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Abstract. Since the early 1980s, graph theory has been a favorite topic for
undergraduate research due to its accessibility and breadth of applications. By

the early 1990s, knot theory was recognized as another such area of mathe-
matics, in large part due to C. Adams’ text, The Knot Book. In this paper,

we discuss the intersection of these two fields and provide a survey of current

work in this area, much of which involved undergraduates. We will present
several new directions one could consider for undergraduate work or one’s own

work.

1. Introduction

This survey considers three current areas of study that combine the fields of
graph theory and knot theory. Recall that a graph consists of a set of vertices and a
set of edges that connect them. A spatial embedding of a graph is, informally, a way
to place the graph in space. Historically, mathematicians have studied various graph
embedding problems, such as classifying what graphs can be embedded in the plane
(which is nicely stated in Kuratowski’s Theorem [25]), and for non-planar graphs,
what is the fewest number of crossings in a planar drawing (which is a difficult
question for general graphs and still the subject of ongoing research, see [23] for
example). A fairly recent development has been the investigation of graphs that
have non-trivial links and knots in every spatial embedding. We say that a graph
is intrinsically linked if it contains a pair of cycles that form a non-splittable link in
every spatial embedding. Similarly, we say that a graph is intrinsically knotted if it
contains a cycle that forms a non-trivial knot in every spatial embedding. Conway,
Gordon [9], and Sachs [31] showed the complete graph on six vertices, K6, is
intrinsically linked. We refer the reader to a very accessible proof of this result in
Section 8.1 of The Knot Book [1]. Conway and Gordon further showed that K7

is intrinsically knotted. These results have spawned a significant amount of work,
including the complete classification of minor-minimal examples for intrinsically
linked graphs by Robertson, Seymour, and Thomas [30]. After the completion of
this classification, work has turned to finding graphs in which every embedding
has a more complex structure such as finding other minor-minimal intrinsically
knotted graphs [17],[16], graphs with cycles with high linking number in every
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spatial embedding [14], as well as graphs with complex linking patterns [11] (see
Section 2 for a bit more on what this means).

Recall that a natural generalization of an intrinsically linked graph is an in-
trinsically n-linked graph, for an integer n ≥ 2. A graph is intrinsically n-linked
if there exists a non-split n-component link in every spatial embedding. In Sec-
tion 2, we will try to survey known results about intrinsically 3-linked graphs, and
we present a few less-technical proofs. In particular, we discuss Flapan, Naimi and
Pommersheim’s [13] result that K10 is the smallest complete graph that is intrin-
sically 3-linked. We also talk about other examples of intrinsically 3-linked graphs
that are minor-minimal or possibly minor-minimal.

In Section 3, we restrict our attention to embeddings of graphs with straight
edges. Conway and Gordon’s work guarantees a 2-component link in any embedding
of K6 and a knot in any embedding of K7, but says nothing of the number of such
embeddings. Due to the restrictive nature of straight-edge embeddings, we can
determine the possible number of links and knots in such embeddings. Theorem 3.1
and 3.2 characterize the number of 2-component links in K6 and K7. Table 1
characterizes the number of stick knots occurring in a large class of straight-edge
embeddings of K7. This work is of interest to molecular chemists who are trying
to synthesize topologically complex molecules. One could imagine that the vertices
of these graphs represent atoms and the edges are the bonds of a molecule.

In Section 4, we expand the work of Conway and Gordon by showing in Theorem
4.1 [4] that every Kn (n ≥ 7) contains a knotted Hamiltonian cycle in every spatial
embedding.

While we make every effort to explain the machinery necessary for the fol-
lowing results in each section, we refer the reader to The Knot Book [1] and
Introduction to Graph Theory [7]. A number of open questions will be posed
throughout the sections. For easy reference, the questions will be listed again
in Section 5.

2. Intrinsically 3-linked graphs

We start this section with a quick introduction to the linking number. Recall
that given of a link of two components, L1 and L2 (two disjoint circles embedded
in space), one computes the linking number of the link by examining a projection
(with over and under-crossing information) of the link. Choose an orientation for
each component of the link. At each crossing between two components, one of the
pictures in Figure 1 will hold. We count +1 for each crossing of the first type (where
you can rotate the over-strand counter-clockwise to line up with the under-strand)
and −1 for each crossing of the second type. To get the linking number, lk(L1, L2),
take the sum of +1s and −1s and divide by 2. One can show that the absolute
value of the linking number is independent of projection, and of chosen orientations
(see [1] for further explanation). Note that if lk(L1, L2) 6= 0, then the associated
link is non-split. The converse does not hold. That is, there are non-split links with
linking number 0 (the Whitehead link is a famous example, see again [1]). Any
linking numbers we use will be the ordinary linking number, taken mod 2.

In this section, we survey the known results about intrinsically 3-linked graphs,
and we present a few results. Before doing so, we introduce some more terminology.
Recall that a graph H is said to be a minor of the graph G if H can be obtained
from G by a sequence of edge deletions, edge contractions and/or vertex deletions.
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Figure 1. Computing the linking number.

A graph G is said to be minor-minimal with respect to a property, if G has the
property, but no minor ofG has the property. It follows from the result of Robertson
and Seymour [29] that there are only finitely many minor-minimal intrinsically n-
linked graphs, and since having a n-linkless embedding is preserved by minors (see
[26], [13]), a graph is intrinsically n-linked if and only if it contains a member of a
finite list (not yet determined) of graphs as a minor.

