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ABSTRACT
We consider external algorithms for skyline computation
without pre-processing. Our goal is to develop an algorithm
with a good worst case guarantee while performing well on
average. Due to the nature of disks, it is desirable that such
algorithms access the input as a stream (even if in multiple
passes). Using the tools of randomness, proved to be use-
ful in many applications, we present an efficient multi-pass
streaming algorithm, RAND, for skyline computation. As
far as we are aware, RAND is the first randomized skyline
algorithm in the literature.

RAND is near-optimal for the streaming model, which
we prove via a simple lower bound. Additionally, our al-
gorithm is distributable and can handle partially ordered
domains on each attribute. Finally, we demonstrate the ro-
bustness of RAND via extensive experiments on both real
and synthetic datasets. RAND is comparable to the ex-
isting algorithms in average case and additionally tolerant
to simple modifications of the data, while other algorithms
degrade considerably with such variation.

1. INTRODUCTION
The skyline of a d-dimensional dataset is the set of points

(tuples) that are not dominated by any other point, where
we say that a point p dominates another point p′ if the coor-
dinate of p on each dimension is not smaller than that of p′,
and strictly larger on at least one dimension. A popular ex-
ample is a hotel reservation system. Consider a hypothetical
scenario in which a tourist is searching for a hotel that both
is cheap and has high quality. Although most hotels that
have higher quality tend to be more expensive, there could
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Figure 1: Search result from hotels.com.

be real-life instances in which a hotel A is more expensive
than a hotel B but B has better quality than A. Clearly, in
this scenario, inferior hotels such as A should not be shown
to this tourist. For example, Figure 1 shows the first 5
query results of hotels in Lyon from August 24 to August
28, 2009, when we search hotels.com in March 2009. Should
hotels.com support skyline query and someone execute the
query [Select *, From Hotels, Skyline of Price min,

Guest Rating max], then hotels 2, 4, 5 should not be shown
as they are dominated by hotel 1 (the latter has better guest
rating and lower price); Only 1 and 3 should be on the sky-
line, as one has a better guest rating and the other has a
lower price.

Since a database is usually too large to be stored in the
main memory, skyline algorithms are external [4] in the sense
that data resides on the external memory (i.e., disk) while its
processing happens in the main memory. Skyline algorithms
can be classified into two categories: with and without pre-
processing. Pre-processing such as indexing [18] and sort-
ing [8] helps speed up the skyline computation, but main-
taining indices over a large number of dimensions could be
computationally intensive. Without pre-processing, skyline
algorithms have to take at least one pass over the database
for computing the skyline and therefore are often slower
than those with pre-processing. However, their flexibility
and wider applicability makes them attractive alternatives
in many application scenarios [10]. In this paper, we focus
on the skyline algorithms without pre-processing.

In this work, we appeal to the concept of optimizing the



worst case behavior of skyline algorithms. There are many
real-time applications in which one would be interested in
upper-bounding the times taken in skyline computation and
minimizing its variance. Consider a flight booking site where
the site searches for results, when presented with a query,
and displays a skyline set of options. If the time taken for
this page to load is longer than usual, the user is likely to
abandon the search and try one of many other such sites.
Another example is skyline queries on stock markets, where
prices change very rapidly. If a user (or automatic trading
software on behalf of the user) wants to perform a transac-
tion based on the results from the skyline query, presenting
the results reliably fast is essential.

In this work, we propose a set of multi-pass data stream-
ing algorithms that can compute the skyline of a massive
database with strong worst-case performance guarantees (mo-
tivated above). The data stream in this context refers to the
data items in the massive database (residing on disks) that
are read into and processed through the main memory in a
stream fashion. Our algorithms have a salient feature: They
are not sensitive (performance wise) to the order in which
the data items show up in the stream. Therefore, we can
simply read the data items out from the database in the
“physically sequential order” in the sense that disk heads
only need to move in one direction during each stream pass.
Since the seek and rotational delays of a disk are orders of
magnitude larger than the transmission delay, this feature
may translate into significant performance improvements in
real-world systems.

