
Strongly Truthful Interactive Regret Minimization

Min Xie, Raymond Chi-Wing Wong
Hong Kong University of Science and Technology

mxieaa@cse.ust.hk,raywong@cse.ust.hk

Ashwin Lall
Denison University
lalla@denison.edu

ABSTRACT

When facedwith a database containingmillions of tuples, an
end user might be only interested in �nding his/her (close
to) favorite tuple in the database. Recently, a regret mini-
mization query was proposed to obtain a small subset from
the database that �ts the user’s needs, which are expressed
through an unknown utility function. Speci�cally, it mini-
mizes the “regret” level of a user, which we quantify as the
regret ratio if s/he gets the best tuple in the selected subset
but not the best tuple among all tuples in the database.
We study how to enhance the regret minimization query

with user interactions: when presented with a small number
of tuples (which can be arti�cial tuples or true tuples inside
the database), a user is asked to indicate the tuple s/he favors
themost among them. In particular, we are also interested in
the special case of determining the favorite tuple for a user
in the entire database with a small amount of interaction,
measured by the number of questions we ask the user.
Di�erent from the previous work which displays arti�cial

tuples to users, we achieve a stronger result in this paper by
always displaying true tuples in the database. Speci�cally,
we present a generic framework for interactive regret min-
imization, under which we propose algorithms that ask an
asymptotically optimal number of questions in 2-dimensional
spaces and algorithms with provable performance guaran-
tees in d-dimensional spaces (d ≥ 2) where each dimension
corresponds to a description of a tuple. Experiments on real
and synthetic datasets showed that our algorithms outper-
form the existing one by locating the favorite tuple and guar-
anteeing a small regret ratio with much fewer questions.

CCS CONCEPTS

• Information systems → Data analytics.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3300068

KEYWORDS

regret minimization; user interaction; data analytics

ACM Reference Format:

MinXie, RaymondChi-WingWong andAshwin Lall. 2019. Strongly

Truthful Interactive RegretMinimization. In 2019 International Con-

ference on Management of Data (SIGMOD ’19), June 30 - July 5,

2019, Amsterdam, Netherlands.ACM,New York,NY,USA, 18 pages.

https://doi.org/10.1145/3299869.3300068

1 INTRODUCTION

In order to assist the user in �nding the tuple s/he is inter-
ested in, a database system provides some operators to re-
turn a representative subset to the user to �t the user’s need.
Such operators can be regarded as multi-criteria decision-
making tools and it can be applied in various domains, in-
cluding house buying, car purchase and job search. For ex-
ample, in a house database where each house is described by
some attributes, Alice wants to �nd an inexpensive house
with a large size, which is as new as possible (i.e., price, size
and house age are some attributes/criteria that Alice would
consider when she buys a house). In the literature [7, 22, 23],
Alice’s preference could be represented by amonotonic pref-
erence function, called a utility function, in her mind. Based
on this function, each house in the database has a utility.
A high utility indicates that this house is favored by Alice
and the house with the highest utility is the favorite house
of Alice. Depending on whether the utility function is pro-
vided to the database, various approaches were researched
towards multi-criteria decision-making, including the top-k
query, the skyline query and the k-regret query.
In the traditional top-k query [9, 16, 17, 25, 29], a user has

to provide his/her utility function explicitly. Then, the k tu-
ples with the highest utilities are returned. Unfortunately, it
is hard for most users to specify their utility functions ex-
plicitly. If the utility function is not known in advance, the
skyline query [5, 6, 18, 21, 24] can be applied. In particular, a
“domination” concept is used. A tuple p is said to dominate
another tupleq if p is not worse thanq on each attribute and
p is better than q on at least one attribute. Then, the utility
of p is always higher than that of q and, p is more desirable
regardless of the utility function. Tuples which are not dom-
inated by any other tuples are returned in the skyline query.
Unfortunately, the skyline query could have a large output
size (at worst the whole database), making it di�cult to pro-
vide a small representative subset of the whole database.

https://doi.org/10.1145/3299869.3300068
https://doi.org/10.1145/3299869.3300068

Recently, a k-regret query [23, 26, 30] was studied, which
solves multi-criteria decision-making from a novel perspec-
tive. In particular, it overcomes the de�ciencies of the top-k
(which requires the user to provide the exact utility func-
tion) and skyline query (which does not have a controllable
output size). Speci�cally, ak-regret query �ndsk tuples from
the database such that the utility of any user’s favorite among
these k tuples is guaranteed to be a small fraction (quanti-
�ed as the regret ratio) less than the utility of his/her favorite
in the whole database, regardless of the utility function. For
example, a k-regret query on the house database returns k
houses so that Alice can �nd a house in the returned set that
she is interested in (since this house makes her regret ratio
small) without providing her utility function.
In this paper, we study how user interactions would help

in reducing the user’s regret ratio, ranging from 0% to 100%,
in the k-regret query. In particular, we are also interested in
the special case of achieving a 0% regret ratio, i.e., we want
to �nd the favorite tuple for a user in the whole database
with the help of user interactions. Intuitively, instead of ask-
ing the user for the exact utility function directly (which
is di�cult for a user to answer), we ask the user to pro-
vide “hints” on what his/her utility function might look like
(which is easier for a user to provide). Based on the user
feedback, we implicitly learn the utility function and deter-
mine the tuple that s/he is interested in. Note that we do
not want to ask the user a question which is too di�cult to
answer (e.g., asking the user for the exact utility function in
the top-k query). Thus, we stick to the assumption made in
[22] in this paper, which requires little user e�ort: when pre-
sented with a short list of tuples, the user is able to tell his/her
favorite tuple (i.e., the tuple with the maximum utility) among
them. This kind of user interaction naturally appears in our
daily life. For example, a realtor might show the customers
around a few candidate houses and ask which one the cus-
tomers favor the most. A shoe seller might let the customers
try a few di�erent shoes, followed by a question: which one
do you feel the most comfortable with?
To motivate the problem, we consider an application sce-

nario where a realtor wants to help Alice to �nd her (close
to) favorite house in the market by interactively learning Al-
ice’s preference and making recommendations (another car
purchase application scenario is described in our user study
in Appendix D.1). Note that buying a house is one of the big
purchases in our life. Thus, it is important for Alice to �nd
a house which is as close to her favorite one as possible (i.e.,
to achieve a small regret ratio). Otherwise, Alice might feel
regretful for not buying a better one for a long time.
There can be many candidate houses in the market and

thus, Alicemight have to trade-o� between di�erent attributes.
For example, Alice might be willing to pay more on buy-
ing a new house than buying an old one. This trade-o� is

often individualistic and might not be known by the real-
tor in a complete and explicit way. To recommend houses
e�ectively, the realtor can show Alice around a short list
of houses and Alice can indicate the house she favors the
most. The house favored by Alice might di�er from other
non-favorite houses in some ways, which re�ects the trade-
o� in Alice’s mind. With this information, the realtor can
�lter out those houses in the market de�nitely uninterest-
ing to Alice. For those houses where Alice’s preference is
still unknown, another short list of recommendation could
be made. By this interactive procedure, Alice can be pro-
vided with more and more accurate recommendations and
her regret ratio is smaller and smaller since her preference is
learnt implicitly. In this paper, we automate this interactive
process, which has many practical applications in our daily
life such as personalized recommendation system and self-
guided shopping. According to our experimental evaluation,
user interactions are very useful: they reduce both the user
regret and the number of tuples displayed signi�cantly. For
example, to identify the favorite tuple for a user on a dataset
with 4 attributes, a database system returns more than 1000
tuples if no user interaction is involved, while it needs to
display as few as 25 tuples if user interactions are allowed.
In this paper, we want to help a user to �nd his/her (close

to) favorite tuple (i.e., achieve a small regret ratio) with as
little e�ort as possible (i.e., by examining as few options as
possible). For example, we do not want to ask Alice to visit
dozens of houses every weekend. Speci�cally, we measure
the user e�ort by (1) the number of questions asked (i.e., the
number of rounds of user interactions) and (2) the number
of tuples displayed in each question (i.e., the question size,
denoted by s). In particular, we want to answer the ques-
tion: how many questions do we need to ask to determine the
favorite tuple or to guarantee a certain regret for a user?
In the existing method [22] for interactive regret mini-

mization, the database system creates arti�cial tuples (i.e.,
fake tuples not inside the database) and presents those tu-
ples to the user during the interaction, which, however, is
not desirable. For example, Alice might be shown a fake
house during her interaction with the realtor and she is at-
tracted by this house. Alice may wish to inspect this house
in person to knowmore details about it. However, this is im-
possible since Alice cannot visit such a fake house that does
not exist. If a database system relies on fake tuples for learn-
ing the user preference, it can be di�cult to be applied in
such real scenarios. Moreover, since Alice is attracted by this
fake house, Alice might be encouraged to spend more time
on interacting with the realtor, hoping to obtain an even
better house at the end. However, if Alice �nally �nds that
the house she favors is fake, Alice can be disappointed and
think that the realtor is a fraud. Cheating customers with
fake products can cause huge losses in reputation and pro�ts

(e.g., Hyundai o�ered 85million to settle a lawsuit due to the
overstatement of its cars [1]). In comparison, we always dis-
play true tuples inside the database during the interaction.
However, this makes the problem more di�cult and chal-
lenging: instead of being allowed to present any arbitrary
tuple to the user, we are restricted to the tuples in the data-
base. In this paper, we propose strongly truthful algorithms
which tackle this di�culty. Speci�cally, if an interactive al-
gorithm A always displays true tuples inside the database
during the user interaction, A is strongly truthful. The ex-
isting interactive algorithm in [22] is not strongly truthful.
There are some other preference learning algorithms in the
literature, but they do not focus on interactive regret mini-
mization. We postpone their detailed discussion to Section 2.

Contributions.We propose the �rst strongly truthful algo-
rithms for interactive regret minimization. Speci�cally,

• We present a generic framework for interactive regret
minimization and favorite tuple determination.
• We prove a lower bound on the number of questions
needed to determine the favorite tuple in the database.
• We model the user preference by utility hyperplanes
and present two e�ective pruning strategies to obtain
the candidate set of favorite tuples for a user.
• We propose two solutions with an asymptotically op-
timal number of interactions in a 2-dimensional space
and two solutions with provable guarantees in a d-
dimensional space under the framework where each
dimension corresponds to an attribute of a tuple.
• We conducted experiments to demonstrate the superi-
ority of the proposed methods. Under typical settings,
our solutions guarantee the same user regret as exist-
ing methods while asking half as many questions.

Organization.We discuss the related work in Section 2. In
Section 3, we de�ne the regret minimization problem and
the generic interactive framework. The asymptotically op-
timal solutions in 2-dimensional spaces appear in Section 4
and the solutionswith provable guarantees ind-dimensional
spaces are described in Section 5. Experiments are presented
in Section 6 and �nally, Section 7 concludes this paper.

2 RELATEDWORK

The k-regret query was �rst introduced in [23]. Intuitively,
given a set of k tuples, a user is x% happy with the set if the
highest utility of tuples in the set is at least x% of the high-
est utility of all tuples in the whole database. In this case, we
say that the user is (100 − x)% regretful and the regret ratio
of the user is (100− x)%. A k-regret query returns a set of k
tuples such that the maximum regret ratio over all users is
minimized. [22] extended the traditional k-regret query to
interactive regret minimization by considering user interac-
tions, which are shown to be useful in reducing the regret

ratio from both theoretical and practical points of view. In
this paper, we mainly follow the setting in [22]. However,
their solution has some disadvantages. Firstly, they display
arti�cial tuples to approximate the utility function, which is
not desirable. Secondly, their algorithm has a very poor per-
formance when the user wants the favorite tuple (i.e. with
a 0% regret ratio) in the whole database. In comparison, our
algorithms are di�erent by always displaying true tuples in
the database and providing provable performance guaran-
tees even when the user requires a 0% regret ratio.
Apart from interactive regret minimization studied in this

paper, there are alternative methods [13, 16, 21, 27] which
learn users’ preference implicitly based on their feedback.
[13, 21] learned the user preference by asking the user to

partition a given tuple set into a desirable group and an un-
desirable group. Moreover, [13] focused on the preference
learning on the undetermined attributes. Speci�cally, an at-
tribute is undetermined if there is no universal preference de-
�ned on that attribute for all users. For example, on some at-
tributes such as car brands, the preferences can vary dramat-
ically from one user to another user. Di�erent from them, all
attributes in our problem are determined. Besides, instead
of asking the users for both desirable and undesirable tu-
ples, we ask them to pick their favorite tuple only, which
requires less user e�ort than partitioning tuples.
[21] assumed that all attributes are of di�erent importance.

