and survivorship to a particular age lx (survivorship
from birth to the start of age class x). R0 is simply the sum of lxmx. That is,
R0 is the sum of the product of lx and mx. If R0 is greater than 1 the population
is growing. If R0 is less than 1 the population is decreasing. R0 = 1 means the
population is stable. We see that the deer population represented in Table ?? is
growing as R0 = 1.3.16 > 1.

If we take a closer look at how we calculated R0 we can see that this measure
essentially gives us the average number of female offspring a female has over her
expected lifetime. Thus, we can use it to determine if a female replaces herself or
not (hence R0 is sometimes referred to as the net replacement rate).

Table 1. Example life table of a red deer population (modified
from Lowe [6]).

x Nx lx mx lxmx xlxmx

1 1000 1.000 0 0 0
2 863 0.863 0 0 0
3 778 0.778 0.311 0.242 0.726
4 694 0.694 0.278 0.193 0.772
5 610 0.610 0.308 0.134 0.670
6 526 0.526 0.400 0.210 1.260
7 442 0.442 0.476 0.210 1.470
8 357 0.357 0.358 0.128 1.024
9 181 0.181 0.447 0.081 0.729

10 59 0.059 0.289 0.017 0.170
11 51 0.051 0.283 0.014 0.154
12 42 0.042 0.285 0.012 0.144
13 34 0.034 0.283 0.010 0.130
14 25 0.025 0.282 0.007 0.098
15 17 0.017 0.285 0.005 0.075
16 9 0.009 0.284 0.003 0.048

e.g.T:Lowe

3. Beyond Life Tables

While life tables make our work easy, the use of life table analyses is primarily re-
stricted to species with relatively simple life histories. A life history is the schedule
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Figure 1. A linear annual, semelparous life history.
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Figure 2. A linear perennial, iteroparous life history.

of reproduction and mortality for an average individual in a population. For exam-
ple, the following diagrams illustrate such simple life histories (see Figures 1,2).

Such a life history is easily put into a life table. However, not all life histories are
so simple. Some species have developmental stages or do not move through their
life histories or life cycles in a linear fashion. Consider the following figure where
a plant species produces a seed that may or may not germinate in a given growing
cycle (see Figure 3).

Seed Adult

Fecundity

Probability
Germinate

Seed 
Bank

Probability
Stay in Seed 

Bank

Probability
Germinate from 

Seed Bank

Probability
Go to 

Seed Bank

Figure 3. A seed bank example where seeds may lay dormant for
a number of growing cycles.
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Another interesting example is the stage-based life cycle where individuals are
grouped according to the stage of their life cycle as opposed to age. For exam-
ple, consider Figure 4 which represents the life cycle of frogs. An individual is
placed in a stage and has a certain probability of remaining in that stage and a
certain probability of moving to the next stage. It should be noted that an individ-
ual can only move one stage at a time and that sequence of developmental stages
is not reversible.

Egg Large  
AdultTadpole Juvenile Small 

Adult

Figure 4. Frogs demonstrate a stage-based life cycle.

Similarly, there is a size-based life cycle, where an individual is in a particular size
class and has a certain probability of moving to the next size class or remaining in
the current size class. We assume no individual can move more than one size class
per growing cycle. Certain species of fish are a natural example of this life cycle.

4. The Power of Linear Algebra

While certain life histories are conducive to using life tables to estimate population
growth rates, as we have seen in Section 3, many are not. Fortunately, we can use
matrix or linear algebra to examine population growth in such species. We can also
use matrix algebra to figure out what aspects of the life history are most influential
on the population growth rate, which is particularly useful for trying to conserve
species and populations.

4.1. Example: The Matrix Model.

To see how matrix algebra can be used in population models, we consider the
following example. Suppose we have a population that models a linear perennial,
iteroparous life history (i.e., an individual lives more than one year and reproduces
more than once) with four ages, Age 1-4. The probability of an individual moving
from Age 1 to Age 2, Age 2 to Age 3, or Age 3 to Age 4 is each 0.5. We also have
the following age-specific fecundity rates: m1 = 1, m2 = 2, and m3 = 3. This life
cycle is modeled in Figure 7.