Even with physically sequential accesses of disks, however,
each pass over the database is still quite time-consuming.
Therefore, our skyline algorithms need to minimize the num-
ber of such passes in order to have good performance. This
objective is achieved using randomization1, which turns out
to be a powerful tool in quickly eliminating a large number
of non-skyline points from consideration after each pass.

Our Contributions
Our contributions can be summarized as follows.

• We formalize the multi-pass streaming model (implic-
itly with physically sequential accesses of disks) for
the skyline problem. We are interested in worst case
analysis, in terms of random and sequential I/O’s and
comparison operations. We prove a simple yet instruc-
tive performance lower bound under this model. (Sec-
tion 3)

• The key contribution of this paper is a randomized
multi-pass streaming algorithm, RAND. We present
two versions, one with and one without fixed window,
and prove their theoretical worst-case performance guar-
antees. These performance guarantees, combined with
the aforementioned lower bound, shows that RAND
algorithms are near-optimal. (Section 4)

• RAND can be extended to many other settings: (1)
It can be adapted to the distributed model, where
the goal is to minimize the communication when dif-
ferent sites have different parts of the input. (2) It
extends to a deterministic variant that works for the

1Our technique uses randomness in the algorithm but does
not assume any distribution on the input.

two-dimensional case. (3) It works even for partially-
ordered domains. (Section 5)

• We perform extensive experiments on real and syn-
thetic data, which show that RAND is comparable to
the state-of-the-art skyline algorithms in various per-
formance metrics. We also show that, with certain per-
turbations of the data orders, the performance of the
other algorithms degrade considerably while RAND is
robust to such changes. (Section 6)

2. RELATED WORK
Skyline computation, previously known as Pareto sets,

admissible points, and maximal vectors, has been exten-
sively studied in the theory and mathematics community
since 1960s (see, e.g., [3, 14, 16]). However, they assume
that the whole input data can be fit in the internal mem-
ory. Therefore, these algorithms do not scale well to large
databases. In particular, any scalable algorithm should be
external. The problem in this setting, and the name skyline,
were introduced to the database community by Börzsönyi et
al. [4] and has been studied extensively since then.

As mentioned in the introduction, external skyline algo-
rithms can be classified into two categories: with and with-
out pre-processing. Each category has its own advantages
and disadvantages. Algorithms presented in this paper are
in the latter category. We review some state-of-the-art al-
gorithms in this category that we compare against: BNL
and LESS. Both algorithms serve as good benchmarks for
comparison as they perform well with respect to different
parameters.

BNL [4] operates with a memory window of size w. It
makes several passes over the data, each time storing the
first w points that are undominated. While reading the disk,
any point that is dominated is eliminated so that it is never
read in the future. BNL has a timestamping mechanism that
is used to determine when a point is in the skyline and when
all points it dominates have been eliminated. It continues
to make passes over the data until all skyline points have
been obtained. BNL remains to be a classic algorithm in
that several other algorithms use BNL or a modification of
it as a subroutine.

LESS [10] is an extension of the SFS algorithm [8]. SFS
assumes that the data is pre-processed by sorted according
to a scoring function. Once sorted, a BNL-like filtering pro-
cedure can then be performed on the data to get the skyline
points. Sorting the data gives the desirable property that,
as soon as a point gets added to the buffer, it can be output
as being in the skyline and does not need any timestamping
overhead. The authors of [8] suggest the use of the entropy
function to efficiently eliminate many tuples. LESS elimi-
nate some more points while sorting and integrates the final
pass of the external sorting phase with the first filter pass.