The study of intrinsically 3-linked graphs first appeared briefly in a student
paper [19], where the authors showed a 3-component linkless embedding of K3,3,3.
Soon after that paper was written, the first author spoke with Erica Flapan about
the problem of finding intrinsically 3-linked graphs. She became interested in de-
termining the lowest value of n such that Kn is intrinsically n-linked. The first
author had the more modest goal of finding an intrinsically 3-linked graph. As a
result of this conversation, we formulated the following pasting type lemma, which
first appeared in [12], and is easily proven. Recall that if the cycles C2 and C3

intersect along an arc, then we may form a new cycle, C2 + C3 by using the edges
that are only in C2 or only in C3.

Lemma 2.1. If C1, C2, and C3 are cycles in an embedded graph, C1 disjoint from
C2 and C3, and C2 ∩C3 is an arc, then lk(C1, C2) + lk(C1, C3) = lk(C1, C2 +C3).

This leads to:

Lemma 2.2. [12] Let G be a spatially embedded graph that contains simple
closed curves C1, C2, C3 and C4. Suppose that C1 and C4 are disjoint from each
other and both are disjoint from C2 and C3, and C2∩C3 is an arc. If lk(C1, C2) = 1
and lk(C3, C4) = 1, then G contains a non-split 3-component link.

Proof. If lk(C1, C3) = 1 or if lk(C2, C3) = 1, then C1, C2 and C3 form a
non-split 3-component link. Similarly, if lk(C1, C4) = 1, then C1, C3 and C4 form
a non-split 3-component link. Finally, if lk(C1, C4) = lk(C2, C4) = lk(C1, C3) =
lk(C1, C4) = 0, then by Lemma 2.1, lk(C1, C2 + C3) = lk(C1, C2) + lk(C1, C3) = 1
and lk(C4, C2 + C3) = lk(C4, C2) + lk(C4, C3) = 1. Thus C1, C2 + C3, C4 forms a
non-split 3-component link. �

One can use this Lemma to show that various graphs are intrinsically 3-linked.
For example (see [13]), let J be the graph obtained by pasting two copies of K4,4

along an edge (see Figure 2). Sachs [32] showed that for every spatial embedding
of K4,4, every edge of the graph is contained in a cycle that is non-split linked to
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Figure 2. The graph J .

another cycle. Consider an arbitrary embedding of J . In one copy of K4,4 there
are a pair of cycles with non-zero linking number, call them C1 and C2, and by
Sachs’ result, we may assume one of the cycles, say C2, uses the edge shared by
the two copies of K4,4. In the other copy of K4,4, there are another pair of cycles
with non-zero linking number, call them C3 and C4, and again, we may assume
that one of the cycles, say C3, uses the shared edge. Thus by Lemma 2.2, there
is a 3-component link in this embedding of J . It follows that J is intrinsically
3-linked. It is not known if J is minor-minimal with respect to this property. At
the time the paper was being written, the authors of [13] believed that J is either
minor-minimal, or the graph obtained from removing the shared edge from J is
minor-minimal with respect to being intrinsically 3-linked, though a proof of this
was never written down.

The fact that J is intrinsically 3-linked was later generalized in [5] to include
the graph obtained from two copies of K7 pasted along an edge, as well as the graph
obtained from K4,4 and K7 pasted along an edge. We quickly sketch a proof here.
We first need the following lemma:

Lemma 2.3. [5] Let G be a spatial embedding of K7, then every edge of G is in
a non-split linked cycle.

Proof. First embed K7, then consider an edge e1 = (v1, v2) in K7. The
vertices of G − v2 induce a K6. Then vertex v1 is in a linked cycle in this embed-
ded K6, say (v1, v3, v4) is linked to cycle C. By Lemma 2.2, lk((v1, v3, v4), C) =
lk((v1, v3, v2), C) + lk((v1, v2, v3, v4), C), and thus e1 is in a linked cycle. �

The proof of the following result is similar to the proof that J is intrinsically
3-linked.

Theorem 2.1. [5] Let G be a graph formed by identifying an edge of a graph
G1 with an edge from another graph G2, where G1 and G2 are either K7 or K4,4.
Then every such G is intrinsically 3-linked.

At this time, we do not know whether the graphs described by this theorem are
minor-minimal or not. Before we go further, we review one important definition.
Let a, b, and c be vertices of a graph G such that edges (a, b), (a, c) and (b, c) exist.
Then a 4 − Y exchange on a triangle (a, b, c) of graph G is as follows. Vertex v
is added to G, edges (a, b), (a, c) and (b, c) are deleted, and edges (a, v), (b, v) and
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(c, v) are added. Given the graph G in Figure 3, the illustration in the Figure
depicts the result of 4 − Y expansion on triangle abc. A Y − 4 exchange is the
reverse operation.
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Figure 3. A graph G and the results of a ∆-Y exchange.

In [13], the authors were able to find a minor-minimal intrinsically (n + 1)-
linked graph G(n), for every integer n > 2. By showing that J is not obtainable
from G(2) by a sequence of ∆ − Y and Y − ∆ moves, they also showed that the
set of all minor-minimal intrinsically 3-linked graphs cannot be obtained from one
of the graphs in the set by a sequence of ∆ − Y and Y −∆ moves–unlike the set
of minor-minimal intrinsically linked graphs which can all be obtained from K6 by
∆− Y and Y −∆ moves.