Speci�cally, given two attributesA and B, ifA is more impor-
tant than B, a tuple with a better value on A is uncondition-
ally preferred to tuples with worse values on A, regardless
of their values on B. This is a strong assumption. For exam-
ple, if a user indicates that size is more important than price,
the user prefers a house of 1,000 square feet and 1 million
dollars to a house of 999 square feet and 0.5 million dollars.
Di�erent from them, we assign weights to indicate the at-
tribute importance, which is more reasonable in real cases.
The personalized skyline query of identifying the “truly

interesting” tuples was supported in [16] where the user
preference ismodeled as a strict partial ordering on attributes.
For example, Alice prefers skyline houses considering price
only to skyline houses considering both price and size.
[27] studied the problem of approximating the user’s pref-

erence function by pairwise comparisons. However, they fo-
cus on deriving the hidden preference accurately represent-
ing the entire ordering of all tuples rather than applying
the preference for �nding a single tuple which is close to or
equal to the user’s favorite tuple while we focus on applying
the learned preference to �nd this tuple e�ectively. Never-
theless, based on the learned preference, they can compute
the top ranked tuple and return it for interactive regret min-
imization. However, they require the user to answer more
questions than needed since the core of [27] did not exploit
to �nd the (close to) favourite tuple for a user. For example,

if Alice prefers house p1 to p2, and prefers house p3 to p4, it
is less interesting to ask Alice for her preference between p2
and p4, which are de�nitely not her favorite house, but this
additional comparison might be unavoidable in their case.
Interactive regret minimization is also related to the learn-

ing to rank problem in machine learning[11, 19]. In particu-
lar, [11] studied active ranking using pairwise comparisons
where they de�ned the ranking of tuples according to their
distances to a common reference point in an embedding
space. However, they cannot guarantee the quality of the se-
lected comparisons; that is, some of their comparisons can
be less informative while we select comparisons that guide
us to reduce the regret. Nevertheless, the top ranked tuple
they learned can be returned for interactive regret minimiza-
tion, but they also have the disadvantage of asking more
questions than needed due to a similar reason stated for [27].
Bandit approaches [2, 12, 14] andmetric learning approaches

[20] were also considered in preference learning. However,
all these methods su�er from the drawback of not exploit-
ing the relation between tuples (where a relation means that
a tuple is preferable to another tuple) and thus, require more
feedback from the user. In comparison, we consider the inter-
relation between tuples and thus, even some tuples have
never been seen by the user, we can accurately �lter out
those tuples if they are de�nitely uninteresting to the user.
Compared with the existing methods, we have the follow-

ing advantages. Firstly, we require less user e�ort. Speci�-
cally, we ask the user a few questions and, at each question,
a user only need to pick his/her favorite tuple among a few
tuples, while some existing methods ask signi�cantly more
questions [11, 27] and some othermethods askmore di�cult
questions [13, 21]. Secondly, we ensure the strong truthful-
ness property by showing true tuples only while some exist-
ing methods rely on arti�cial tuples [22] to approximate the
preference function. Thirdly, our assumption made on the
user preference is more reasonable while the assumptions
made in some existing studies [16, 21] are stronger and less
intuitive. Finally, we exploit the additional structure in the
problem and utilize the inter-relation between tuples to ef-
fectively �lter out unquali�ed tuples. As a result, we can
return a “good” tuple for a user very e�ectively.

3 PROBLEM DEFINITION

The input to our problem is a tuple set D with n tuples (i.e.,
|D | = n) in a d-dimensional space (we assume d to be a �xed
constant in this paper). Note that each tuple in D could be
described by many more than d attributes, but the user will
select precisely d of them that s/he is interested in.

3.1 Terminologies
We use the word “tuple” and “point” interchangeably in the
rest of this paper. We denote the i-th dimensional value of a

p X1 X2
f (p)

(u = (0.3, 0.7)) p X1 X2
f (p)

(u = (0.3, 0.7))
p1 0 1 0.7 p5 1 0.2 0.44

p2 0.2 1 0.76 p6 1 0 0.3

p3 0.6 0.9 0.81 p7 0.35 0.2 0.245

p4 0.9 0.6 0.69 p8 0.3 0.6 0.51

Table 1: Database and Utilities

point p ∈ D by p[i] where i ∈ [1,d]. Without loss of gener-
ality, we assume that each dimension is normalized to (0,1]
and for each i ∈ [1,d], there exists at least one point p ∈ D
such that p[i] = 1. We denote the L1-norm and L2-norm
of p by ‖p‖1 and ‖p‖2, respectively. We assume that a larger
value in each dimension is preferable to all users. If a smaller
value is preferable (e.g., price), we canmodify the dimension
by subtracting each value from 1 so that it satis�es the above
assumption. Consider the example in Table 1.We are given a
databaseD = {p1,p2,p3,p4,p5,p6,p7,p8} containing 8 points
where each point is associated with two attributes, namely
X1 and X2, (i.e., d = 2) with normalized attribute values.

Same as [7, 17, 22, 23, 26], the user preference is modeled
by an unknown linear utility function, denoted by f , which
is a mapping f : Rd

+
→ R+. A utility function f is linear if

f (p) = u · p where f (p) is the utility of p w.r.t. f and u is
a utility vector. Note that u is a d-dimensional non-negative
real vector where u[i] measures the importance of the i-th
dimensional value in the user preference. In the rest of the
paper, we also refer f by its utility vector u. For each user,
we de�ne a regret ratio [23] based on his/her utility vectoru.

De�nition 3.1 ([23]). Given a set S ⊆ D and a utility vector
u, the regret ratio of S over D w.r.t. u , denoted by rrD (S,u),
is de�ned to be

maxp∈D u ·p−maxp∈S u ·p
maxp∈D u ·p = 1 − maxp∈S u ·p

maxp∈D u ·p .

Note that rrD (S,u) is the same for di�erent scaled vectors

of u. Without loss of generality, we assume
∑d

i=1u[i] = 1.
Given the utility vector u and a set S ⊆ D, maxp ∈S u ·p ≤

maxp ∈D u ·p since S is a subset ofD and thus, the regret ratio
ranges from 0% to 100%. The user whose utility vector is u
will be happy if the regret ratio of S is close to 0% since the
maximum utility of points in S is close to the maximum util-
ity of points in D w.r.t.u. In particular, a user is interested in
the point inD which maximizes the utility w.r.t. his/her util-
ity function. Speci�cally, given a utility vectoru, a point p is
themaximum utility point ofD w.r.t.u if p = argmaxq∈D u ·q.
We also call such a maximum utility point the favorite point
of the user in the whole database. We summarize the fre-
quently used notations in Appendix A (Table 3).

Example 3.2. Let u = (0.3, 0.7). Consider p2 in Table 1. Its
utility w.r.t. u is f (p2) = u · p2 = 0.3 × 0.2 + 0.7 × 1 = 0.76.
The utilities of other points in D are shown in Table 1. Note
that the maximum utility point of D is p3 and its utility is

End

1. The

stopping

condition is

satisfied?

2. Display s

points to

the user

3. Update the

information

maintained

based on the

user feedback

Start

NoYes
The user picks

his/her favorite

point among

these s points

Figure 1: The Interactive Framework

0.81. Consider a set S = {p2}. The regret ratio of S over D

w.r.t. u is rrD (S,u) = 1 − maxp∈S u ·p
maxp∈P u ·p = 1 − 0.76

0.81 = 6.17%.

3.2 Interactive Framework

We study how user interactions help in improving the regret
ratio [22]. Our interactive framework is formalized in Fig-
ure 1. Speci�cally, the system interacts with a user with an
unknown utility vector for rounds until certain stopping con-
ditions are satis�ed. At each round, the system asks the user
a question by displaying s points. After the user picks the
point s/he favors the most, we update the information main-
tained for learning the utility vector. Finally, the interaction
stops and the system returns a point in D which makes the
regret ratio small or it identi�es the maximum utility point
according to the information learned during the interaction.
Formally, we are interested in the following problem:

• (InteractiveRegretMinimization (IRM) [22])How
many questions do we need to ask the user to get the
user’s regret ratio below ϵ for some 0% ≤ ϵ ≤ 100%?

We are also interested in the special case where ϵ = 0%:

• (Maximum Utility Point Determination (MUD))
How many questions do we need to ask to get the
user’s maximum utility point (i.e., 0% regret ratio)?

We solve both IRM and MUD by considering the following:

(1) (StoppingCondition)When canwe stop interactions?
(2) (Point Selection) How to select s points to display?
(3) (InformationMaintenance)What types of informa-

tion should we maintain and how to update the infor-
mation based on the user feedback?

The algorithm proposed in [22] asksO(logs (1/ϵ)) questions
and returns a point guaranteeing an ϵ regret ratio for IRM.
However, the algorithm in [22] is not suitable forMUDwhere
ϵ = 0% and the number of questions it asks can be very
large (e.g., it asks four times more questions than our meth-
ods according to our experiments). In comparison, we solve
IRM/MUD with a stronger result. Speci�cally, we maintain
more useful information for learning the utility vector by
displaying true tuples inside the database, which supports
novel stopping conditions and e�ective pruning strategies
for non-maximum utility points, that do not appear in [22].

3.3 Lower Bound

A lower bound on the number of questions on IRM is proven
in [22], which is Ω(logs (1/ϵ)). Note that this bound cannot
be applied on MUD where ϵ = 0%. We �rst present a lower
bound on MUD. Due to the lack of space, the proofs of The-
orems/Lemmas in this paper can be found in Appendix E.

Theorem 3.3. For any dimensionality d , there is a dataset
of n d-dimensional points such that any algorithm needs to
ask Ω(logs n) questions to determine the user’s favorite point.

3.4 Truthfulness of Interactive Algorithms

In this section, we introduce the concept “truthfulness” [22],
which is a desirable property for an interactive algorithm.

Note that an interactive algorithm can display points out-
side the database in order to learn the user preference. How-
ever, the algorithm must be truthful. Speci�cally, an algo-
rithm is truthful if the point favored the most by the user
among all points displayed during the interaction is in the
database [22]. If an algorithm displays only points in the
database, it is said to be strongly truthful (which is a stronger
form of truthfulness). If an algorithm is allowed to display
points outside the database (e.g., arti�cial points) but it en-
sures that the favorite point of a user during the entire inter-
action is not an arti�cial point, it is said to beweakly truthful.
The existing algorithm in [22] is weakly truthful. Speci�-

cally, it constructs arti�cial points to approximate the user’s
utility function. The strategy of the algorithm [22] scales
down each arti�cial point by a certain (potentially large) fac-
tor and displays those arti�cial points to the user so that the
user’s utility function could be learnedmore e�ectively. This
operation is not reasonable. Firstly, it might present the user
with some unrealistic and meaningless points. For example,
the realtor can present a fake house of 0.1 square feet and
100 dollars to Alice in order to learn her utility function [22].
However, Alice might think that this is a ridiculous option
since such a house does not exist in reality. Secondly, it is
impossible for a user to truly evaluate a fake point that does
not exist (e.g., inspect a recommended house in person), re-
sulting in the di�culty in applying it in many real-world
applications. In comparison, our solutions do not have such
de�ciencies since our algorithms are all strongly truthful: we
always present the user with true points inside the database.