Another category of skyline algorithms that we do not
consider here are those with pre-processing. The main fea-
ture of these algorithms is that they can compute skyline
without going through the whole input data; thus, they
are progressive. Most of the algorithms in this category are
index-based and exploit R-tree and its variations to obtain
good performances. The first algorithm in this category is
the nearest neighbor (NN) algorithm in [13] and the state-
of-the-art algorithm in this category is BBS [18] which is
I/O-optimal. As mentioned in the introduction, we do not



consider this category in this paper.
Several other variants have been considered. Since it is

not possible to list a complete survey of all papers, we men-
tion a few here. Algorithms using the bitmap method [25]
and for partially-ordered attributes to capture dynamic user
preferences [6, 5, 32, 22] , computing cardinality or ex-
ploiting low cardinality domains [7, 17], sliding window or
time-series skyline queries [15, 27, 12, 35], distributed and
super-peer architectures [2, 31, 36, 19], representative sky-
lines [26], probabilistic skylines on uncertain data [20] have
been studied. We mention the streaming and distributed
related works again in Sections 3 and 5.1 respectively.

3. MULTI-PASS STREAMING MODEL FOR
SKYLINE ALGORITHMS

In this section, we define the streaming model for skyline
computation and present a lower bound for the problem.

Since most databases today are too large to fit in main (in-
ternal) memory, they are typically stored in external mem-
ory on one or more magnetic disks. In this type of memory,
sequential disk access is preferable to random disk access for
several reasons. First, sequential disk access is considerably
faster than the random disk access as the latter involves a
number of seek operations. For example, algorithms for spa-
tial join that access pre-existing index structures (and thus
do random I/O) can often be slower in practice than algo-
rithms that access substantially more data but in a sequen-
tial order (as in streaming) [1]. Second, sequential access has
the advantage of using modern caching architectures opti-
mally, making the algorithm independent of the block size
(i.e., cache-oblivious) [9]. For these reasons, the models de-
signed to capture magnetic disks have to distinguish the two
types of memory access.

There have been many practical models proposed in the
literature. Well known models include the parallel disk model
(PDM) and the multi-pass streaming model [30, 21]. In this
paper, we aim at exploring the power and limitation of the
latter model in the context of skyline algorithms. In this
model, the data is streamed sequentially through internal
memory. Moreover, it is possible that the data is streamed
multiple times; we refer to each scan through the dataset as
a pass. Additionally, we allow our algorithms to produce a
new stream while they are reading the current stream data.
This is a common method used in many skyline algorithms:
Read data from one file and write a new file if necessary. We
note that this can be implemented with only sequential disk
access when there are at least two disks available. Such a
model has recently been defined as a Read/Write streaming
model [23, 24] and has received considerable attention from
the theory community.

There has been work on computing skylines in a streaming
setting [15, 27, 12, 35]. However, these works look at single-
pass streams under the sliding window model, whereas we
are interested in multi-pass algorithms. A single pass is too
restrictive for computing skylines as we demonstrate in the
following section.

3.1 How hard is it to stream?
In this section, we show that it is impossible to design an

efficient algorithm that reads each point exactly once. We
note, however, that our algorithms described in the next
section can complete in very few passes.

Theorem 1. Consider any m ≥ 3 and any n ≥ m and
consider any deterministic or randomized single pass stream-
ing algorithm A that always stores fewer than n/2 points.
There exists an input on n+m points with m skyline points
such that A fails with probability at least 1/2.

Notice that the theorem asserts a lower bound for every
m, in particular, even when m is constant and much less
than n.

Proof. We prove the theorem for m = 3 and it naturally
generalizes to larger m. Construct a distribution over sets
of points from R

2, X1, X2, . . . , Xn. Each of them contains
the following n points {(1, n), (2, n − 1), (3, n − 2), . . . , (n −
1, 2), (n, 1)}. In addition, each Xi contains two more points
{(i−1, n+1), (n+1, n− i)}. Algorithm A is presented with
Xj where j is chosen uniformly at random from {1, 2, . . . , n}.