In [12], Flapan, Naimi and Pommersheim were able to determine that K10

was intrinsically 3−linked. By exhibiting a 3-linkless embedding of K9, they also
established that n = 10 is the smallest n for which Kn is intrinsically 3-linked.
In order to prove their result for K10, the authors used a careful examination of
linking patterns of triangles in spatial embeddings of K9, as well as Lemma 2.2.
We will briefly discuss those patterns here.

A 4-pattern within an embedded graph, G, consists of a 3-cycle, B, that is
linked with four other 3-cycles that can be described as follows. For vertices q,r in
G, each 3-cycle linked to B is of the form (q, r, x) where x is one of any four vertices
of G other than B, q, and r (see Figure 4).

A 6-pattern within an embedded graph, G, consists of a 3-cycle, B, that is
linked with six other 3-cycles that can be described as follows. For vertices p,q,r in
G, each 3-cycle linked to B is either of the form (p, q, x) or (p, r, x) where x is one
of any three vertices of G other than B, p, q, and r (see Figure 4). We may now
state the following Lemma. The proof of this lemma is somewhat technical, so we
refer the reader to the original source for a proof.
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Figure 4. A possible 4-pattern on the left, and a possible 6-
pattern on the right

Lemma 2.4. [12] There exists an embedding of K9 without any 3-component
links. For any embedding of K9 every linked 3-cycle is in a 4-pattern, a 6-pattern,
or a 3-component link.

More recently, O’Donnol [27] has used a clever examination of linking patterns
in complete bipartite graphs to show that every embedding of K2n+1,2n+1 contains
a non-split link of n-components. O’Donnol further showed that for n ≥ 5, K4n+1

is intrinsically n-linked. Even more recently, Drummund-Cole and O’Donnol [10]
improved this result by showing that for every n > 1, every embedding of Kb 72nc
contains a non-split link of n-components. It would be a good project to determine
if this is the best one can do for low values of n. In particular, is 17 the fewest
vertices of an intrinsically 5-linked graph (this number could be as low as 15)?
For n = 4, 14 is currently the fewest number of vertices need to guarantee Kn is
intrinsically 4 linked, but this number could be as low as 12. Drummund-Cole and

O’Donnol further showed that there exists a function f(n) such that lim
n→∞

f(n)
n

= 3
and, for every n, Kf(n) is intrinsically linked. As 3 vertices are the fewest possible
for a link component, this asymptotic result is the best possible.

The quest for finding a complete set of minor-minimal intrinsically 3-linked
graphs is still very much alive–there remains much work to be done. In [13], there
are two families of intrinsically 3- linked graphs presented. As we mentioned earlier
in the paper, one is the single member family consisting of the triangle-free graph
J (or possibly some minor of J . If this minor had a 3-cycle, then the family would
be more than one member). The other family consists of the graph G(2) described
in [13], as well as the other two graphs that can be obtained from G(2) by Y −∆
exchanges (one can readily argue that they are intrinsically 3-linked, using the same
arguments given in [13]). Moreover, since G(2) is minor-minimal intrinsically 3-
linked, so are these graphs. This follows from the following lemma, which makes
for a good exercise in graph theory. The curious and/or frustrated reader can look
up the proof online if they are interested.
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Lemma 2.5. [28], [6] Let P be a graph property that is preserved by ∆ − Y
exchanges, and let G′ be a graph obtained from G by a sequence of ∆ − Y moves.
If G has property P , and if G′ is minor-minimal with property P , then G is also
minor-minimal with property P .

The graph J , the graph obtained by pasting two copies of K7 along an edge,
and the graph obtained by pasting an edge of K7 to an edge of K4,4 may also lead
to new families of minor-minimal intrinsically 3-linked graphs–we just do not know
yet if these graphs are themselves minor-minimal, or if they can be pared down.

As we mentioned earlier, the authors in [12] showed that K10 is intrinsically
3-linked. Bowlin and the first author [5] later showed, using techniques similar
to those used in [12], that the subgraph obtained from K10 by removing 4 edges
incident to a common vertex is also intrinsically 3-linked; they also showed that the
subgraph obtained fromK10 by removing two non-adjacent edges is also intrinsically
3-linked. They were not able to prove that these graphs are minor-minimal (the
first author strongly suspects at least the former is). If they were, then by ∆− Y
exchanges, they would yield two new families of graphs for our set. Finally, Bowlin
and Foisy showed that any graph obtained by joining two graphs from the Petersen
family by a 6−cycle that has vertices that alternate between copies of the two
graphs is intrinsically 3-linked:

Theorem 2.2. [5] Let G be a graph containing two disjoint graphs from the
Petersen family, G1 and G2, as subgraphs. If there are edges between the two
subgraphs G1 and G2 such that the edges form a 6-cycle with vertices that alternate
between G1 and G2, then G is intrinsically 3-linked.

The proof of this theorem requires the use of the following lemma, whose proof
is similar to the proof of Lemma 2.2:

Lemma 2.6. [5] In an embedded graph with mutually disjoint simple closed
curves, C1,C2,C3, and C4, and two disjoint paths x1 and x2 such that x1 and x2

begin in C2 and end in C3, if lk(C1, C2) = lk(C3, C4) = 1 then the embedding
contains a non-split 3-component link.