This figure is more than a useful pictorial description of the life cycle. We can
capture this information using matrix algebra. Let ~n(t) represent the vector that
contains the number of individuals in each life stage, Age 1-4. For our example,
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Figure 5. A linear perennial, iterparous life history.

suppose at time t that there are 600 individuals of Age 1, 100 of Age 2, 100 of Age
3, and 100 of Age 50. This can be summarized in the vector,

~n(t) =


600
100
100
100

 .
Given our transition probabilities and fecundity rates, how do we compute the num-
ber of individuals at each age at time t+ 1? Notice that the number of individuals
of Age 1 is solely determined by the fecundity rate of each of the Ages 2-4 and the
number of individuals at those age levels. That is, the number of individuals of
Age 1 at time t+ 1 is determined by:

Age 1 = m1 ∗ Age 2 +m2 ∗ Age 3 +m3 ∗ Age 3

= 1 ∗ 100 + 2 ∗ 100 + 3 ∗ 100

= 600

Similarly, Age 2-4 at time t + 1 is determined by the number of individuals who
move from the previous age stage. This is determined solely by the transition rates.
So we have

Age 2 = 0.5 ∗ Age 1

= 300

Age 3 = 0.5 ∗ Age 2

= 50

Age 4 = 0.5 ∗ Age 3

= 50

However, all these calculations can be captured with matrix multiplication in the
equation

~n(t+ 1) = A~n(t)

where the vectors ~n(t) and ~n(t+ 1) represent the number of individuals in each age
stage at times t and t + 1 respectively The matrix A is the population projection
matrix that contains the transition rates and fecundity rates for each age stage.
The row one represents the outcome for Age 1, row two for Age 2, etc. Column 1
represents how Age 1 affects the other Ages, column 2 represents how Age 2 affects
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the other Ages, etc. For example, if we allow t = 0, we have the following.

~n(1) = A~n(0)

=


0 1 2 3

0.5 0 0 0
0 0.5 0 0
0 0 0.5 0




600
100
100
100



=


600
300
50
50


Question 1. How would we use ~n(1) to compute ~n(2), that is the population of
each stage at time 2?

As you can see, the calculations to project population sizes into the future are rela-
tively simple, if tedious, using basic matrix algebra. Using a computer to do these
multiple iterations will be much faster and much less tedious. Before we try this,
let’s first get some more practice with creating population projection matrices and
life cycle graphs.

Question 2. For the following life table from Lawler (2011: Population Ecology
53: 229-240), create a generalized population projection matrix. That is, the matrix
will not have specific values for the entries, but the general entries, Fi, Pi, or Gi in
the appropriate locations in the matrix. You may want to look at the example in
the next question for clarification.
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Figure 6. Life table from Lawler.

Question 3. For the following matrix from Crowder et al [4], create a life table
graph.

The generalized matrix A below provides a “key” for the matrix in Table 2.

A =


P1 F2 F3 F4 F5

G1 P2 0 0 0
0 G2 P3 0 0
0 0 G3 P4 0
0 0 0 G4 P5


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Table 2. Five-stage population matrix A for loggerhead sea turtles.

0 0 0 4.665 61.896
0.675 0.703 0 0 0

0 0.047 0.657 0 0
0 0 0.019 0.682 0
0 0 0 0.061 0.8091

In this case, Pi is the probability of surviving and remaining in the same stage,
Gi is the probability of surviving and growing into the next stage, and Fi is the
stage-specific reproductive output.

Question 4. For the life table below, create a population matrix and a life table
graph. Note that qx denotes the age-specific mortality (e.g., qegg is the proportion
of the eggs that dies before they become size 1).

Table 3. Five-stage life table for loggerhead sea turtles.

x Nx lx qx mx

egg 625 1.00 0.12 0
Size 1 550 0.88 0.05 0
Size 2 525 0.84 0.19 1
Size 3 425 0.68 0.53 2
Size 4 200 0.32 1.00 0

4.2. Exploration: Population Projection Matrix with Excel.
Lets see how we can use a basic spreadsheet program to do these simple matrix
calculations (see AgeBasedEx.xlsx). For this exploration, we will be using the
following life cycle graph.

Egg Age 1 Age 2

0.6 0.4 0.3
0.3 0.4

Age 3 m
1
= 1 m

2
= 2 m

3
= 3

Figure 7. A life cycle graph.

Question 5. Use the information on the life cycle graph to set up a population
projection matrix.
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Question 6. Let’s assume that you went out and censused the population repre-
sented in this life cycle graph and found 20 eggs, 15 age 1 individuals, 10 age 2
individuals, and 10 age 3 individuals. Use the population projection matrix and
the census results to project the population size 2 times into the future.

Question 7. Using the Excel spreadsheet, AgeBasedEx.xlsx, complete the matrix
entries in red and the initial population vector (also in red) and compare to your
results from the above question.