Notice that the skyline of Xi is precisely the set of three
points {(i−1, n+1), (i, n− i+1), (n+1, n− i)}. If A stores
only s points, it is able to store only s points of the first
n. Since the last two points determine which of the first n
is in the skyline, and there is an equal probability of any
one of the first n points being in the skyline, A fails with
probability at least n−s

n
. The result follows for deterministic

algorithms.
We now use Yao’s minimax principle [34] to prove the

same lower bound for randomized algorithms. Yao’s prin-
ciple states that the expected cost of any randomized algo-
rithm for solving a given problem, on the worst case input for
that algorithm can be no better than the expected cost for a
worst-case random probability distribution on the inputs of
the deterministic algorithm that performs best against that
distribution. In the construction above, we had a proba-
bility distribution of inputs such that every deterministic
algorithm (and therefore the best deterministic algorithm)
failed with probability at least 1/2. Therefore, for any ran-
domized algorithm, there is a worst-case input such that in
expectation it fails at least half the time.

In the next section, we present our main algorithms for
computing skylines under the streaming and related models.

4. ALGORITHMS
In the rest of this paper, we use n for the number of

points, m for the number of skyline points, and d for the
number of dimensions of each point. We measure the per-
formance of algorithms in terms of random I/O’s, sequential
I/O’s, and comparisons performed. The random I/O’s is
simply the number of passes performed by an algorithm in
the streaming model. In this section, we present randomized
algorithms for the following different settings:

• Streaming-RAND algorithm: This algorithm gives
an efficient tradeoff between the memory space and the
number of passes (random I/O’s). In the worst case, it
uses O(m log n) space, O(log n) passes (random I/O’s),
O(n log m) sequential I/O’s and O(dmn log m log n) com-
parisons with high probability.

• FixedWindow-RAND algorithm: This algorithm runs
using a fixed memory space; i.e., for a predetermined
window size w, it always stores at most w points. We
use this algorithm to compare performance with previ-
ous algorithms in the literature in Section 6. With win-
dow size w, this algorithm uses O(m log n/w) random



I/O’s, O(mn/w) sequential I/O’s and O(dmn) com-
parisons in expectation. The high probability bounds
are only O(log n) more than the expected bounds pre-
sented above. We also present them in this section.

Notice that the worst case is over all inputs, and the ran-
domization (and therefore high probability or expectation
bounds) is for the algorithms’ coin tosses. In other words,
our algorithms have the guarantees for any kind of input.

Outline
The main idea is to quickly find skyline points that dominate
many points in a few of passes. In particular, we present an
algorithm that finds a set of skyline points which dominate
about half of the input points in three passes, using memory
space O(m). The main idea is that such skyline points are
easy to find by sampling: If we pick one input point uni-
formly at random and find a skyline point that dominates
this point, then we are likely to find a skyline point that
dominates more points than another. The main goal of our
sampling technique is to be able to sample skyline points.
However, there are two difficulties: it is not obvious how
to sample a skyline point from all skyline points (as these
are not known to the algorithm). Further, sampling skyline
points uniformly does not necessarily ensure dominating a
lot of points. We wish to sample skyline points in propor-
tion to the number of points they dominate. It turns out
that sampling roughly 24m points is sufficient to find skyline
points that dominate at least 3n

4
points, in expectation. We

now describe the algorithms and their analysis in details.

4.1 Key idea: Eliminating points in a few passes
We start with the following simple question: If m is known,

how many points can we dominate using a constant-pass
streaming algorithm with about m space? In this section we
answer this question. We present a simple three-pass, 24m-
space algorithm, Eliminate-Points (cf. Algorithm 4.1),
that guarantees to eliminate at least 3n

4
elements in expec-

tation. The tricky part here is analyzing its performance.
We later extend this algorithm to other cases.