PROOF (of Theorem 2.2). Let {a1, a2, a3, b1, b2, b3} be the set of vertices that
make up the 6-cycle described in the statement of the theorem, where {a1, a2, a3}
are in G1 and {b1, b2, b3} are in G2. Embed G. By the pigeonhole principle, at least
two vertices in the set {a1, a2, a3} are in a linked cycle within the embedded G1

(without loss of generality, a1 and a2), and likewise we may assume that the vertices
b1 and b2 are in a linked cycle in G2. Because of the edges between {a1, a2, a3} and
{b1, b2, b3}, we know that there are two disjoint edges between the sets {a1, a2} and
{b1, b2}. By Lemma 2.6, a 3-component link is present in the embedding. �

We shall henceforth call a 6−cycle as in the statement of Theorem 2.2 an
alternating 6−cycle. We suspect that many of the graphs obtained by joining
Petersen graphs by an alternating 6−cycle are minor-minimal with respect to be-
ing intrinsically 3-linked. For example, consider two copies of K6 joined by an
alternating 6−cycle, which we will denote by S. We examine the embedding
pictured in Figure 5. In the embedded shown, in the K6 on the left, the only
linked cycles are (a, c, e) and (b, d, f). Similarly, for the K6 on the right, only
(A,C,E) is linked with (B,D,F ). The only 3-component link in this embedding is
(b, d, f), (a, e, c, A,E,C), (B,D,F ). If we remove any one of the edges (c, A), (d, f)
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Figure 6. Removing edge (a, c) results in a 3-linkless embedding.

or (a, e), then the resulting graph has a 3-linkless embedding. If we contract any
one of the edges (b, B), (a, b), (d, e), (a, e), then the resulting embedding is 3-linkless.

It remains to show that removing an edge in the class of (a, c) results in a
graph with a 3-linkless embedding. This can be seen by examining the embedding
depicted in Figure 6 (note that the vertices have been re-labelled slightly).

It will take some time and effort to enumerate exactly what graphs are in the
family of all Petersen graphs joined by an alternating 6−cycle. There is, up to
isomorphism, only one way to connect copies of K6, but for all of the other graphs
in the Petersen family, there are multiple ways to connect them. Perhaps Lemma
2.5 might be helpful in efficiently demonstrating that some of these graphs are
minor-minimal.

Up to this point in time, all of the minor-minimal intrinsically 3-linked graphs
have been shown to be intrinsically 3-linked by using some sort of analogy to Lemma
2.1. For such graphs, the guaranteed 3-link contains at least one cycle that was
pasted together from two smaller cycles. (Though it is interesting that Drummund-
Cole and O’Donnol [10] have recently shown that every embedding of K14 contains
a 3-link of triangles.) Recently some students worked on a related problem, and
their work might suggest that there will be some minor-minimal intrinsically 3-
linked graphs that cannot be proven to be intrinsically 3-linked using an analogy
to Lemma 2.1. We briefly describe this work now.
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An S1 embedding of a graph G is an injective map of the vertices of G into
S1. A 0-sphere in an S1 embedding of a graph G is composed of any two vertices
that are the endpoints of a simple path in G. We denote a 0-sphere by writing
the endpoints of the associated path as an ordered pair. Just as a pair of disjoint
cycles forms a link in a spatial embedding, a pair of disjoint 0-spheres (with disjoint
underlying paths) forms a link in an S1 embedding. A link (a, b) and (c, d) is said
to be split if a and b lie on the same component of S1 − {c, d}. Thus the link is
non-split if a and b lie on different components of S1 − {c, d}. For S1 embeddings,
the mod 2 linking number of two 0-spheres (a, b) and (c, d), denoted lk((a, b), (c, d)),
is 0 if and only if (a, b) and (c, d) are split linked and is 1 if and only if (a, b) and
(c, d) are non-split linked. An S1 n-link in an S1 embedding of a graph G is a set
of n disjoint 0-spheres in the embedding of G. An n-link in an S1 embedding is
said to be split if there are two points, x and y, on the circle such that both com-
ponents of S1−{x, y} contains at least one vertex involved in the n-link and every
0-sphere in the link lies entirely on one component of S1 − {x, y}. Just as some
graphs are intrinsically linked in space, some graphs are intrinsically S1 linked. A
graph is intrinsically S1 linked if every S1 embedding contains a non-split link. It
was shown by Cicotta et al. that the complete minor-minimal set of intrinsically
S1 linked graphs is K4 and K3,2 [8]. A graph is said to be intrinsically S1 n-linked
if every S1 embedding of the graph contains a non-split n-link.

The students easily proved the following analog of Lemma 2.1:

Lemma 2.7. [6] Given 0-spheres (a, b), (c, d), (c, e), and (d, e) in an S1 embed-
ding of graph G, lk2((a, b), (c, e)) = lk2((a, b), (c, d)) + lk2((a, b), (d, e)).

They also proved the following analog of Theorem 2.1:

Theorem 2.3. [6] Let G be a graph formed by pasting together graphs A and
B, where A and B are each either a K4 or K3,2, at a vertex. The graph G is
intrinsically S1 3-linked.