4 2-DIMENSIONAL ALGORITHMS

We begin with the 2-dimensional algorithms, Median and
Hull, which �nd the favorite point with asymptotically op-
timal numbers of questions for s = 2 and s ≥ 2, respectively.
In geometry, the convex hull of D, denoted by Conv(D),

is the smallest convex set containing D. A point p in D is a
vertex of Conv(D) if p < Conv(D/{p}). Let b1 = (1, 0) and
b2 = (0, 1), which are the boundary points of a 2-dimensional

dataset. Let O = (0, 0) be the origin. Consider the convex
hull Conv(D ∪ {b1,b2,O}). In this section, when we say the
vertices in Conv(D ∪ {b1,b2,O}), we mean only the vertices
in D. Note that for each utility vector, its maximum utility
point must be a vertex of Conv(D ∪ {b1,b2,O}). We assume
that there arem vertices in Conv(D ∪ {b1,b2,O}) and they
are sorted in the “clockwise” order, namelyp1,p2, . . . ,pm−1,pm .
Our algorithms work as follows. We maintain a candidate

set C of maximum utility points, which is initialized to be
{p1, . . . ,pm} (i.e., information maintenance) wherem ≤ n =

|D |. We interact with the user (whose utility vector is u) un-
til there is only one point p in C (i.e., stopping condition),
which is de�nitely the maximum utility point. Then, we re-
turn p to the user, which is the solution for both IRM and
MUD since rrD ({p},u) = 0% ≤ ϵ . At each round, we dis-
play s vertices (i.e., point selection) which divide C into a
number of equal partitions. According to the user feedback,
we locate the partitions which contain the maximum utility
point and we update C . The following lemma helps us to
determine the location of the maximum utility point.

Lemma 4.1. Given them vertices {p1, . . . ,pm} ofConv(D∪
{b1,b2,O}) and a linear utility function f , if pi∗ is the desired
maximum utility point w.r.t. f where i∗ ∈ [1,m], we have
f (p1) ≤ . . . ≤ f (pi∗−1) ≤ f (pi∗) ≥ f (pi∗+1) ≥ . . . ≥ f (pm).

Corollary 4.2. Given an integer i and a linear utility func-
tion f , if f (pi) ≥ f (pi+1), i∗ ≤ i ; if f (pi) < f (pi+1), i∗ > i .

Example 4.3. Consider our database in Table 1 and we vi-
sualize D = {p1,p2,p3,p4,p5,p6,p7,p8} in Figure 2. The con-
vex hull Conv(D ∪ {b1,b2,O}) is shown in Figure 2 where
b1 = p1 and b2 = p6 in this example. The vertices in the
“clockwise” order arep1,p2,p3,p4,p5,p6. Consideru = (0.3, 0.7)
in Table 1. The maximum utility point is p3 (i.e., i

∗
= 3) and

thus, f (p1) ≤ f (p2) ≤ f (p3) ≥ f (p4) ≥ f (p5) ≥ f (p6).

4.1 The Median Algorithm

When s = 2, we utilize the median vertices of Conv(D ∪
{b1,b2,O}) and locate the maximum utility point in C in a
binary searchmannerwith the help of Corollary 4.2. At each
iteration, C is reduced by half. Speci�cally, we display two
consecutive median vertices pi and pi+1 in C , which divide
C into two halves. If pi is favored by the user, C is updated
to be the �rst half of C . Otherwise, C is updated to be the
remaining half ofC . This process continues untilC contains
a single point. The pseudocode is shown in Algorithm 1.
To illustrate, consider Table 1 where u = (0.3, 0.7). C is
{p1,p2,p3,p4,p5,p6} initially and the user is presented with
the median vertices {p3,p4}. Since f (p3) ≥ f (p4), C is up-
dated to the �rst half ofC , i.e., {p1,p2,p3}. The process con-
tinues and �nally, C = {p3} which is the favorite point.

Algorithm 1 TheMedian algorithm

Input: A set D and an unknown utility vector u
Output: The maximum utility point in D with w.r.t. u
1: C ← {p1,p2,p3, . . . ,pm}, start ← 1, end ←m

2: while |C | > 1 do /* Stopping Condition */

3: i ← start − 1 + ⌊ end−star t+12 ⌋ /* Point Selection */
4: Ask the user whether s/he prefers pi to pi+1
5: if pi is preferable to pi+1 then
6: end ← i /* Information Maintenance */
7: else
8: start ← i + 1 /* Information Maintenance */

9: C ← {pstar t , . . . ,pend }
10: return the only point in C

Algorithm 2 The Hull algorithm

Input: A set D and an unknown utility function u
Output: The maximum utility point in D with w.r.t. u
1: C ← {p1,p2,p3, . . . ,pm}, start ← 1, end ←m

2: while |C | > 1 do /* Stopping Condition */
3: if |C | ≤ s then

4: Display C to the user
5: C ← {p} where p is the point picked by the user
6: else
7: i j ← start − 1 + ⌊ end−star t+1

s+1 ⌋ ∗ j,∀j ∈ [0, s + 1]
8: Divide C into s + 1 partitions using {pi j | j ∈
[1, s]}, namelyC0, . . . ,Cs whereCj = {pi j+1, . . . ,pi j+1}

9: Display S = {pi j | j ∈ [1, s]} /* Point Selection */
10: pi j ← the favorite point of the user
11: C ← Cj ∪Cj−1 /* Information Maintenance */
12: start ← i j−1 + 1, end ← i j+1

13: return the only point in C

Theorem4.4. Median is strongly truthful and it determines
the favorite point inO(log2 n) rounds and inO(n logn) time.

Combining Theorem 4.4 with Theorem 3.3, Median is
asymptotically optimal in the number of questions asked.

4.2 The Hull Algorithm

Median can be applied when s = 2 only. In this section,
we present the Hull algorithm for s ≥ 2. Di�erent from
Median which partitions C into two halves in every round,
Hull divides C into s + 1 partitions, namely C0, . . . ,Cs , us-
ing a set of s vertices inC , denoted by S , which are then pre-
sented to the user. If the j-th point in S is the favorite point
of the user, we updateC to beCj ∪Cj−1 , which are the parti-
tions where the maximum utility point is located according
to Lemma 4.1. The pseudocode is shown in Algorithm 2.
To illustrateHull, consider the example in Table 1 where

s = 2 and u = (0.3, 0.7). In the �rst round, we de�ne S =

Figure 2: Convex Hull Figure 3: Utility Space Figure 4: Hyperplane Figure 5: Conical Hull Figure 6: Frame

{p2,p4}, which is presented to the user. S dividesC = {p1, . . . ,p6}
into 3 partitions, namely C0 = {p1,p2},C1 = {p3,p4} and
C2 = {p5,p6}. Since f (p2) ≥ f (p4), the maximum utility
point must be in C0 ∪ C1 = {p1,p2,p3,p4} by Lemma 4.1,
whichC is updated to be. The process continues and �nally,
C = {p3} which is the desired maximum utility point.

Theorem 4.5. Hull is strongly truthful and it determines
the favorite point inO(logs n) rounds and inO(n logn) time.

Combining Theorem4.5with Theorem3.3,Hull is asymp-
totically optimal in the number of questions asked.

Remark. Median and Hull determine the favorite point
(0% regret ratio) interactively. However, we can stop the in-
teraction earlier (i.e., before the favorite point is determined)
in IRM if ϵ > 0%. We postpone the detailed discussion to
Section 5.2 where we show how to �nd a point p (not neces-
sarily the favorite point) whose regret ratio is at most ϵ .

5 D-DIMENSIONAL ALGORITHMS

We are ready to describe ourd-dimensional solutions. Specif-
ically, we show how we address each of the three compo-
nents (i.e., stopping condition, point selection and informa-
tion maintenance) for IRM/MUD under the framework.
Intuitively, we interact with the user for rounds until the

stopping conditions (Section 5.2) are satis�ed. At each round,

(1) (Point selection) We select s true tuples from the data-
base and present them to the user (see Section 5.3).

(2) The user picks his/her favorite tuple among them.
(3) (Information maintenance) We update the data struc-

tures maintained based on the user feedback. The de-
tails are shown in Section 5.1. In particular, we intro-
duce the “utility hyperplane”, and two e�ective prun-
ing strategies for removing non-maximumutility points.

Finally, we summarize our algorithms in Section 5.4.

5.1 Information Maintenance

We �rst de�ne the data structures for learning the user pref-
erence. Speci�cally, we maintain two data structures in our
solutions: a convex region R in the utility space which con-
tains the user’s true utility vector u and a candidate setC ⊆
D which contains the user’s maximum utility point.

Formally, recall that
∑d

i=1u[i] = 1 and thus, u can be re-
garded as a (non-negative) point on a hyperplane H = {p ∈
R
d | ∑d

i=1 p[i] = 1}. We de�ne the candidate utility range, de-
noted byR, to be the convex region onH which contains the
user’s true utility vector u. For example, in Figure 3 where
d = 3,R is the triangular region {u ∈ R3

+
| u[1]+u[2]+u[3] =

1} before the user provides any information on his/her util-
ity vector u. Given the candidate utility range R, we de�ne
the candidate set of maximum utility points, denoted by C ,
to be a subset of points in D such that for each u in R,
the maximum utility point of D w.r.t. u is in C . That is, if
p = argmaxq∈D u · q where u is a vector in R, the point p is
in C . For example, C can be all skyline points in D initially.
Intuitively, if the user answers more questions, we learn

more about his/her utility vector u. Then, R is smaller and
the corresponding C is updated. For example, R can be up-
dated to the convex region shown in Figure 4 after the user
answers certain questions. In particular, when R is su�-
ciently small, we can determine a point in C whose regret
ratio is bounded by ϵ (to be discussed in Section 5.2) and
thus, we can stop the interaction and this point is the de-
sired point which guarantees the required regret ratio.
We show how we update R using utility hyperplanes ac-

cording to the user feedback (e.g., the user prefers p to q for
some points p and q among the points we display) in Sec-
tion 5.1.1. We show how we remove non-maximum utility
points in C using pruning strategies in Section 5.1.2.

5.1.1 Maintenance on R. Given two points p and q, we de-
�ne a utility hyperplane, denoted by hp,q , to be the hyper-
plane passing through the origin O with its unit normal in
the same direction as p − q. The hyperplane hp,q partitions

the space Rd into two halves. The half space above hp,q is
denoted by h+p,q . The following lemma shows how we can
update R to be a smaller region based on hp,q .

Lemma 5.1. GivenR and two pointsp andq, if a user prefers
p to q, the user’s utility vector u must be in h+p,q ∩ R.

Example 5.2. Wedraw the hyperplanehp,q passing through
the origin with its unit normal in the same direction as p−q
where p = (12 , 0,

1
2) and q = (0,

1
2 ,

1
2) in Figure 3. If the user

prefers p to q (i.e., u · p > u · q), u is in the half space above
hp,q . R is then updated to be h+p,q ∩ R (left sub-triangle).

Utility hyperplanes are very useful. Firstly, according to
the user feedback during the interaction, we can construct
a number of utility hyperplanes and use them to update R
continually. Secondly, based on utility hyperplanes, we can
develop some punning strategies to remove non-maximum
utility points in C (to be discussed in Section 5.1.2).
Note that R is formed by half space intersections on the

hyperplane H and thus, R can be regarded as a (d − 1)-
dimensional convex hull on H . In the rest of this section, we
focus on R on H (e.g., the (d − 1)-dimensional space in Fig-
ure 4). In practice, the number of intersecting half spaces is
small since it is proportional to the number of questions a
user answers, which is usually small empirically.
In geometry, the intersection between R and a utility hy-

perplane is called a (d−2)-�at, which is a subspace of dimen-
sionality d − 2. For example, (d − 2)-�ats in 2-dimensional
spaces are points and (d − 2)-�ats in 3-dimensional spaces
are lines. Note that each (d −2)-�at divides R into two parti-
tions (if the intersection is not empty). For example, consider
the 2-dimensional example in Figure 5 where R is a line seg-
ment (i.e., a 1-dimensional convex hull). The intersection (if
not empty) between R and a utility hyperplane (i.e., a line in
a 2-dimensional space) is a point (i.e., a 0-�at), which divides
the “line segment”R into two smaller partitions. Depending
on the user feedback, we locate the partition containing u

by Lemma 5.1. When the context is clear, we represent each
utility hyperplane by its corresponding (d − 2)-�at on H .