Question 8. Is the population from Question 7 increasing or decreasing? Can you
determine by how much for each time interval?

5. Estimating Population Growth

While basic matrix algebra provides an iterative process to estimate how a popula-
tion will grow over time, we would like to estimate basic growth for a population.
For certain populations, the long term population growth trend stabilizes over time.
That is, after a certain point, the age distributions (or stage distributions) stabilize
so that the ratios of ages classes is constant from iteration to iteration. We saw
this type of behavior in Question 8 above.

When the growth of a population stabilizes, we can compute the rate of growth of
a population, λ, as

(1) λ =
Nt+1

Nt

where Nt is the total population at time t. This rate is known as the geometric
rate of increase and can be used to interpret the projected growth of a population
over a short period of time. When λ > 1, the population is growing. When λ < 1,
the population is declining. When λ = 1, the population is stable. In many ways
λ is very similar to the R0 we saw earlier and in some specific cases they are
interchangeable.

5.1. Exploration: λ and the Stable Age Distribution with Excel.
Lets use our Excel worksheet, StableAgeDist.xlsx, to see what the link is between
the stable age distribution and λ. To do this, we will manipulate various parameters
in the population projection matrix and in doing so we will be changing λ. For
the following manipulate the Adjustment Matrix on the right hand side of the
worksheet and keep the Original Matrix on the left as a reference matrix.

(1) To begin, we will increase the value of λ from the Adjustment Matrix by
manipulating the fecundities (mx) to increase λ. Double the values of the
fecundities in the Adjustment Matrix. Record the stable age distribution
and λ.
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(2) Now repeat the manipulations in the Adjustment Matrix by tripling original
fecundity rates. Record the stable age distribution and λ.

(3) What happens if we reduce the fecundity rates? Set the fecundity rates to
half the original values. Record the stable age distribution and λ.

(4) Given your observations of changes in λ and the stable age distribution,
what conclusions can you draw about the relationship between λ and stable
age distributions?

5.2. Exploration: The initial population, λ and the Stable Age Distribu-
tion with Excel.
In our calculations of the stable age distributions in Exploration: λ and the Sta-
ble Age Distribution with Excel, we noticed that the stable age distribution varied
with λ. Now lets see if the stable age distribution is also a function of the original
population vector. Be sure to reset the Adjustment Matrix to the original values
before starting.

(1) To start, invert the initial population in the Adjustment Initial Population
Vector (i.e., take the number of individuals in age class 3 and put them in
age class Seed, take the number of individuals in age class Seed and put
them in age class 3, etc.). What happens to the stable age distribution? λ?

(2) Now make your own changes in the Adjustment Initial Population Vector.
What happens to the stable age distribution? λ?

(3) Given your observations in the above two questions, what appears to be
the determining factor for the stable age distribution? λ? Is it the matrix
elements or the vector elements?

5.3. Exploration: Intro to Sensitivity Analysis with Excel.
In Exploration:λ and the Stable Age Distribution with Excel you manipulated the
fecundities for this population. Now lets examine how changing each of the matrix
parameters affects λ. To do this we will manipulate one matrix element of the
Adjustment Matrix at a time and see how it changes λ. We won’t manipulate each
element, but enough to get a flavor of how ecologists conduct what is known as
sensitivity analysis. That is, how sensitive is the population to a particular entry
in the matrix. Be sure to reset the Adjustment Matrix back to the original values
every time.

(1) Increase the fecundity of Age 3 individuals by 50% in the Adjustment Ma-
trix (so change it from 3 to 4.5). Calculate the proportional change in λ
that occurred as a result of this change.

(2) Increase the survivorship of Eggs by 50% in the Adjustment Matrix (so
change it from 0.6 to 0.9). Calculate the proportional change in λ that
occurred as a result of this change.

(3) Increase the proportion of Age 2 individuals that stay Age 2 individuals by
50% in the Adjustment Matrix (so change it from 0.4 to 0.6). Calculate
the proportional change in λ that occurred as a result of this change.
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(4) Which element had the greatest impact on λ? How did you come to that
conclusion?

One issue with using Equation 1 to compute λ is that it can only be done once
a stable age distribution has been reached. In other words, we would have to
iteratively find the age distributions until the ratios of the age, or stage, classes is
constant from iteration to iteration.