Algorithm 1 eliminate-points (m)

Input: p1, p2, ..., pn′ (in order) where n′ is the number of
points in the stream.
Output: Skyline points S′

1: Let x = 24m.
2: Pass 1: For j = 1, 2, ..., x, let p′

j be a point picked
uniformly at random from the stream. Let S be the set
of such points.

3: Pass 2:
4: for i = 1..n′ do
5: For any p′

j , if pi dominates p′
j then p′

j := pi

6: end for
7: Let S′ = {p′

1, p
′
2, ...p

′
x}.

8: Pass 3: Delete from stream all points in S′ and all
points dominated by any point in S′.

9: return S′

The main idea of the Eliminate-Points algorithm is to
sample 24m points from the stream. (This sampling can
be done in one pass using reservoir sampling [29].) Next,
we spend one more pass to replace these sampled points by
points that dominate them. We note that it is important to

(3,3)

(2, 3) (3, 2)

(2, 2)

(1,4)

(1, 3)

Input order:(1,4), (2,3), (1,3), (3,2), (3,3), (2,2)

Figure 2: Example from the proof of Lemma 2.

do this in order as (it is crucial in the analysis of Lemma 2).
Points obtained at the end of this pass are skyline points (al-
though not necessarily distinct). In the last pass, we delete
points we obtain from the second pass and any points dom-
inated by them.

Now we analyze the algorithm. First, we analyze the per-
formance in expectation. To simplify the analysis, we as-
sume that the sampling is done with replacement ; that is
one point may be sampled more than once. The perfor-
mance of the algorithm will be better if we sample without
replacement.

Lemma 2. After Eliminate-Points algorithm with pa-
rameter m, the expected number of points left in the stream
is at most n′/4, where n′ is the number of points in the input
stream.

Proof. First, we construct the following directed graph,
denoted by G. The goal here is to allocate each point to a
unique skyline point that dominates it (note that there could
be multiple skyline points that dominate a given point).
This graph consists of n′ vertices corresponding to points
in the stream. We abuse notation and denote the vertices
by p1, p2, ..., pn′ . It will be clear from the context whether
we refer pi as a point in the stream or a vertex. For each
i, we draw an edge from pi to pj if and only if pj is the
first point (leftmost) in the stream that dominates pi. Fig-
ure 2 shows an example. (In the example, notice that (2, 2)
points to (2, 3) but not (3, 2) since (2, 3) is the first point
in the stream that dominates (2, 2). Also note that if (2, 2)
is sampled then it will be replaced by (2, 3) and (2, 3) will
be later replaced by (3, 3). Therefore, we get (3, 3) as a
product. )

Now, let q1, q2, ..., qm be the skyline points. For i =
1, 2, ..., m, define Si = {pj | There is a path from pj to qi}.
(These sets are disjoint and their union is the set of all points
in the stream.)

Claim 3. If a point p is sampled in Pass 1 then the sky-
line point qi is in S′ after the iteration ends where i is such
that p ∈ Si.

Proof of this claim is placed in appendix. The main obser-
vation to make is that the sampled point p is in fact replaced,
one by one as the stream progresses, by points on the path
from p to qi.

By Claim 3, a point will remain in the stream after the
algorithm finishes only if none of the points in the set Si

containing it are picked in Pass 1. In other words, the num-
ber of points left in the stream is at most

P

i: Si ∩ S = ∅ |Si|

(recall that S is the set of points sampled in Pass 1). We
now bound the expected value of this quantity.



Claim 4. E[
P

i: Si ∩ S = ∅ |Si|] ≤ (n′/4).

We mention the intuition behind the proof here and re-
serve the technical details for the appendix. First, notice
that the bigger Si is, the more likely a point in Si will be
sampled. Consequently, it is more likely that we end up
with a skyline point qi as compared to qj if |Si| > |Sj |. This
is the key insight in the algorithm, as the random sampling
biases the algorithm towards skyline points that are likely
to dominate a larger number of points.