5.1.2 Maintenance on C. In this section, we �rst present
two pruning strategies, namely hyperplane pruning and con-
ical hull pruning, to remove non-maximum utility points in
C . Then, we present the detailed procedure of maintaining
C based on the proposed pruning strategies.

Hyperplane Pruning.Wemodel the relationship between
two points p and q in C by their utility hyperplane. Intu-
itively, we can safely prune q if there is a p in C such that
the user prefers p to q no matter which utility function s/he
uses in R. We summarize the result as follows.

Lemma 5.3. Given R, a point q can be pruned from C if
there exists a point p in C such that h+q,p ∩ R = �.

Example 5.4. Consider Figure 4 where we draw R and
two utility hyperplanes, namelyhq,p andhq′,p′ . Sinceh

+

q′,p′∩
R = �, we prune q′ fromC by Lemma 5.3. Moreover, h+q,p ∩
R , �. We cannot prune either p or q since there could be
a u in R such that p (q) is the maximum utility point.

Complexity Analysis.Assume thatR is formed by t half space
intersections and it hasm vertices. To perform hyperplane
pruning for two points p and q, it takes O(m) time to check
if h+q,p ∩ R = � by checking if there is a vertex of R in h+q,p .

Conical Hull Pruning. Similar to hyperplane pruning, we
model the relationship between each pair of points in C by
conical hulls (to be de�ned shortly) in conical hull pruning.
Denote the set of utility hyperplanes forming R by H .

Then, for each utility hyperplane hi in H , we denote its
normal by ni . Given a u in R, u · ni ≥ 0 for each hi in
H . We de�ne the extreme vector set of H , denoted by VH ,
to be VH = {−ni | ∀hi ∈ H}. When the context is clear,
we simply denote VH by V . The conical hull of a point p
w.r.t. V [8] is de�ned to be Cp,V = {q ∈ Rd | (q − p) =∑

vi ∈V wivi wherewi ≥ 0} (which is a convex cone with
apexp [28]). Note that the boundaries ofCp,V are unbounded
facets, each of which is enclosed by some vectors inV and
is a �at surface that forms a part of the boundary ofCp,V .

Example 5.5. In the 3-dimensional example in Figure 4,
R is a 2-dimensional convex hull and it is formed by 5 util-
ity hyperplanes (i.e., |H | = 5). To simplify the illustration,
we instead consider a 2-dimensional example in Figure 5
whereR is a line segment formed by two utility hyperplanes,
namely h1 and h2. We denote their normals by n1 and n2,
and thus, we haveV = {−n1,−n2}. The conical hullCp,V =
{q ∈ Rd | (q−p) = −w1n1−w2n2 wherew1,w2 ≥ 0} is shown
in the shaded region and it can be regarded as a convex cone
with apex p. Besides, Cp,V has two unbounded boundary
facets (i.e., the rays shooting from p, shown in dashed).

Lemma 5.6. Given two points p and q, and the vector setV ,
if q ∈ Cp,V , we have u · p ≥ u · q for each u ∈ R.
According to Lemma 5.6, given two points p and q inC , if

q ∈ Cp,V , we can prune q from C since the utility of p is at
least the utility of q no matter which utility function a user
uses in R. For example, in Figure 4, the point q is in Cp,V
and thus, it is pruned from C .
Next, we show how to determine whether q ∈ Cp,V e�-

ciently for two points p and q given the vector setV.
Consider a boundary facet F of Cp,V . F is said to lie on

a hyperplane if (1) for each point p ′ on F , p ′ lies on the hy-
perplane and (2) for each point p ′ inCp,V but not on F , p ′ is
below the hyperplane. Given a point q and a facet F , we say
that q is on or below F if q is on or below the hyperplane
that F lies on. A straight-forward way of checking whether
q ∈ Cp,V , followed directly from the de�nition of conical
hull, is to determine whether q is on or below all boundary
facets of Cp,V . Note that the number of boundary facets is
small in practice since |V| is proportional to the number of
questions a user answers, which is usually small empirically.

Example 5.7. In Figure 5 (a 2-dimensional example), there
are two boundary facets in Cp,V , namely the rays shooting
from p in the direction of −n1 and −n2, denoted by F1 and
F2. Point q, which is inCp,V , is on or below F1 and F2 (i.e., q
is on or below the hyperplanes that F1 and F2 lie on).

Instead of maintaining the boundary facets of Cp,V for
each p in C , we focus on CO,V , which can be regarded as a
conical hull “translated” from p to O , so that the computa-
tion can be re-used. Formally, we have the following lemma.

Lemma 5.8. q ∈ Cp,V if and only if q − p ∈ CO,V .

The boundary facets of CO,V depend only onV (not on
p). Thus, we compute its boundary facets and use them for
all points in C . When R is updated after the user answers
a question, the boundary facets ofCO,V will be updated ac-
cordingly. We can maintain the boundary facets incremen-
tally instead of building them from scratch at each round.
In the worst case, we have to check all facets of CO,V to

conclude q < Cp,V . We present a necessary condition for
conical hull pruning in Appendix B for lack of space so that
we can determine that q < Cp,V e�ciently in O(1) time.

Complexity Analysis. Since |V| = t , there areO(t ⌊ d−12 ⌋) bound-
ary facets inCO,V in the worst case. Thus, it takesO(t ⌊ d−12 ⌋)
time to determine if q ∈ Cp,V . However, if the necessary
condition is satis�ed, we conclude q < Cp,V in O(1) time.

Maintain C based on the Pruning Strategies. Based on
the update on R, we maintain C with the help of our prun-
ing strategies. Speci�cally, when R is updated, we remove
each point from C that can be pruned by hyperplane prun-
ing or conical hull pruning and thus, each remaining point
in C is the candidate maximum utility tuple w.r.t. some util-
ity vectors in R. A straight-forward way of removing non-
maximum utility points is to perform a pairwise checking
of points in C , which, however, can be very ine�cient.
Note that the maintenance on C is a generalization of

skyline computation where V = {−ei | i ∈ [1,d], ei[i] =
1 and ei [j] = 0 if i , j}. Some algorithms for skyline com-
putation can be adapted to maintain C . Due to the lack of
space, we explain how the branch-and-bound skyline (BBS)
algorithm [24] is applied to maintain C in Appendix C.

5.2 Stopping Condition

In this section, we de�ne two stopping conditions based on
R andC . Recall that in IRM/MUD, we want to guarantee an
ϵ regret ratio for a user. Thus, we stop the interaction when
we determine a point p in C whose regret ratio is at most ϵ .

The First Stopping Condition. If there is only one point p
in C , we conclude that p is the maximum utility point with
a 0% regret ratio. Thus, we stop the interaction immediately
(since rrD ({p},u) = 0% ≤ ϵ) and return p to the user.

The Second Stopping Condition. Given R, we de�ne the
diameter of R, denoted by ‖R‖1, to be the maximum L1-
distance between any two vectors in R. That is, ‖R‖1 =
maxu,v ∈R ‖u−v ‖1. Recall that the user’s utility functionu is
in R. The following lemma shows that we can determine a p
in C so that rrD ({p},u) is bounded proportionally by ‖R‖1 .

Lemma 5.9. Letv be a vector in R and p = argmaxq∈C v ·q.
rrD ({p},u) ≤ 2d ‖R‖1 where u is the user’s utility vector.

Initially, R = {u ∈ Rd
+
| ‖u‖1 = 1}. When a user (with a

utility vectoru) answers more questions, the corresponding
utility hyperplanes partition R and ‖R‖1 is smaller. With
Lemma 5.9, we �nd a point p in C by utilizing a vector v in
R so that rrD ({p},u) is bounded proportionally by ‖R‖1 . To
guarantee a regret ratio ϵ , we interact with the user until
‖R‖1 ≤ ϵ

2d and return p = argmaxq∈C v · q where v is in R.

5.3 Point Selection

In this section, we present two ways of displaying points in
the interactive framework. In particular, we always display
true points inC . We �rst present a heuristic approachwhich
performs well empirically. Then, we present an approach
with provable guarantees on the number of questions asked.

The First Approach: Random. At each round, we ran-
domly select s points from C and display them to the user.
Let p be the favorite point of the user among them. For each
of the remaining s − 1 points, namely q, we construct a util-
ity hyperplane hp,q , resulting in s − 1 utility hyperplanes in
total, which update R andC accordingly (see Section 5.1).

The Second Approach: Simplex. The idea is borrowed
from the Simplexmethod for Linear Programming problems
(LP) [8]. We always present points in C which are also ver-
tices in Conv(D) (note that the maximum utility point must
be a vertex in Conv(D)). Speci�cally, we maintain the vertex
p ∈ C in Conv(D) with the highest utility displayed so far.
Denote the set of all neighboring vertices of p in Conv(D) by
Np (e.g., the neighboring vertices of p4 is Np4 = {p3,p5} in
Figure 2). We interactively check if there is a vertex in Np

with a higher utility than p by displaying p and at most s −1
neighboring vertices in Np to the user at each round. Each
non-favorite point displayed corresponds to a new utility
hyperplane which will then update R andC . Intuitively, we
display p and its neighboring vertices in this approach be-
cause they provide directive information to locate the maxi-
mum utility point. Formally, we have the following lemma.

Lemma 5.10. Given a utility vector u and a vertex p ∈ C

of Conv(D), either p is the maximum utility point w.r.t. u or,
there is vertex in Np , whose utility is larger than that of p.

To determine Np of a vertex p, we can compute the exact
convex hullConv(D). However, computing the exactConv(D)
can be time-consuming in high dimensional spaces. In the
following, we present an alternative way of obtaining Np .
Given a vertex p in Conv(D), we let V = {q − p | ∀q ∈

D/{p}}. A set VF ⊆ V is de�ned to be a frame of V if VF is
the minimal subset of V such that Cp,V = Cp,VF . Note that
for each vectorv ∈ VF , we havev < Cp,V /{v }. The following
lemma shows that the frame of V is closely related to Np .

Algorithm 3 The UH-Random Algorithm

Input: D, a regret ratio ϵ and an unknown utility vector u
Output: A point p in D with rrD ({p},u) ≤ ϵ

1: R ← {u ∈ Rd
+
| ∑d

i=1u[i] = 1}
2: C ← the set of all skyline points in D

3: while ‖R‖1 > ϵ
2d and |C | > 1 do

4: Randomly display s points in C
5: Update R andC based on utility hyperplanes

6: return p = argmaxq∈C v · q where v ∈ R.

Lemma 5.11. Given a vertex p in Conv(D), q ∈ Np if and
only if q − p ∈ VF where V = {q − p | ∀q ∈ D/{p}}.

Example 5.12. Considerp4 andV = {pi−p4 | ∀pi ∈ D/{p4}}
in Figure 6. VF = {p3 − p4,p5 − p4} is a frame of V since it
is the minimal subset ofV such thatCp4,V = Cp4,VF (showed
in shaded). Thus, Np4 = {p3,p5} as shown in Figure 2.

In most cases, computing VF is cheaper compared with
computing the exactConv(D) since the number of vectors in
VF is usually smaller than the number of facets in Conv(D).
For example, there are two vectors in the frame in Figure 6,
while there are 7 facets in Conv(D) in Figure 2. Speci�cally,
we can compute the whole VF by LP [8] in O(|V | |VF |) time.
However, we can constructVF as needed [8] (i.e., do not gen-
erate the whole VF all at once) since we need at most s − 1
neighboring vertices of a given vertex p for each question.