They went on to find 28 minor-minimal intrinsically S1 3-linked graphs, 6 of
which were shown to be intrinsically S1 3-linked using Lemma 2.7. The other 22
graphs were shown to be intrinsically S1 3-linked by using other ad hoc methods (it
is possible to analyze such graphs by using combinatorics and case checking since
there are only finitely many non-equivalent S1embedding classes of a given graph).
By comparison, all of the intrinsically 3-linked graphs in space have been shown to
be intrinsically 3-linked by using some sort of analogy to Lemma 2.7. The work in
[6] is thus interesting because it suggests that the intrinsically 3-linked graphs thus
far discovered may only be the tip of the iceburg. It is also interesting because it
provides a more tractable analogous problem. Hopefully, someone will soon prove
that the 28 graphs (or possibly a superset) forms the complete set of minor-minimal
intrinsically S1 3-linked graphs.

In summary, the quest for a complete minor-minimal set of intrinsically 3-linked
graphs is going to require some time-consuming methodical work, as well as some
breakthroughs. We thus feel it is well-suited to eager and persistent students who
have fresh ideas.

We briefly mention some other related results that might be of interest. One
could also look for graphs that contain, in every spatial embedding, multi-component
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links with various patterns. The authors in [13] were also able to show the existence
of an “n-necklace” (a link L1 ∪ L2 ∪ ... ∪ Ln, such that for each i = 1, ..., n − 1,
Li ∪ Li+1 is non-split and Ln ∪ L1 is non-split) in every embedding of the graph
they call F (n). Flapan, Mellor and Naimi [11] came up with a powerful gener-
alization of this result to show that, given any n and α, every embedding of any
sufficiently large complete graph in R3 contains an oriented link with components
Q1, ..., Qn such that, for every i 6= j, |lk(Qi, Qj | ≥ α. The first author [15] has
also shown the existence of a graph that, for every spatial embedding, contains
either a 3-component link or a knotted cycle, but it has a knotless embedding and
a 3-component linkless embedding.

Finally, we mention one more related open question.

Question 2.1. What is the smallest n, such that, for every straight edge
embedding of Kn, there is a non-split link of 3 components?

We know n is at most 10, but could be 9.

3. Links and knots in straight-edge embeddings of graphs.

In this section, we consider complete graphs composed of straight edges or
sticks. A stick knot is a knot formed out of rigid straight sticks. Molecular chemists
are interested in this type of knot because at the molecular level, molecules are
more like rigid sticks than flexible rope, Figure 7. With this application in mind,
the following two questions were posed at a knot theory workshop in 2004:

(1) Does there exist a straight-edge embedding of K6 with 9 (3-3) links?
(2) Given a straight-edge embedding of K7, how many and what types of

knots occur?
07/24/2007 01:58 PMfig11.gif 374!362 pixels

Page 1 of 1http://plus.maths.org/issue15/features/knots/fig11.gif

Figure 7. The trefoil knot and a knotted molecule

The first question was motivated by Conway-Gordon and Sachs’ proof that K6

is intrinsically linked. Any three vertices and adjoining edges form a 3-cycle. In
K6 there are 10 disjoint pairs of 3-cycles. If the edges were allowed to bend and
stretch, one could place the vertices and edges of K6 in space such that all 10 pairs
of triangles were linked. But what would happen to the number of links if the edges
had to remain straight as in a molecular bond? Due to the techniques used in their
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proof, it was known that the number of linked pairs had to be odd. Hence, the
question asked if the maximum 9 pairs could be attained.

In regards to the second question, K7 has 360 Hamiltonian cycles consisting of
7 edges. It is well known that only two non-trivial knots, the trefoil and the figure-
8, can be made with 7 sticks. The minimum number of sticks needed to make a
knot is 6 and this only occurs for the trefoil. So, to answer the second question,
one must not only consider the Hamiltonian cycles on K7, but all cycles of length
6 as well.

Figure 8. K6

with two internal
vertices

Figure 9. K6

with one internal
vertex

Figure 10. K6

with no internal
vertices, version 1

Figure 11. K6

with no internal
vertices, version 2

In 2004 a student of the second author, C. Hughes, showed that any straight-
edge embedding of K6 contains either 1 or 3 disjoint 2-component links, thus an-
swering the first question [20]. To do this, she considered the four distinct convex
polyhedra that form straight-edge embeddings of K6 [34] (see Figure 8–11). It was
shown that Figures 8 and 9 are ambient isotopic to Figure 10 (note the isotopies pre-
serve the linearity of the edges). Through a series of geometric arguments, Hughes
then showed Figure 10 has one 2-linked component and Figure 11 has three distinct
2-linked components, again up to ambient isotopy that preserves the linearity of
the edges. Interestingly, in 2007 Huh and Jeon independently showed these same
results as well as proving Figure 11 is the only straight-edge embedding of K6 that
contains a knot, a single trefoil [21].

Theorem 3.1. A straight-edge embedding of K6 has either one or three 2-
component links.
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In 2006, the second author and P. Arbisi extended the work of Hughes, Huh, and
Jeon by classifying all the 2-component links in certain straight-edge embeddings
of K7. This was a challenging task as there are five distinct embeddings of K7

that form convex polyhedra. In addition, unlike K6 that has 10 pairs of disjoint
3-cycles, K7 has 70 pairs of disjoint 3-cycles. With one extra vertex, there is now
the possibility of 3-cyles linking with 4-cycles. There are 35 such pairs.