However, can we argue that at most n′

4
are left? Consider

all Si such that |Si| ≥
n′

8m
, i.e., the large Si’s. For any of

these large sets, its size is 1/8m fraction of all the points.
Therefore, sampling at least 8m points will get us at least
one point in this set in expectation. However, we may not
find samples from all large sets. A clever analysis can be
used to show that we eliminate a large fraction of points in
these large sets. Finally, a counting argument shows that
the total number of points in these sets combined is a large

fraction of all the points (to be precise, it is at least 7n′

8
).

This completes the intuition of the proof. The lemma
follows immediately from Claim 4.

4.2 Streaming algorithm
Now we develop a time/space-efficient streaming algo-

rithm for finding all skyline points. We first give a high
level idea of the algorithm. Let us focus on the number of
passes for now. The basic idea is to apply the Eliminate-

Points algorithm repeatedly until no points are left in the
stream. If m (the number of skyline points) is known ahead
of time then this process is likely to finish in O(log n) steps,
where n is the number of input points. This is because we
are likely to delete half of the points in each application of
Eliminate-Points.

However, the difficulty is that m is not known. One way
to get over this is to use the standard doubling trick to find
m: Start with m′ = 1 (as the guess for the number of skyline
points), run Eliminate-Points for O(log n) steps assuming
that m = m′. If the problem is not solved, double the size of
m′ and repeat. Since we will be done (with high probability)
when m′ ≥ m we have to repeat only log m steps (with high
probability). Therefore, this algorithm is likely to stop in
O(log n log m).

To get the number of passes to O(log n+log m), we exploit
Lemma 5 further. By such Lemma, if m′ ≥ m then we are
likely to eliminate half of the points in every pass. There-
fore, if we find out that the algorithm eliminates less than
such expected fraction, we double m′ immediately instead
of waiting for another log n passes. The algorithm is stated
as the Streaming-RAND algorithm (cf. Algorithm 2).

We now give a formal analysis of this algorithm. The
efficiency of the algorithm relies on the fact that we are likely
to stop before m′ gets too big, as shown in the following two
lemmas.

Lemma 5. After Eliminate-Points algorithm with pa-
rameter m, at most n′/2 points are left in the stream with
probability at least 1/2, where n′ is the number of points in
the input stream.

Proof. Let X be the number of point left in the stream
after Eliminate-Points algorithm. Recall from Lemma 2

that E[X] ≤ n′

4
. By the Markov’s inequality, Pr[X ≥ n′

2
] ≥

Pr[X ≥ 2E[X]] ≤ 1/2.

Algorithm 2 Streaming-RAND

1: Let n be the number of points in the input stream. Let
m′ = 1.

2: while the input stream is not empty do
3: Let n′ be the current number of points in the stream
4: Call Eliminate-Points(m′ log(n log n))
5: If more than n′/2 points are left in the stream, m′ =

2m′.
6: end while

Remark: In case the stream cannot be changed, we do not
have to actually delete points from stream. We only keep the
skyline points found so far and consider only points in the
stream that is not dominated by any found skyline points.

Lemma 6. The probability that the algorithm repeats until
m′ ≥ 2m is at most 1/n.

Proof. Let τ be the first iteration that m′ is at least m;
that is, m ≤ m′ < 2m. Consider any iteration after τ . Re-
call that by Lemma 5, each run of Eliminate-Points(m),
which samples 24m points, halves the stream with proba-
bility at least 1/2. It follows that each run of Eliminate-

Points(m log(n log n)), which samples 24m log(n log n) points,
halves the stream with probability at least 1 − 1/(n log n).
By union bound, the probability that all log n iterations af-
ter τ delete at least half the points is at least 1− 1/n. This
implies that, with probability 1 − 1/n, the stream will be
empty before m′ is increased again.

Now we analyze the algorithm in all aspects.