5.4 Algorithm Summary and Analysis

We summarize our algorithms by combining the techniques
presented in previous sections. Denote the algorithm with
“random” point selection by UH-Random and denote the al-
gorithmwith “simplex” point selection byUH-Simplexwhere
the pre�x “UH” stands for “Utility Hyperplanes”.
UH-Random randomly displays points in C to the user

and update the data structures based on the user feedback
until the stopping conditions are satis�ed. Note that R is
strictly smaller after each question. This is because that given
two points p and q displayed by UH-Random in a round,
neither p nor q is pruned by hyperplane pruning at the be-
ginning of this round and thus, hp,q must divide R into two
smaller partitions. Similarly, |C | is strictly smaller since we
can prune at least s − 1 non-favorite points after each ques-
tion. The pseudocode is presented in Algorithm 3.
UH-Simplexworks in a similarmanner. Intuitively, it starts

with a vertex p of Conv(D). It determines if p has a larger
utility than all its neighboring vertices in Conv(D) by dis-
playing p and the vertices in Np ∩ C to the user. If this is
the case, we return p as the maximum utility point (in this
case, C = {p} according to Lemma 5.10 and the stopping
condition is satis�ed). Otherwise, we update p to be one of

Algorithm 4 The UH-Simplex Algorithm

Input: D, a regret ratio ϵ and an unknown utility vector u
Output: A point p in D with rrD ({p},u) ≤ ϵ

1: R ← {u ∈ Rd
+
| ∑d

i=1u[i] = 1}
2: C ← the set of all skyline points in D

3: p ← a vertex of Conv(D)
4: while ‖R‖1 > ϵ

2d and |C | > 1 do
5: Display p and s − 1 points in Np ∩C
6: if the user favors p among these s points then
7: if p has a higher utility than points in Np then
8: return p

9: else

10: p ← a vertex in Np with a higher utility

11: Update R and C based on utility hyperplanes

12: return p = argmaxq∈C v · q where v ∈ R.

its neighboring vertices with a higher utility and repeat the
process. The pseudocode is presented in Algorithm 4 and its
theoretical performance is provided in Theorem 5.13.

Theorem 5.13. UH-Simplex is strongly truthful and it de-
termines the favorite point inO(n/s) rounds in the worst case
and O(degmax

d
√
n/s) rounds on average, where degmax is the

maximumnumber of neighboring vertices for a vertex inConv(D).

Comparison. Compared with the existing method [22], we
have some attractive advantages. Firstly, we maintain more
useful information. Speci�cally,wemaintain a regionRwhich
contains the user’s true utility vector u and a candidate set
C of favorite points but they only maintain an estimate util-
ity vector û. Note that each vector in R can be regarded as
such an estimate utility vector. Secondly, we support new
stopping conditions (e.g., |C | ≤ 1) while they cannot since
they do not maintain any information on C . Thirdly, we al-
ways show true points in the database while they show fake
points outside the database. Finally, we can guarantee a 0%
regret ratio e�ciently, in which case they perform poorly.

6 EXPERIMENT

We conducted experiments on amachinewith 1.60GHzCPU
and 8GB RAM. All programs were implemented in C/C++.
Datasets. We conducted experiments on synthetic and real
datasets. Speci�cally, we generated anti-correlated datasets
by a dataset generator developed for skyline operators [4].
Besides, we adopted 3 real datasets commonlyused in the ex-
isting studies. They are Island, NBA and Household. Island is
2-dimensional, which contains 63,383 geographic positions.
NBA contains 21,961 player/season combinations from 1946
to 2009. Four attributes are used to represent the perfor-
mance of each player. Household consists of 1,048,576 fam-
ily tuples in US in 2012. Each family is associated with seven

attributes, showing the economic characteristic. The infor-
mation about real datasets is summarized in Table 2. For all
datasets, each attribute is normalized to (0, 1] andwe prepro-
cessed each dataset so that it contains skyline points only.
Algorithms. We evaluated our 2-dimensional algorithms,
namelyMedian andHull, and ourd-dimensional algorithms,
namely UH-Simplex and UH-Random. The competitor al-
gorithms are (1) the only existing interactive algorithm for
IRM [22], UtilityApprox, which approximates the user’s
utility vector by presenting s fake points to the user; (2) a
single round algorithm CoresetHS [15] which guarantees
an ϵ regret ratio by returning a solution set with the min-
imum number of points; and (3) a single round algorithm
Sphere [30] which returns a solution with at most k points
so that the regret ratio of a user is minimized. Note that al-
though CoresetHS and Sphere are both the state-of-the-
art single round algorithms for the k-regret query, they are
applied under di�erent scenarios. Speci�cally, we minimize
the number of points shown while �xing the regret ratio ϵ

in CoresetHS, but we minimize the regret ratio while �x-
ing the number of points shown in Sphere. Depending on
the parameters we vary, we compared either CoresetHS
or Sphere accordingly to demonstrate the e�ectiveness of
user interactions in reducing the number of points shown
and the regret ratio, respectively. Other preference learning
algorithms (not for IRM/MUD) [11, 27] were also compared
experimentally by conducting a user study in a real scenario.
For lack of space, the user study is shown in Appendix D.1.
Parameter Setting.We evaluated the performance of each
algorithm by varying di�erent parameters. Speci�cally, we
studied the e�ect of (1) di�erent pruning strategies, (2) the
number of points displayed per question (i.e., the question
size s), (3) the dataset size n, (4) the dimensionality d , (5) the
target regret ratio ϵ , and (6) the number of questions we can
ask (i.e., the maximum number of points we display). Unless
stated explicitly, we set the number of points displayed per
question to be 3 (i.e., s = 3), set the target regret ratio ϵ

to be 1% (i.e., ϵ = 1%), and we use hyperplane pruning as
the default pruning method. For each synthetic dataset, the
number of points in the dataset is set to be 100,000 (i.e., n =
100,000) and the dimensionality is set to be 4 (i.e., d = 4).
PerformanceMeasurement.We evaluated the performance
of each algorithm using 5 di�erent measurements (experi-
ments were conducted 5 times where we generated 5 user
utility vectors independently and reported the average per-
formance): (1) Execution time. The execution time of an algo-
rithm is the time needed to guarantee a certain regret ratio
ϵ or to display a certain number of points to the user. (2)
Candidate set size. The candidate set size of an algorithm is
the size ofC maintained during the interaction. We reported
the percentage of remaining points in C after each interac-
tion. For UtilityApprox and the single round algorithms,

which do not support pruning, the candidate set size is al-
ways 100%. (3) Regret ratio. The regret ratio of an interactive
algorithm (a single round algorithm) is the regret ratio of the
�nal point suggested (the solution set returned). (4) The to-
tal number of points displayed. For a single round algorithm,
the number of points displayed is the size of the solution set
returned. For an interactive algorithm, the number of points
displayed is at most the number of questions multiplied by
the question size s . (5) The number of questions asked. This
quanti�es user e�ort. If s is �xed, the number of questions
asked is proportional to the number of points displayed.

6.1 Results on Synthetic Datasets

We �rst compared our 2-dimensional algorithms, Median

andHull, against the existing ones on a 2-dimensional dataset
in Figure 7 by varying the number of points we can dis-
play. For completeness, we also compared thed-dimensional
algorithms, UH-Simplex and UH-Random (however, their
performance will be analyzed later). Since s is �xed to 2 in
Median, we set s to 2 in all other algorithms for fair com-
parison. Besides, we also reported the performance of Hull
and UtilityApprox when s is set to 4 to demonstrate the
e�ect of doubling the question size. Note that when �xing
the maximum number of points displayed, the interactive
algorithms with di�erent values of s can ask di�erent num-
bers of questions (see Figure 7(d)). For example, if the maxi-
mum number of points displayed is set to 8,Hull(s = 2) can
ask 4 questions while Hull(s = 4) can only ask 2 questions.
Figure 7(a) depicts the execution time. All algorithms are
fast and they take only a few milliseconds to execute. In Fig-
ure 7(b), all our algorithms perform similarly in terms of the
candidate set size. In particular, Median and Hull quickly
reduce the candidate set size by a factor of 5 with only 1-2
questions while all existing approaches fail to provide any
reduction on the candidate set size. As a by-product, Me-

dian and Hull can achieve a signi�cantly smaller empiri-
cal regret ratio compared with UtilityApproxwithin a few
rounds of interactions (see Figure 7(c)). In particular, Me-

dian and Hull suggest the maximum utility point (0% re-
gret ratio) after presenting 4 points to the user (but since
there could be more than one point in the candidate set, we
need more questions to conclude that it is indeed the maxi-
mum utility point) while UtilityApprox can guarantee a
5% regret ratio at best in this case. In this 2-dimensional
dataset, s does not have a signi�cant impact on the perfor-
mance, but wewill show later ind-dimensional datasets that
a moderate s is helpful in reducing the overall user e�ort.
We studied the performance of di�erent pruning strate-

gies in Figure 8 where we evaluated the execution time by
augmenting UH-Simplex(s = 3, ϵ = 1%) with hyperplane
pruning and conical hull pruning. Since these two pruning
strategies di�er in implementations and they produce the

UH-Random (s = 2)
UH-Simplex (s = 2)

UtilityApprox (s = 2)
UtilityApprox (s = 4)

Sphere
Median (s = 2)

Hull(s = 2)
Hull(s = 4)

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10

ti
m

e
 (

m
s
)

maximum # of pts displayed

1%

5%

20%

50%

100%

 2 3 4 5 6 7 8 9 10

c
a
n
d
id

a
te

 s
e
t
s
iz

e
 (

%
)

maximum # of pts displayed

0%

5%

10%

15%

20%

 2 3 4 5 6 7 8 9 10

re
g
re

t
ra

ti
o

maximum # of pts displayed

 0

 1

 2

 3

 4

 5

 2 3 4 5 6 7 8 9 10

#
 o

f
q
u
e
s
ti
o
n
s

maximum # of pts displayed

(a) (b) (c) (d)

Figure 7: Results on 2-dimensional Synthetic Datasets (d = 2,n = 100k)

 0

 2

 4

 6

 8

 10

 12

 14

1k 10k 50k 100k 500k 1M

ti
m

e
 (

s
)

n

Hyperplane
Conical Hull

Figure 8: Pruning Strategies

UH-Random UH-Simplex UtilityApprox CoresetHS

 0.1

 1

 10

 100

 2 3 4 5

ti
m

e
 (

s
)

s

 5

 10

 15

 20

 25

 30

 2 3 4 5

#
 o

f
q
u
e
s
ti
o
n
s

s

 20

 30

 40

 50

 60

 70

 2 3 4 5

to
ta

l
#
 o

f
p
ts

 d
is

p
la

y
e
d

s

(a) (b) (c)

Figure 9: Vary s (d = 4, ϵ = 1%,n = 100k)

same result, we only reported the execution time in Figure 8.
Both pruning strategies are e�cient and they can guarantee
the desired regret ratio in around 10 seconds even when the
dataset contains more than 1 million tuples. However, hy-
perplane pruning consumes slightly less time than conical
hull pruning in most cases empirically. Thus, we stick to hy-
perplane pruning in the rest of the experiments.
In Figure 9, we studied the e�ect of s on di�erent inter-

active algorithms on a 4-dimensional dataset. We also com-
pared the single round algorithmCoresetHS to demonstrate
the usefulness of user interactions in reducing the number
of points displayed while achieving the same regret ratio. To
guarantee a 1% regret ratio, CoresetHS requires longer ex-
ecution time and a larger output size compared with the in-
teractive algorithms (Figure 9(a)(c)). Speci�cally, it takes 90
seconds to return 60 tuples to the user in order to achieve
a 1% regret ratio while our UH-Random algorithm needs
as few as 10 seconds and 30 tuples to guarantee the same
regret ratio. Note that UtilityApprox is faster than UH-

Simplex and UH-Random (Figure 9(a)). This is because that
it constructs fake points and does not heavily rely on the
input dataset. However, as we argue in Section 3, this weak
truthfulness is not desirable. AlthoughUH-Simplex andUH-
Random spend slightlymore time thanUtilityApprox, their
execution times are small and reasonable given that we can
achieve a much stronger result. In particular, when s = 2
in UH-Random, we need less than 0.5 second on average
to process each answer provided by the user, which is ac-
ceptable in real scenarios. Despite the slightly worse per-
formance in terms of the execution time, UH-Simplex and
UH-Random ask fewer questions and display fewer points

to the user under all values of s compared with UtilityAp-

prox (Figure 9(b)(c)), which is more crucial in interactive
algorithms due to the human e�ort in asking the user ques-
tions. We can also observe in the �gure that, although UH-