6

3

6

3
4

4

4

Figure
12.
K1

7 [3,3,4,4,4,6,6]

6

5

3

3
5

3

5

Figure
13.
K2

7 [3,3,3,5,5,5,6]

5

3

4

6

5

4

3

Figure
14.
K3

7 [3,3,4,4,5,5,6]

5

5

5

3

4

4

4

Figure 15. K4
7 [3,4,4,4,5,5,5]

4

4

4 4

4
5

5

Figure 16. K5
7 [4,4,4,4,4,5,5]

While Hughes was able to argue that three of the embeddings of K6 were
equivalent under ambient isotopies that preserve linearity of edges, this was not
readily apparent with K7. Instead, the second author and Arbisi focused on the
5 distinct straight-edge embeddings of K7 that form convex polyhedra [34](see
Figures 12–16). In order to distinguish the five embeddings, the figures are labeled
with the external degree of each vertex. That is, the number associated with each
vertex represents the number of edges on the hull that are incident to it. For the
remainder of the section, when we refer to the degree of a vertex, we actually mean
the number of edges from the hull incident to that vertex, unless otherwise stated.

Theorem 3.2. The minimum number of linked components in any straight-edge
embedding of K7 which forms a convex polyhedron of seven vertices is twenty-one,
and the maximum number of linked components in K7 is forty-eight. Specifically,
we have the following:

K1
7 K2

7 K3
7 K4

7 K5
7

(3-3) 7 7 9 7 9 9 11 13 15 13 15 17
(3-4) 14 14 18 14 18 18 22 23,26 27,30 23,26 27,30 31
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The main method employed for the results in Theorem 3.2 was to consider a
specific embedding of K7, systematically remove a vertex and its adjoining edges,
then determine which version of K6 remained: K1

6 (Figure 10) with one (3-3) link
or K2

6 (Figure 11) with three (3-3) links. K1
7–K3

7 were relatively straight-forward.
If a vertex was removed that was not of external degree of 6, then the resulting
embedding of K6 had only one (3,3) link (K1

6 ). Removing the degree 6 vertex was
a bit more challenging and would result in either K1

6 or K2
6 , depending on the

arrangement of the internal edges in the given embedding of K7. This resulted in
a varying number of links for K2

7 and K3
7 .

Without any degree 6 vertices, K4
7 and K5

7 were considerably more challenging.
Thankfully, we were able to determine the arrangement of the vertices in various
embeddings of K4

7 and K5
7 via Steinitz’s Theorem which states that a graph G is

isomorphic to the vertex-edge graph of a 3-D polyhedron if and only if G is planar
and 3-connected. However, we were still finding some inconsistencies in these two
embeddings compared to the previous three. Specifically, the number of (3,4) links
was not always twice the number of (3,3) links as with the prior cases. This lead
us to the following results.

Proposition 3.1. In a straight-edge embedding of K7, every 3-cycle is con-
tained in 0, 2, or 4 (3,3) links.

To see why this is true, consider a 3-cycle, A, in a straight-edge embedding
of K7. Either A is contained in a link or not. Suppose that A is contained in a
(3,3) link. The four vertices not contained in A form a straight-edge embedding of
K4. There are only two possible ways that A will link with one of the faces of the
tetrahedron, please see Figure 17.

v₁

v₃

v₄

v₂

A

(a) 2-link tetrahedron

v₁

v₂

v₃

v₄

A

(b) 4-link tetrahedron

Figure 17. The two ways a 3-cycle can appear in a link.

Figure 17(b) is particularly interesting as such a linking will create 4 (3,3)
links, but only 1 (3,4) linking. In contrast, Figure 17(a) creates 2 (3,3) links and 2
(3,4) links. The reason that K4

7 and K5
7 were more challenging cases is due to the

following.

Proposition 3.2. In a straight-edge embedding of K7, only K4
7 or K5

7 can have
a 4-link tetrahedron.

There are obvious directions in which this work could continue. For the problem
under consideration, each embedding of K7 formed a convex polyhedron with seven
vertices. What about an embedding of K7 which forms a convex polyhedron with
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4 vertices? That is, four of the vertices form the hull of the polyhedron and the
other three vertices are internal. It seems reasonable that such embeddings are
isomorphic to one of the five cases with seven external vertices, but this is not
obvious. Moreover, as the number of vertices increases, it seems that one could
construct an example of an embedding of a complete graph on n vertices where
at least one of the vertices is internal and can not be passed to the hull of the
embedding via ambient isotopies that preserve the linearity of the edges. Recently
the second author and his student, R. Grotheer, constructed a subgraph of K9 with
one internal vertex that can not be passed to the surface of the hull via ambient
isotopies that preserve the linearity of the edges [18]. So one may ask, given a
straight-edge embedding G of Kn, 7 ≤ n ≤ 8, with 4 ≤ k ≤ 8 external vertices and
m = n− k internal vertices, is G always isomorphic to an embedding of Kn with n
external vertices?