Theorem 7. Streaming-RAND algorithm (cf. Algo-
rithm 2) uses with probability at least 1 − 1/n,

1. O(m log n) space

2. O(log n) random I/O’s (passes)

3. O(n log m) sequential I/O’s, and

4. O(dmn log n log m) comparisons.

Proof. By Lemma 6, m′ < 2m with probability at least
1−1/n. We show that the theorem holds when this happens.

For the first claim, when m′ < 2m the space becomes
O(m log(mn log n)) = O(m log n) as claimed.

For the second claim, observe that the algorithm in each
iteration either scales m′ up twice or scales n′ down by half.
It can scale down n′ for only dlog ne times and it scales m′

up for only dlog me times (before m′ ≥ 2m). We thus prove
the second claim.

For the third claim, first we count the number of sequen-
tial I/O’s made by iterations that increases m′. There are
dlog me such iterations (if m′ < 2m) and each iteration reads
through the stream three times. So, the total number of se-
quential I/O’s used by these iterations is O(n log m). For the
number of sequential I/O’s used by the remaining iterations,
observe that the size of the stream is at most n/2i−1 in the
i-th such iteration (because such iterations scale the size of
the stream down by half). Therefore, the number of sequen-
tial I/O’s for this m′ is O((1 + 1/2 + 1/22 + ...)n) = O(n).
We thus prove the third claim.

For the last claim, observe that when the algorithm reads
a new element from the stream, it compares this element
with all elements in the memory; i.e., it compares O(m log n)



pairs of points per sequential I/O. Further, comparison of
any pair of points requires comparing d different dimensions
in worst case. The claim thus follows from the third claim
that there are O(n log m) sequential I/O’s.

Notice that this is a near-optimal trade-off between space
and passes of any streaming algorithm, since our lower bound
shows that with one pass, any algorithm requires Ω(n) space.
We increases the passes by only a logarithmic factor and get
almost optimal space bounds.

4.3 Fixed-window algorithm
Many of the previous skyline algorithms are presented

with predetermined window size w. That is, the algorithm is
allowed to store only O(w) points in the stream; this might
be a constrained due to the memory specifications of the
machine. The goal is to analyze a variant of the algorithm
for the numbers of random I/O’s (passes), sequential I/O’s,
and comparisons under this setting. We show that the fol-
lowing very simple algorithm is efficient:

FixedWindow-RAND: While the stream is not empty, call
Eliminate-Points(bw/24c).

Now we analyze the algorithm. We first state the theo-
rem in terms of expectation, and then the high probability
bound.

Theorem 8. In expectation, FixedWindow-RAND al-
gorithm uses O(m

w
log n) random I/O’s, O( nm

w
) sequential

I/O’s, and O(dnm) comparisons.

Proof. Consider running Eliminate-Points(bw/24c) for
d24m/we times. We claim that this process is as efficient as
running Eliminate-Points(m). (In other words, the dis-
tribution of the running time of the former process stochas-
tically dominates that of the latter one.) Intuitively, this is
because both processes get the same number of samples but
the former process does not sample points that are domi-
nated by the previous samples. We now analyze the process
of running Eliminate-Points(m).

The key idea is to consider the runs of Eliminate-Points(m)
that reduces the stream by at least half. Let us call these
runs “success” runs and the rest runs “fail”. Recall from
Lemma 5 that each run succeeds with probability at least
1/2.

For the expected number of times we have to run Eliminate-

Points(m), observe that we have to run the algorithm until
we see log n success runs. Since each run succeeds with
probability 1/2, the expected number of times we have to
run Eliminate-Points(m) is at most 2 log n. Multiplying
this number by d24m/we gives the number of random I/O’s
claimed in the theorem statement.