Random does not provide provable guarantee on the num-
ber of questions as UH-Simplex does, its empirical perfor-
mance is good.When the question size s increases,UH-Simplex
and UH-Random need fewer questions and fewer points to
solve IRM/MUD while the total number of points displayed
by UtilityApprox even increases slightly (which is also ob-
served in [22]). To perform fair comparison, we set the de-
fault value of s to be 3 which gives reasonable performance
for all interactive algorithms in the rest of the experiments.
We proceedwith the performance evaluation of UH-Simplex

andUH-Random by varying the regret ratio ϵ from 5% to 0%
in Figure 10 on a 4-dimensional dataset. Note that s is �xed
to 3 for all algorithms in Figure 10. Thus, we did not report
the number of questions asked by each algorithm since they
can be easily inferred from the total number of points dis-
played. According to the results presented in Figure 10, our
interactive algorithms are less sensitive to the target regret
ratio ϵ and achieve orders of improvement in both execution
time and output size. This is because our pruning strategies
are very e�ective and we can quickly reduce the candidate
set size after only a few questions (to be shown shortly) so
that we can guarantee the required regret ratio e�ciently.
In comparison, the execution time of CoresetHS increases
rapidly when ϵ decreases. In particular, it takes more than
1000 seconds and returns more than 1000 points to achieve
a 0% regret ratio, i.e, to obtain the favorite point of a user.
Thus, we exclude its performance when ϵ = 0% in the �g-
ure for better visualization. Note that the number of points

UH-Random
UH-Simplex

UtilityApprox
CoresetHS

 0.1

 1

 10

 100

 1000

5% 1% 0.5% 0.1% 0%

ti
m

e
 (

s
)

regret ratio

 20

 40

 60

 80

 100

 120

 140

 160

5% 1% 0.5% 0.1% 0%

to
ta

l
#

 o
f

p
ts

 d
is

p
la

y
e

d
regret ratio

(a) (b)

Figure 10: Vary Regret Ratio (d = 4, s = 3,n = 100k)

UH-Random
UH-Simplex

UtilityApprox
Sphere

0%

20%

40%

60%

80%

100%

 2 4 6 8 10 12 14 16 18 20

c
a

n
d

id
a

te
 s

e
t

s
iz

e
 (

%
)

maximum # of pts displayed

0%

10%

20%

30%

40%

50%

 2 4 6 8 10 12 14 16 18 20

re
g

re
t

ra
ti
o

maximum # of pts displayed

(a) (b)

Figure 11: Vary Points Displayed (d = 5, s = 2,n = 100k)

displayed by UtilityApprox also increases rapidly when ϵ

is close to 0%. It conforms with our claim in Section 3 that
the number of questions asked by UtilityApprox can be
extremely large (i.e., O(logs (1/ϵ))) for MUD where ϵ = 0%.
In Figure 11, we vary the maximum number of tuples we

can display to the user (which is proportional to the number
of questions we can ask the user) on a 5-dimensional dataset.
The purpose of this experiment is to verify the e�ectiveness
of our pruning strategies and to show how we can guaran-
tee a small regret ratio, so we set s to be 2 so that the e�ect of
each user interaction can be clearly observed.When the user
answers more questions, we learnmore about the user’s util-
ity vector andwe can prunemore points in the candidate set,
as shown in Figure 11(a). Our pruning strategies are very ef-
fective. In particular, we can prune 40% of points inC by ask-
ing only 1 question (i.e., displaying 2 points) and prune 90%
of points by asking 5 questions (i.e., displaying 10 points).
Besides, UH-Simplex and UH-Random are very e�ective in
reducing the user regret (see Figure 11(b)). Speci�cally, their
regret ratios drop to 0% more quickly than UtilityApprox

and Sphere. In particular, UH-Random suggests the maxi-
mum utility point (0% regret ratio) to the user after 4 ques-
tions (i.e., 8 points) and UH-Simplex suggests the maximum
utility point after 6 questions (i.e., 12 points). In compari-
son, UtilityApprox and Sphere locate the maximum util-
ity point after 14 (i.e., 7 questions) and 18 points.
We also evaluated the scalability of UH-Simplex and UH-

Random in Figure 12. In Figure 12(a), we studied the scala-
bility of each algorithm on the dataset size n. UH-Simplex
and UH-Random scale well in terms of the execution time
while showing the smallest amount of points to the user. In
particular, to guarantee a 1% regret ratio on a dataset with

UH-Random
UH-Simplex

UtilityApprox
CoresetHS

 0.1

 1

 10

 100

1k 10k 50k 100k 500k 1M

ti
m

e
 (

s
)

n

 0
 10
 20
 30
 40
 50
 60
 70
 80

1k 10k 50k 100k 500k 1M

to
ta

l
#

 o
f

p
ts

 d
is

p
la

y
e

d

n

(a) Vary n (d = 4, s = 3, ϵ = 1%)

UH-Random
UH-Simplex

UtilityApprox
CoresetHS

 0.1

 1

 10

 100

 1000

 2 3 4 5

ti
m

e
 (

s
)

d

 0

 50

 100

 150

 200

 2 3 4 5

to
ta

l
#

 o
f

p
ts

 d
is

p
la

y
e

d

d

(b) Vary d (s = 3, ϵ = 1%,n = 100k)

Figure 12: Scalability Test

1,000,000 points, the number of points we display is half
of that of UtilityApprox and one third of that of Core-
setHS. Besides, all interactive algorithms are signi�cantly
faster than the single round algorithm CoresetHS. In Fig-
ure 12(b), we studied the scalability of each algorithm on
the dimensionality d . Compared with UtilityApprox, UH-
Simplex andUH-Random consistently show fewer points in
all dimentionalites. ComparedwithCoresetHS,UH-Simplex
and UH-Random are two orders faster, verifying the useful-
ness of user interactions in guaranteeing the user regret.
Finally, we observe that the performance of an interactive

algorithm might vary from one user to another whose util-
ity vector and maximum utility point is di�erent. Thus, we
generated 100 utility vectors randomly and studied the per-
formance of UH-Random over di�erent users (the perfor-
mance of UH-Simplex is similar). Due to the lack of space,
the results are shown in Appendix D.2 (see Figure 18).

6.2 Results on Real Datasets

In this section, we studied the performance of the proposed
algorithms on real datasets. Note that all our algorithms per-
form very e�ciently (e.g., they take only a few seconds to
execute) on real datasets. This is because that the number of
skyline points in a real dataset is usually smaller than that
in the synthetic dataset. Thus, we omit the results on exe-
cution time on real datasets. Similarly, we did not vary the
regret ratio on real datasets since all algorithms can achieve
a small regret ratio by displaying a small number of points.
The results on the Island dataset are shown in Figure 13

where we vary the maximum number of points displayed.
All our algorithms e�ectively reduce the candidate set size.
However, di�erent from the results presented on the syn-
thetic datasets, the candidate set size of UH-Random is slightly

Dataset d |D |
Island 2 63,383

NBA 4 21,961

Household 7 1,048,578

Table 2: Real Datasets

UH-Random (s = 2)
UH-Simplex (s = 2)

UtilityApprox (s = 2)
UtilityApprox (s = 4)

Sphere
Median (s = 2)

Hull(s = 2)
Hull(s = 4)

1%

5%

20%

50%
100%

 2 3 4 5 6 7 8 9 10

c
a

n
d

id
a

te
 s

e
t

s
iz

e
 (

%
)

maximum # of pts displayed

0%

10%

20%

30%

 2 3 4 5 6 7 8 9 10

re
g

re
t

ra
ti
o

maximum # of pts displayed

 0

 1

 2

 3

 4

 5

 2 3 4 5 6 7 8 9 10

#
 o

f
q

u
e

s
ti
o

n
s

maximum # of pts displayed

Figure 13: Results on the Island Dataset
UH-Random
UH-Simplex

UtilityApprox
Sphere

0%

20%

40%

60%

80%

100%

 3 6 9 12 15

c
a

n
d

id
a

te
 s

e
t

s
iz

e
 (

%
)

maximum # of pts displayed

0%

3%

6%

9%

12%

15%

 3 6 9 12 15

re
g

re
t

ra
ti
o

maximum # of pts displayed

UH-Random
UH-Simplex

UtilityApprox
Sphere

0%

20%

40%

60%

80%

100%

 3 6 9 12 15

c
a

n
d

id
a

te
 s

e
t

s
iz

e
 (

%
)

maximum # of pts displayed

0%

10%

20%

30%

40%

50%

 3 6 9 12 15

re
g

re
t

ra
ti
o

maximum # of pts displayed

(a) NBA (b) Household
Figure 14: Vary Maximum Number of Points Displayed on NBA and Household (s = 3)

larger than the other algorithms, but it is still much smaller
than that of UtilityApprox and Sphere. When considering
the regret ratio, Median and Hull achieve a much smaller
empirical regret ratio compared with UtilityApprox.
Consider the performance of ourd-dimensional algorithms,

UH-Random andUH-Simplex, onNBA andHouseholdwhere
we vary the number of points displayed in Figure 14. We de-
picted the candidate set size in Figure 14. When the user is
presented with more points (i.e., is asked more questions),
the candidate set size is reduced rapidly. In particular, after
5 questions (i.e., 15 points since s = 3), we prune 97% and
70% of points in the candidate set on NBA and Household,
respectively. When considering the regret ratio in Figure 14,
UH-Simplex and UH-Random suggest the point with a 0%
regret ratio after 2 questions (i.e., 6 points), while the re-
gret ratio of UtilityApprox is much larger (e.g., greater
than 50% on Household). Similar to the synthetic datasets,
although we suggest the maximum utility point after a few
questions empirically, we might need to ask more questions
to conclude that it is indeed the desired point guarantee-
ing the regret ratio ϵ since it could happen that the upper
bound on the regret ratio is still greater than ϵ . That is, there
could be another utility vector in R whose maximum utility
is much larger than the utility of the point suggested.

6.3 Summary

The experiments showed the superiority of our 2-dimensional
algorithms,Median and Hull, and our d-dimensional algo-
rithms, UH-Simplex andUH-Random, over the best-known
previous approaches: (1) We are both e�cient and e�ective.
In particular, UH-Simplex and UH-Random achieve orders
of improvement in execution time comparedwithCoresetHS
(e.g., when s = 2 on the 4-dimensional dataset) and ask the

smallest number of questions (i.e., present the least points)
comparedwithUtilityApprox (e.g., one fourth of questions
on a 4-dimensional dataset compared with UtilityApprox

when ϵ = 0%). (2) The scalability of UH-Simplex and UH-

Random is demonstrated. Speci�cally, they are scalable to
both n and d . It only takes them around 15 seconds to exe-
cute (12 times faster than CoresetHS) when n = 1, 000, 000.
(3) Our pruning strategies are useful. For example, we prune
97% of points in the candidate set by asking only 5 ques-
tions (i.e., 15 points since s = 3) on NBA. (4) We guarantee a
small empirical regret ratio with a few questions. For exam-
ple, on Household, we suggest a point with 0% regret ratio
after 2 questions (i.e., 6 points) while the regret ratios of
UtilityApprox and Sphere are 50% and 15%, respectively.

7 CONCLUSION

We present an interactive framework for IRM/MUD in this
paper, under which we model the user preference by utility
hyperplanes and present two e�ective pruning strategies for
constructing the candidate set of maximum utility points.
We propose two asymptotically optimal 2-dimensional al-
gorithms and two d-dimensional algorithms with provable
guarantees and superior empirical performance. In particu-
lar, we always present true points in the database and thus,
our solutions are strongly truthful. Extensive experiments
showed that our algorithms are very useful in achieving
small regret ratios with a few rounds of interactions. As
for future research, we consider adapting the ranking algo-
rithms studied in machine learning into our problem.

ACKNOWLEDGMENTS

The research of Min Xie and Raymond Chi-Wing Wong is
supported by HKRGC GRF 16214017 and ITS/227/17FP.

REFERENCES
[1] Hyundai o�ers 85 million to settle horsepower suit: Automaker over-

stated the horsepower of hyundai and kia cars exported to the u.s.,

https://www.consumera�airs.com/news04/hyundai_settlement.html.

[2] A. Bhargava, R. Ganti, and R. Nowak. Bandit approaches to preference

learning problems with multiple populations. stat, 1050:14, 2016.