Another direction of study is to consider Kn, n ≥ 7. While K6 has only 10
disjoint triangle pairs to consider, K7 has 70, and K8 has 280. Moreover, with K6

there were only (3-3) links. K7 introduced (3-4) links and for K8, one would have
to consider (3-3), (3-4), (3-5), and (4-4) links. Whereas there were only 5 distinct
convex polyhedral embeddings of K7, it is well known there are 14 for K8 (see,
for example [34]). So, given a straight-edge embedding of Kn, how many (k, m)
links does it contain, where 3 ≤ k ≤ n − 3 and 3 ≤ m ≤ n − k? Clearly this is an
ambitious question. Possibly a more attainable question is the following: Given a
straight-edge embedding of Kn, what is an upper or lower bound for the number
of (k,m) links it contains, 3 ≤ k ≤ n− 3 and 3 ≤ m ≤ n− k?

We now turn our attention to the second question posed at the knot theory
workshop: Given a straight-edge embedding of K7, how many and what types of
knots occur? Using the insight gained from the work with Arbisi, the second author
and R. Grotheer were able enumerate all the possible stick knots in the straight-
edge embeddings of K7, Figure 12–16[18]. There are only two types of knots that
can be made with 7 or fewer sticks: the trefoil requires 6 and the figure-8 requires
7.

Table 1 summarizes the findings. We counted the number of cycles possible
for each embedding that had 0 though 6 internal edges. Next, we partitioned the
problem according to the number of internal edges used in a cycle and then found
the number of cycles that would occur in such embeddings. Curiously, K1

7 has only
one knot. Also, K5

7 was the only embedding that had a figure-8 knot, the rest were
all trefoils.

This work extends naturally to our next topic, knotted Hamiltonian cycles in
spatial embeddings of graphs.
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0 14 0 18 0 17 0 24 0 30 0

1 80 0 72 0 92 0 96 0 90 0

2 164 0 174 0 143 0 123 0 120 0

3 88 1 78 1, 3 91 0, 1 90 2, 3 90 1, 2, 3, 4, 5

4 14 0 18 0, 2 16 0, 1, 2 24 0, 1 20 2, 4

5 0 0 0 0 1 0, 1 3 0 10 1, 5

6 0 0 0 0 0 0 0 0 0 0

K1
7 K2

7 K3
7 K4

7 K5
7

Table 1. The number of knots appearing in a straight-edge em-
bedding of K7.

4. Knotted Hamiltonian Cycles in Spatial Embeddings of Graphs.

Conway and Gordon’s beautiful proof thatK7 is intrinsically knotted also shows
that K7 has a knotted Hamiltonian cycle in every spatial embedding. What other
graphs have this quality? As Kohara and Suzuki [24] point out, of the graphs
obtained from K7 by ∆ − Y exchanges, all except the graph they call C14 are
known to have embeddings without Hamiltonian knots . In a beautiful paper[33],
Shimabara later showed that K5,5 also has a knotted Hamiltonian cycle in every
spatial embedding.

In [4], the authors show that every embedding of Kn, for n ≥ 7 contains
a knotted Hamiltonian cycle. Here we will present the proof of this result (for
background on Arf invariant, see [1] and [22]).

Lemma 4.1. [4] In every spatial embedding of K7, there exists an edge of K7 that
is contained in an odd number of Hamiltonian cycles with non-zero Arf invariant.

Proof. Consider an arbitrary embedding of K7. By Conway-Gordon’s result
[9], the sum of the Arf invariants of all Hamiltonian cycles in an arbitrary embedding
of K7 must be odd. Thus, in the given embedding there must be an odd number
of Hamiltonian cycles with non-zero Arf invariant. Let’s say the number of such
cycles is 2n+ 1. Now, if we count up the edges of such cycles, we get that a grand
total of 7(2n + 1) edges (counting multiplicities) are in a cycle with non-zero Arf
invariant. On the other hand, if we number the edges of K7 as e1, . . . e21, and let
ni, i = 1, 2, . . . , 21 stand for the number of Hamiltonian cycles with nonzero Arf

invariant that contain ei, then we must have that
21∑

i=1

ni = 7(2n + 1), thus
21∑

i=1

ni

must be odd. It follows that at least one of the ni must be odd, and our lemma is
proven.

�
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Theorem 4.1. [4] Every Kn, for n ≥ 7 contains a knotted Hamiltonian cycle
in every spatial embedding.

Proof. We will prove the theorem for K8. The proof for general n is similar.
EmbedK8. Consider the embedding of the subgraphG7 induced by seven vertices of
K8, and let v denote the eighth vertex, and let G7 denote the subgraph on 7 vertices.
By the previous lemma, the embedded G7 contains an edge that is contained in
an odd number of Hamiltonian cycles with non-zero Arf invariant; we denote this
edge e, and let w1 and w2 denote the vertices of e. Now, we ignore the edge e, and
consider the subdivided K7 that results from replacing e with the edges (v, w1) and
(v, w2). We denote this subdivided K7 by G′7. Ignoring the degree 2 vertex v, the
embedded G′7 must have an odd number of Hamiltonian cycles with non-zero Arf
invariant. Since there was an odd number of Hamiltonian cycles of G7 through the
edge e with non-zero Arf invariant, there is an even number of Hamiltonian cycles
in G7 that do not contain e and with non-zero Arf invariant. The Hamiltonian
cycles of G7 not containing e are exactly the same as the Hamiltonian cycles in G′7
not containing the edges (v, w1) and (v, w2). Thus, in the embedding of G′7, there
must be an odd number of Hamiltonian cycles through the edges (v, w1) and (v, w2)
with non-zero Arf invariant. Such a cycle is a Hamiltonian cycle in K8. Thus, in
the original embedded K8, there must be a knotted Hamiltonian cycle. �

We note here that Susan Beckhardt [3], a student at Union College, has been
able to adapt Conway and Gordon’s proof for K7 to prove that K8 has a knotted
Hamiltonian cycle in every spatial embedding. She was not able to extend her result
to K9. We also note here that the proof of Theorem 4.1 can be used to show that
every edge of K9 is contained in at least two knotted Hamiltonian cycles in every
spatial embedding of K9. This can be seen by removing an edge, call it e, from K9.
The vertices disjoint from e induce a K7 subgraph. In an arbitrary embedding of
K9, consider the embedded sub-K7. One of its edges must lie in an odd number
of Hamiltonian cycles with non-zero Arf invariant. We denote this edge f . The
edges e and f are connected by 4 different edges, which we shall denote e1, e2, e3, e4.
Without loss of generality, e1 and e2 share no vertex, and neither do e3 and e4. If
we replace the edge f with the 4− (vertex) path (e1, e, e2), then there is a knotted
Hamiltonian cycle through the 4−path. Similarly, there is a knotted Hamiltonian
cycle through the 4−path (e3, e, e4). Thus, there are at least two different knotted
Hamiltonian cycles through the edge e. One can use an analogous argument to
show that every 3-path in K10 is contained in at least two knotted Hamiltonian
cycles in every spatial embedding, and in general, every (n − 7)−path in Kn is
contained in at least two knotted Hamiltonian cycles in every spatial embedding,
for n ≥ 9.

This reasoning allows us to estimate a minimum number of knotted Hamilton-
ian cycles in every spatial embedding of Kn for n > 8. One need only compute
the number of paths of length (n − 7), then multiply by 2 and divide by n (be-
cause every Hamiltonian cycle in Kn contains exactly n paths of length (n − 7)).
To get double the number of paths of length (n − 7) in Kn, one merely computes
n(n− 1)(n− 2)....(8). Dividing by n gives our lower bound:

Theorem 4.2. [4] For n > 8, the minimum number of knotted Hamiltonian
cycles in every embedding of Kn is at least (n− 1)(n− 2)...(9)(8).
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Question 4.1. Can the lower bound on the number of knotted Hamiltonian
cycles in every spatial embedding of Kn given in Theorem 4.2 be improved?

The lower bound of at least 1 Hamiltonian knotted cycle in every spatial em-
bedding of K8 was improved to 3 in [4], using techniques of Shimabara [33]. This
leads to the open question of what is the minimum number of knotted Hamiltonian
cycles in every spatial embedding of K8 (by a result in [4], it’s either 3, 9, 15, or
21). Every straight edge embedding? Finally, we bring up the question of whether
or not every spatial embedding of K3,3,1,1 contains a knotted Hamiltonian cycle?
Kohara and Suzuki [24] show an embedding of K3,3,1,1 with exactly one knotted
Hamiltonian cycle in the form of a trefoil knot, and they show another embedding of
K3,3,1,1 with exactly two knotted Hamiltonian cycles, each in the form of a trefoil.
Foisy’s proof [17] that K3,3,1,1 is intrinsically knotted does not prove that there
exists a knotted Hamiltonian cycle in every spatial embedding. It is also unknown
at this time if K3,3,1,1 contains a knotted Hamiltonian cycle in every straight-edge
embedding.

5. Questions and Acknowledgments

We conclude with a listing of the open questions presented in the article.

Question 5.1. Determine the complete set of minor-minimal intrinsically 3-
linked graphs. Are the subgraphs ofK10 described in [5] minor-minimal intrinsically
3-linked?

Question 5.2. Is K14 the smallest complete graph that contains a 3-link of
triangles in every spatial embedding [10]? (At this point, K10 has not been ruled
out.)

Question 5.3. What is the smallest n, such that, for every straight edge
embedding of Kn, there is a non-split link of 3 components? (n is at most 10, but
could be 9.)

Question 5.4. Given a straight-edge embedding G of Kn, 7 ≤ n ≤ 8, with
4 ≤ k ≤ 8 external vertices and m = n−k internal vertices, is G always isomorphic
to an embedding of Kn with n external vertices?

Question 5.5. Given a straight-edge embedding of Kn, how many (k, m) links
does it contain, where 3 ≤ k ≤ n− 3 and 3 ≤ m ≤ n− k?

Clearly this is an ambitious question. Possibly a more attainable question is
the following:

Question 5.6. Given a straight-edge embedding of Kn, what is an upper
or lower bound for the number of (k,m) links it contains, 3 ≤ k ≤ n − 3 and
3 ≤ m ≤ n− k?

Question 5.7. What is the minimum number of knotted Hamiltonian cycles in
every spatial embedding of K8 (from [4], it’s either 3, 9, 15, or 21)? Every straight
edge embedding?

Question 5.8. Does every spatial embedding of K3,3,1,1 contain a knotted
Hamiltonian cycle? Every straight-edge embedding?
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Finally, we would like to thank the organizers for their hard work in making the
conference and this publication possible. We would also like to thank Joe for the
inspiration he has given us and for making undergraduate research in mathematics
a common practice.
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