Surprisingly, matrix algebra once again comes to our aid. It turns out that the
population projection matrix, A, holds enough information to determine the growth
rate for the population it represents. This information is known as the eigenvalue
of a matrix. Before we see how to apply eigenvalues to population rates, we first
give a brief introduction of eigenvalues.

Eigenvalues are actually computed simultaneously with their corresponding eigen-
vector. The vector ~n is an eigenvector of the square matrix A with eigenvalue λ if
the following equation holds:

A~n = λ~n.

Usually when a vector, like ~n, is multiplied by a matrix, the resulting vector
has changed in both magnitude (length) and direction. However, in the special
case where ~n is an eigenvector of A, multiplication by A leaves the direction un-
changed. Depending on the sign and magnitude of the eigenvalue λ correspond-
ing to ~n, the operation A~n = λ~n compresses or stretches ~n by a factor of λ.

Example 1. The vector ~n =

[
1
2

]
is an eigenvector of

A =

[
3 0
8 −1

]
corresponding to the eigenvalue λ = 3, since

A~n =

[
3 0
8 −1

] [
1
2

]
=

[
3
6

]
= 3~n

While computing the eigenvectors of a square matrix takes methods beyond the
scope of this work, we can compute eigenvalues for small matrices. For a more
complete treatment of eigenvalues, we refer the reader to Anton [1] or Lay [5].

Example 2. Suppose we want to find the eigenvalues of A =

[
2 3
3 −6

]
. Notice

that through a little matrix algebra, we have

A~n = λ~n or

A~n− λ~n = ~0 or

(A− λI)~n = ~0
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Since the eigenvector ~n must be nonzero and (A − λI)~n = ~0, by the Invertible
Matrix1 Theorem, we need (A − λI) to be non-invertible. Otherwise, if (A − λI)
was invertible, then we would have ~n = 0. For our example, we now have

A− λI =

[
2 3
3 −6

]
−
[
λ 0
0 λ

]
=

[
2 − λ 3

3 −6 − λ

]
.

We have seen that a matrix is not invertible if its determinant is zero. We want to
find λ such that the determinant of (A − λI) is zero. So the eigenvalues of A are
the solutions of the equation

det(A− λI) = det

[
2 − λ 3

3 −6 − λ

]
= 0.

Recall that

det

[
a b
c d

]
= ad− bc.

So

det(A− λI) = (2 − λ)(−6 − λ) − (3)(3)

= −12 + 6λ− 2λ+ λ2 − 9

= λ2 + 4λ− 21

= (λ− 3)(λ+ 7).

If det(A− λI) = 0, then λ = 3 or λ = −7. So the eigenvalues of A are 3 and -7.

While finding the eigenvalues for a 2 × 2 matrix reduces to solving a quadratic
equation, as the size of the matrix increase, so does the degree of the accompanying
polynomial (known as the characteristic polynomial). So to find the eigenvalues of a
4× 4 matrix, we would have to solve a fourth degree polynomial, i.e., a polynomial
with λ4 terms. In general, this is a very difficult task. Luckily, we can turn to
technology for help.

Consider the following age-based population graph.

Seed Age 1

0.8

Age 2 Age 3

0.5 0.25

m
1
= 1

m
2
= 1.5 m

3
= 1.2

Figure 8. An age-based population graph.

It has the corresponding projection matrix

1The Invertible Matrix Theorem is the central theorem for Linear Algebra. It has many

equivalent statements, one of which is that a square matrix A is invertible if and only if the

equation A~x = ~0 has on the trivial solution ~x = 0.
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A =


0 1 1.5 1.2

0.8 0 0 0
0 0.5 0 0
0 0 0.25 0


To consider the long term behavior of this population, would could iterate An~n(0)
until the age distributions stabilize. Instead, we will compute the eigenvalues of
this matrix. Since this is a 4 × 4 matrix, we can have up to four eigenvalues. To
compute this we use the web-based program WolframAlpha R© to find the eigenvalues
are approximately 1.18, -0.31, -0.43+0.36i, and -0.43-0.36i, please see Figure 9. So
which value determines the population growth? Also, notice that some of the values
are imaginary? First, imaginary solutions come with the territory. Even simple
quadratic equations such as x2 + 4 = 0 have imaginary solutions. With regard to
which of the four values we use, we choose the one with the largest magnitude,
which in this case is λ = 1.18. The eigenvalue with the largest magnitude is known
as the dominant eigenvalue. For those interested in why the dominant eigenvalue
is the one that determines the rate of growth in the population, we refer to you to
Caswell [3].

Figure 9. Using WolframAlpha to compute eigenvalues.
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