[3] K. Borgwardt. The average number of pivot steps required by the

simplex-method is polynomial. Mathematical Methods of Operations

Research, 26(1):157–177, 1982.

[4] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In

Proceedings. 17th International Conference on Data Engineering, 2001.

[5] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. Finding k-

dominant skylines in high dimensional space. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, 2006.

[6] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. On high dimen-

sional skylines. InAdvances in Database Technology-EDBT 2006, pages

478–495. Springer, 2006.

[7] Y. Chang, L. Bergman, V. Castelli, C. Li, M. Lo, and J. Smith. The onion

technique: Indexing for linear optimization queries. In Proceedings of

ACM SIGMOD International Conference on Management of Data, 2000.

[8] J. Dulá, R. Helgason, and N. Venugopal. An algorithm for identifying

the frame of a pointed �nite conical hull. In INFORMS Journal on

Computing, volume 10, pages 323–330. INFORMS, 1998.

[9] M. Goncalves and M. Yidal. Top-k skyline: a uni�ed approach. In On

the Move to Meaningful Internet System 2005, 2005.

[10] A. Guttman. R-trees: A dynamic index structure for spatial searching,

volume 14. ACM, 1984.

[11] K. Jamieson and R. Nowak. Active ranking using pairwise compar-

isons. In Advances in Neural Information Processing Systems, 2011.

[12] K. Jamieson and R. Nowak. Best-arm identi�cation algorithms for

multi-armed bandits in the �xed con�dence setting. In Annual Con-

ference on Information Sciences and Systems (CISS), 2014.

[13] B. Jiang, J. Pei, X. Lin, D. Cheung, and J. Han. Mining preferences

from superior and inferior examples. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 390–398. ACM, 2008.

[14] K. Ju, K. Jamieson, R. Nowak, and X. Zhu. Top arm identi�cation in

multi-armed bandits with batch arm pulls. In AISTATS, 2016.

[15] N. Kumar and S. Sintos. Faster approximation algorithm for the k-

regret minimizing set and related problems. In 2018 Proceedings of

the Twentieth Workshop on Algorithm Engineering and Experiments

(ALENEX), pages 62–74. SIAM, 2018.

[16] J. Lee, G. won You, and S. won Hwang. Personalized top-k skyline

queries in high-dimensional space. In Information Systems, 2009.

[17] X. Lian and L. Chen. Top-k dominating queries in uncertain databases.

In Proceedings of International Conference on Extending Database Tech-

nology: Advances in Database Technology, 2009.

[18] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most

representative skyline operator. In Proceedings of International Con-

ference on Data Engineering, 2007.

[19] T. Liu et al. Learning to rank for information retrieval. Foundations

and Trends® in Information Retrieval, 3(3):225–331, 2009.

[20] B. Mason, L. Jain, and R. Nowak. Learning low-dimensional metrics.

In Advances in Neural Information Processing Systems, 2017.

[21] D. Mindolin and J. Chomicki. Discovering relative importance of sky-

line attributes. In Proceedings of the VLDB Endowment, 2009.

[22] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino. Interactive regret

minimization. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, 2012.

[23] D. Nanongkai, A.D. Sarma, A. Lall, R.J. Lipton, and J. Xu. Regret-

minimizing representative databases. In Proceedings of the VLDB En-

dowment, 2010.

[24] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline compu-

tation in database systems. In ACM Transactions on Database Systems

(TODS), volume 30, pages 41–82. ACM, 2005.

[25] A. N. Papadopoulos, A. Lyritsis, A. Nanopoulos, and Y. Manolopoulos.

Domination mining and querying. In DaWaK, 2007.

[26] P. Peng and R.C.W Wong. Geometry approach for k regret query. In

Proceedings of International Conference on Data Engineering, 2014.

[27] L. Qian, J. Gao, and H.V. Jagadish. Learning user preferences by adap-

tive pairwise comparison. In Proceedings of the VLDB Endowment,

2015.

[28] R. Rockafellar. Convex analysis. Princeton university press, 2015.

[29] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. Top-k query process-

ing in uncertain databases. In Proceedings of International Conference

on Data Engineering, pages 896–905. IEEE, 2007.

[30] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall. E�cient k-regret

query algorithm with restriction-free bound for any dimensionality.

In Proceedings of the 2018 ACM International Conference on Manage-

ment of Data. ACM, 2018.

A SUMMARY OF NOTATIONS

We summarize the frequently used notations in Table 3.

Notation Meaning

D The set of d-dimensional points with |D | = n

f and u f (p) = u · p where
∑d
i=1 u[i] = 1

rrD (S,u) The regret ratio of S over D w.r.t. u

s The number of points displayed per question

ϵ The target regret ratio we want to guarantee

Conv(D) The convex hull of D

H A hyperplane H = {p ∈ Rd | ∑d
i=1p[i] = 1}

R The candidate utility range on H which

contains the user’s true utility vector u

C
The candidate set of maximum utility points

(i.e., if p = argmaxq∈D u · q where u ∈ R , p ∈ C)

hp,q
The utility hyperplane passing through the origin

with its normal in the same direction as p − q
h+p,q The half space above hp,q

‖R‖1
The L1-diameter of R

(i.e., ‖R‖1 = maxp,q∈R ‖p − q‖1)

V The extreme vector setV = {−ni | ∀hi ∈ H}
whereH is the set of hyperplanes that form R

Cp,V
The conical hull of a point p ∈ D w.r.t.V (Cp,V =
{q ∈ Rd | (q − p) = ∑

vi ∈V wivi where wi ≥ 0})

HV
A hyperplane with the normal nV where nV · vi
> 0,∀vi ∈ V, and the o�set cV = min

vi ∈V
nV · vi

Np
The set of all neighboring vertices

of a vertex p in Conv(D)

VF
The frame of a vector set V (VF is the minimal

subset of V such that Cp,V = Cp,VF)

Table 3: Summary of Frequently Used Notations

https://www.consumeraffairs.com/news04/hyundai_settlement.html

B A NECESSARY CONDITION

We formally de�ne the necessary condition in conical hull
pruning so that we can determine that q < Cp,V e�ciently.
We de�ne a hyperplane, denoted byHV , forV. The normal
of HV , denoted by nV , is a unit vector such that nV ·vi > 0
for eachvi inV (we describe how to computenV later). The
o�set ofHV , denoted bycV , is minvi ∈V nV ·vi . Note that the
ray shooting fromO in the direction ofvi must intersectHV
atv ′i wherev

′
i = civi and ci > 0 (sincenV ·vi > 0). Similarly,

we assume that the ray shooting from O in the direction of
q − p intersects HV at q′ where q′ = cq(q − p) and cq ≥ 0 (if
the ray does not intersect HV , cq is positive in�nity).
To illustrate, assume thatp = O and considerCO,V where
V = {−n1,−n2} in Figure 15. HV is shown in a dashed line.
Consider q1 and q2 (drawn in dot points). The ray shooting
fromO to q1 and the ray shooting fromO to q2 intersectHV
at q′1 and q

′
2 (drawn in cross points), respectively.

Lemma B.1. If q ∈ Cp,V , ‖q′‖2 ≤ 1.

According to Lemma B.1, if ‖q′‖2 > 1, we directly con-
clude that q < Cp,V without checking the facets of CO,V .
For example, in Figure 15, we draw a circle centered at O
with radius 1. The point q1 is in CO,V and thus, ‖q′1‖2 ≤ 1
(inside the circle) according to Lemma B.1. However, since
‖q2‖2 > 1 (outside the circle), we know that q2 < CO,V .
Next, we formally de�ne nV . According to our problem

de�nition, CO,V must be pointed (or acute). That is, there
must be a hyperplane that supports it only at O (i.e., all
points in CO,V are on or below the hyperplane). De�ne the
average vector of V to be v̄ = 1

|V |
∑
vi ∈V vi . Consider the

following primal/dual LP with an arbitrary pointb in Rd [8]:

(P) min θ subjected to − θv̄ +
∑

vi ∈V
wivi = b

θ ≥ 0 andwi ≥ 0,∀vi ∈ V
(D) max π · b subjected to − π · v̄ ≤ 1

π · vi ≤ 0,∀vi ∈ V
Note that for an arbitrary b in Rd , (P) is always feasible [8].
Consider a non-zero solution π of (D). We can de�ne nV
to be −π since π · vi ≤ 0 for each vi ∈ V (if ignoring the
equality case). Denote the optimal solutions of (P) and (D)
by θ ∗ and π ∗ and thus, θ ∗ = π ∗ · b. The following lemma
from [8] shows how to obtain a non-zero solution π ∗ of (D).

Lemma B.2 ([8]). b is exterior toCO,V if and only if θ ∗ > 0.

According to LemmaB.2, we compute a non-zero solution
π ∗ of (D) by substituting a b exterior to CO,V to (P) (since
θ ∗ = π ∗ · b > 0). We can de�ne such a point b to be −vi for
a vi inV sinceCO,V is pointed and −vi is exterior toCO,V .
Note that we want a vectornV whose dot product withvi

is strictly greater than 0 for each vi ∈ V. Otherwise, cV =

minvi ∈V nV ·vi = 0 and the hyperplaneHV passes through
the origin O . If this is the case, for any two points p and q,
the ray q − p intersects HV at O (= q′) and Lemma B.1 is
useless since ‖q′‖2 is always 0.
Let V ′ be subset of V such that for each vi in V , there

is a vector vj inV ′ and π ∗j · vi < 0 where π ∗j is the optimal

solution of (D) by setting b to be −vj . Then, we de�ne nV to

be the unit vector in the same direction as − 1
|V′ |

∑
vj ∈V′ π

∗
j .

It can be veri�ed that nV ·vi > 0 for eachvi inV as desired.

C CANDIDATE SET MAINTENANCE

We explain how the branch-and-bound skyline (BBS) algo-
rithm [24] is applied to maintain C . Consider conical hull
pruning as an example (similar if we use hyperplane prun-
ing). We index C using an R-tree [10] (or some other data
partitioning methods) where each intermediate entry is a
minimum bounding rectangle (MBR) and each leaf entry is
a data point in C . Besides, we maintain a minimum heap of
the entries in the R-tree according to their distance to a vir-
tual point Q with Q[i] = maxp ∈D p[i] (the “favorite” point
of all u in R). Initially, we insert the root of the R-tree into
the minimum heap and the new candidate set C ′ is empty.
The algorithm works in iterations. In each iteration, we pop
the entry e from the heap with the minimum distance to Q :

(1) Case 1 (e is a leaf entry): If e < Cp,V ∀p ∈ C ′, we in-
sert e toC ′ and remove points inC ′ which are inCe,V .

(2) Case 2 (e is an intermediate entry): If e (an MBR) is
totally contained in the conical hull of some points in
C ′, the whole e is pruned. Otherwise, e is “expanded”
and its children are inserted into the heap.

This process continues until the heap is empty andC ′ is the
updated candidate set. Di�erent from BBS for skyline com-
putations, when a new e is inserted to C ′, we need to cross
check whether some existing points in C ′ is in Ce,V . We re-
fer the readers not familiar with the process above to [24].

D ADDITIONAL EXPERIMENTS

D.1 User Study on Used Car Purchase

Since real users might make mistakes or provide inconsis-
tent feedbacks,we conducted a user study on a used car data-
base1 to further verify the usefulness of our methods in real
scenarios such as car purchase. Same as [27], we randomly
selected 1000 cars from the database. Each car is described
by 4 attributes, namely price, year of purchase, power and
used kilometers. We recruited 30 participants, ranging in
age from 18 to 30, and asked them to complete the survey.
For the ease of evaluation, we only focus on MUD (ϵ = 0%)
in this user study; that is, we aim at �nding the favorite car
for each participant among those 1000 candidate cars.

1https://www.kaggle.com/orgesleka/used-cars-database

Figure 15: Fast Prune

 0

 5

 10

 15

 20

 25

 30

UH-Random UH-Simplex Adaptive ActiveRanking

a
v
e
ra

g
e
 #

 o
f
q
u
e
s
ti
o
n
s

Figure 16: Average Questions

Win Tie Lose

 0

 5

 10

 15

 20

UH-Random vs.
 Adpative

UH-Random vs.
 ActiveRanking

UH-Simplex vs.
 Adaptive

UH-Simplex vs.
 ActiveRanking

#
 o

f
p
a
rt

ic
ip

a
n
ts

Figure 17: Comparisons between Recommended Cars

 0

 5

 10

 15

 20

1.5 2.5 3.5 4.5 5.5 6.5

#
 o

f
u

ti
lit

y
 v

e
c
to

rs

time(s)

 0

 5

 10

 15

 20

 25

 30

5 6 7 8 9 10 11 12

#
 o

f
u

ti
lit

y
 v

e
c
to

rs

of questions

(a) (b)

Figure 18: Distribution (d = 4, s = 3, ϵ = 1%,n = 100k)

We comparedourmethods,UH-Random andUH-Simplex
against two existing preference learning algorithms, namely
Adaptive [27] and ActiveRanking [11]. We excluded the
existing IRM algorithm [22] in this experiment due to its
poor performance in solving MUD, which has been demon-
strated in Section 6. Since the existing algorithms [11, 27]
are restricted to pairwise comparisons (each comparison cor-
responds to a question asked to the user), we �xed s to be 2
in ourmethods for fair comparison. Note thatAdaptive and
ActiveRanking are not designed for MUD (see Section 2).
Thus, we modify them to solve MUD more e�ectively:

• Adaptive [27] estimates the user preference by select-
ing comparisons adaptively. We utilize the randomly
selected comparisons to test their accuracy and stop
the interaction until they correctly identify 75% com-
parisons (the stable accuracy in [27]). The maximum
utility car w.r.t. the estimated preference is returned.
• ActiveRanking [11] identi�es the ranking of cars based
on their distances to the unknown favorite car. We
adapt our hyperplane pruning strategy to reduce their
comparisons if a car is de�nitely not the favorite one.
Finally, the top rank car is returned as the favorite car.

We measured the performance of each algorithm by the
average number of questions asked and the quality of the car
returned (and times are negligible). However, it is di�cult to
ask the participants to provide their true favorite cars (i.e.,
the ground truth) by examining all 1000 candidates. Thus,
we cross-compared the quality of the cars returned by our al-
gorithms and competitor algorithms. ConsiderUH-Random
and Adaptive as an example. Let p be the car returned by
UH-Random and q be the car returned by Adaptive.

• Ifp = q, bothUH-Random andAdaptive recommend
the same car. We count this comparison as a “tie”.
• If p , q, we ask the participant for his/her preference
between p and q. If s/he prefers p to q, our algorithm
identi�es a better car and this comparison is counted
as a “win”. Otherwise, it is counted as a “lose”.

Finally, we reported the total count of win/tie/lose for each
pair of algorithms over the 30 participants.
In Figure 16, we reported the average number of ques-

tions. To identify the favorite car among 1000 candidates,
UH-Random andUH-Simplex ask the users 7 questions only
on average. In comparison, Adaptive and ActiveRanking
are not primally designed for MUD and thus, they may ask
the users some less interesting/less informative questions,
resulting in more questions to be asked (4 times more than
us). Despite the signi�cant reduction on the number of ques-
tion asked, the cars recommended by ourmethods are of bet-
ter quality. Speci�cally, even though real users can provide
inconsistent feedbacks during interactions, in all four pairs
of comparisons in Figure 17, UH-Random and UH-Simplex
consistently outperform Adaptive and ActiveRanking by
returning a better car 38% of time and returning the same
car 52% of time (i.e., we return a not-worse car 90% of time).

D.2 Distributions over Di�erent Users

In this experiment, we generated 100 utility vectors randomly
and studied the performance of UH-Random over di�erent
users (UH-Simplex is similar) on a 4-dimensional dataset
(other parameters are �xed to the default setting in Section 6).
In Figure 18(a), we depicted the distribution of users on exe-
cution time. For all users,UH-Random�nishes the computa-
tion in seconds. In particular, it only takes UH-Random 2∼4
seconds for most users. In Figure 18(b), we depicted the dis-
tribution of users on the number of questions. UH-Random
asks 5∼12 questions to guarantee the regret. In particular,
over 80% of users obtain a solution with at most 9 questions.

E REMAINING PROOFS

ProofofTheorem3.3. It is easy to see that there is a dataset
D such that for each p in D, p is the maximum utility point
for some utility functions. Any algorithm that identi�es all
such points must be in the form of a tree. Consider a s-ary

tree of depth r generated by r questions with at least one leaf
node for each p (otherwise that point is not the maximum
utility point for any utility function). Since it is a s-ary tree
with at least n leaves, the height of the tree is Ω(logs n). In
other words, any algorithm needs to ask Ω(logs n) questions
to identify the maximum utility point in the worst case.

Proof of Lemma 4.1. This lemma follows directly from the
convexity and the linear utility functions.

Proof of Theorem4.4. The correctness of Median follows
fromCorollary 4.2. Initially, |C | =m ≤ nwheren is the num-
ber of points in D (i.e., |D | = n). Since C is reduced by half
in every round, it takes O(log2 n) rounds to determine the
maximum utility point. It takesO(n logn) time to determine
and sort all vertices of Conv(D ∪ {b1,b2,O}). Based on the
sorted vertices, each iteration of Median takes O(1) time,
resulting in O(log2 n) time. Thus, the total time complexity
is O(n logn). Besides, Median is strongly truthful since we
always present vertices which are points in the dataset.

Proof ofTheorem4.5.The correctness follows fromLemma4.1.
Assume thatpi j is the favorite point of the user. Since f (pi j) ≥
f (pi j+1), the points ordered after pi j+1 , the “rightmost” point
in Cj , cannot be the maximum utility point according to
Lemma 4.1. That is, the maximum utility point does not lie
in Cl for each l ≥ j + 1. Similarly, f (pi j) ≥ f (pi j−1) implies
that the maximum utility point does not lie in Cl for each
l < j − 1. Then, we focus on Cj ∪Cj−1 in the next iteration.
The remaining proofs are similar to Theorem 4.4.

Proof of Lemma 5.1. Since the user prefers p to q, u · p >
u ·q. i.e., u · (p −q) > 0, which implies u ∈ h+p,q according to
the de�nition of hp,q .

Proof of Lemma 5.3. h+q,p contains the set of all utility vec-

tors such thatu ·q > u ·p. Since h+q,p ∩R = �,u ·p ≥ u ·q for
each u in R. In other words, the utility of p is at least that of
q in all cases and thus, q can be safely pruned from C .

Proof of Lemma5.6.q ∈ Cp,V implies (q−p) = ∑
vi ∈V wivi .

Then, u · (q − p) = ∑
vi ∈V wiu · vi =

∑
ni ∈Hwiu · (−ni) ≤ 0

since u · ni ≥ 0 for each hi inH . That is, u · p ≥ u · q.

Proof of Lemma5.8.q ∈ Cp,V implies thatq−p = ∑
vi ∈V wivi ,

which can be written as (q − p) −O = ∑
vi ∈V wivi . That is,

q − p ∈ CO,V .

Proof of Lemma 5.9. Let p∗ = argmaxq∈D u · q. Firstly,
by following a similar analysis as in [22], u · p∗ − u · p ≤
2‖R‖1. Secondly, there must exist a i∗ such that u[i∗] ≥ 1

d .

Otherwise,
∑d

i=1u[i] < 1, which contradicts the de�nition
of u. Let pi∗ be the point in D with pi∗[i∗] = 1. Then, u ·
p∗ = maxq∈D u · q ≥ u · pi∗ ≥ u[i∗]pi∗[i∗] ≥ 1/d . Thus,
rrD ({p},u) = u ·p∗−u ·p

u ·p∗ ≤ 2‖R ‖1
1/d ≤ 2d ‖R‖1.

Proof of Lemma 5.10. Letp∗ be the vertex inConv(D) such
that its utility is larger than all vertices in Np∗ . That is, u ·
p∗ ≥ u · p for each p in Np∗ , which gives an extreme vector
setV = {p−p∗ | ∀p ∈ Np∗ }. Consider the conical hullCp∗,V .
It could be easily veri�ed that for each point p in D, p is in
Cp∗,V according to the de�nitions of vertex and convex hull.
According to Lemma 5.6, u · p∗ ≥ u · p for each p in D and
thus, p∗ is the maximum utility point w.r.t. u.

Proof of Lemma 5.11. It follows from the convexity of
Conv(D). Ifq is not a neighbouring vertex ofp,q−p is strictly
in Cp,V . Thus, it cannot be in VF , and vice versa.

Proof of Theorem 5.13. UH-Simplex displays points in-
side the database (i.e., strongly truthful). Besides, it prunes
at least s − 1 unquali�ed points (more points can be pruned
with the pruning strategies) fromC after each question. Thus,
the number of questions is O(n/s) in the worst case. How-
ever, UH-Simplex performs much better in practice.
Recall that we maintain a vertex p with the highest utility

during the interaction and we update p if there is a neigh-
boring vertex in Np with a higher utility (which is the pivot
step in the Simplex method for LP [8]). In the worst case,
we update p O(n) times since there are at most n vertices in
Conv(D). However, according to [3], the average number of
updates on p (pivot steps) is much smaller, i.e., O(d√n). To
determine one update on p, we ask O(degmax/s) questions
since there are O(degmax) neighboring vertices in Np and
we can display at most s − 1 of them per question. Thus, the
number of questions is O(degmax

d
√
n/s) on average.

Proof of Lemma B.1. Recall that |V| = t .
Firstly, we prove that if q ∈ Cp,V , we have q′ =

∑t
i=1w

′
iv
′
i

with w ′i ≥ 0 and
∑t

i=1w
′
i = 1. Note that q ∈ Cp,V implies

q − p = ∑t
i=1wivi wherewi ≥ 0. Since v ′i = civi ,

q′ = cq(q − p) = cq
t∑

i=1

wivi = cq

t∑

i=1

1

ci
wiv

′
i =

t∑

i=1

w ′iv
′
i

wherew ′i =
cqwi

ci
≥ 0. Sincev ′i andq

′ lie onHV ,v ′i ·nV = cV
and q′ · nV = cV . Then, cV = q′ · nV = (

∑t
i=1w

′
iv
′
i) · nV =∑t

i=1w
′
iv
′
i · nV =

∑t
i=1w

′
icV . That is,

∑t
i=1w

′
i = 1.

Secondly, we prove ‖v ′i ‖2 ≤ 1 for each i ∈ [1, t]. Con-
sider vi and its corresponding v ′i on HV . Denote the angle
betweenv and nV by θ<v,nV> . By the de�nition ofvi andv

′
i ,

0 < cos(θ<v ′i,nV>) = cos(θ<vi,nV>) =
vi · nV
‖vi ‖2‖nV ‖2

= vi ·nV .

Since v ′i lies on H , ‖v ′i ‖2 =
v ′i · nV

‖nV ‖2 cos(θ<v ′i,nV>)
=

cV
cos(θ<v ′i,nV>)

=

minj∈[1,t] nV · vj
nV · vi

≤ 1.

By combining the results above, ‖q′‖2 = ‖
∑t

i=1w
′
iv
′‖2 ≤∑t

i=1 ‖w ′iv ′‖2 ≤
∑t

i=1w
′
i = 1 and the lemma follows.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Terminologies
	3.2 Interactive Framework
	3.3 Lower Bound
	3.4 Truthfulness of Interactive Algorithms

	4 2-Dimensional Algorithms
	4.1 The Median Algorithm
	4.2 The Hull Algorithm

	5 D-Dimensional Algorithms
	5.1 Information Maintenance
	5.2 Stopping Condition
	5.3 Point Selection
	5.4 Algorithm Summary and Analysis

	6 Experiment
	6.1 Results on Synthetic Datasets
	6.2 Results on Real Datasets
	6.3 Summary

	7 Conclusion
	Acknowledgments
	References
	A Summary of Notations
	B A Necessary Condition
	C Candidate Set Maintenance
	D Additional Experiments
	D.1 User Study on Used Car Purchase
	D.2 Distributions over Different Users

	E Remaining Proofs