For sequential I/O’s, we claim that the expected number
of fails between each pair of consecutive successes is 1. To
be precise, for i = 0, 1, ..., log n, let Xi be the number of
fail runs between the i-th and (i + 1)-th success runs. Since
each run succeeds with probability at least 1/2, E[Xi] ≤ 1
for all i, as claimed. Now, observe that the number of se-
quential I/O’s is at most 2n(X0 + X1/2 + X2/4 + ...) since
each success run halves the stream. Therefore, by the linear-
ity of expectation, the expected number of sequential I/O’s
is 2n(E[X0] + E[X1]/2 + E[X2]/4 + ...) ≤ 4n. The expected
number of sequential I/O’s claimed in the theorem state-
ment follows by multiplying the number by d24m/we.

Algorithm Random I/O’s Sequential I/O’s comparisons

BNL(w) Θ(min{m, n
w
}) Θ(min{mn, n2

w
}) Θ(d min(wmn, n2))

LESS(w) Θ(n logw
n
w

) Θ( mn
w

) Θ(dmn + n log n)

RAND(w) O( m log n

w
) O( mn

w
) O(dmn)

Table 1: Comparison of algorithms

For the number of comparisons, observe that we com-
pare each element read from the stream with w elements in
the window. Moreover, the number of elements read from
the stream is bounded by the number of sequential I/O’s
which is O(nm/w). Therefore, there are O(nm) compar-
isons. Each vector comparison needs d comparisons. The
theorem is thus completed.

Theorem 9. With high probability, FixedWindow-RAND

algorithm uses O( m log n
w

) random I/O’s, O( nm log n
w

) sequen-
tial I/O’s, and O(dnm log n) comparisons.

Proof. The random I/O’s can be proven by Chernoff
bounds (essentially arguing that in 2m log n/w executions
with w space with high probability, at least m log n/w exe-
cutions result in eliminating half the points). Observe that
in O((m ln(mn log n))/w) passes we get samples equal to
one round of eliminate-points. The lemma follows imme-
diately from the previous section. An important point to
note is that, in expectation, the number of sequential I/Os
(and consequently comparisons) save a log n factor as there
is no need to perform the doubling trick.

4.4 Algorithm Comparisons
We compare performance of the FixedWindow-RAND

algorithm (referred to as RAND from now on) in the worst
case against BNL and LESS, two previously proposed non-
preprocessing fixed-window algorithms. The asymptotic per-
formance bounds are summarized in Table 1. Recall that n
denotes the number of input points, m denotes the number
of points in the skyline, and d denotes the dimension.

We analyze three parameters that affect the algorithms’
performance: random I/O’s, sequential I/O’s, and the num-
ber of comparisons. Although, intuitively, random I/O’s are
those I/O’s that need seek operations, this definition could
be confusing sometimes as sequential I/O’s can be some-
times counted as random I/O’s. To avoid this confusion, we
define a random I/O to be I/O that reverses the hard disk
head: the previously read element appears after the newly
read element on the disk.

The expected bound of RAND is shown in Theorem 8.
For BNL and LESS, the upper bounds are already shown
many times in the literature and the the formal proof of the
lower bounds can be constructed by creating fairly simple
tight examples. We omit them here for brevity.

As can be seen from the comparisons table, in all the
algorithms, the number of sequential I/O’s is significantly
more than the number of random I/O’s. However, the cost of
a random I/O can be a lot more than the cost of a sequential
I/O. Therefore, it is important to analyze these separately.
In terms of random I/O’s, LESS scales linearly with n, so is
worse than BNL and RAND. Further, RAND is better than
BNL with a saving of almost a w factor (the random I/O’s
of RAND are actually the minimum of what is written in
the table for BNL and for RAND). In terms of sequential



I/O’s, LESS and RAND are asymptotically the same, and
better than BNL by a w-factor.

Apart from I/O’s, comparisons made by algorithms is a
key contributor to the overall performance. LESS has a sort-
ing phase because of which it incurs Θ(n log n) more compar-
isons than RAND. Further, BNL incurs roughly a w-factor
extra comparison cost as compared to RAND (which is why
BNL’s cost increases when the window size is increased be-
yond a point).

These interpretations are corroborated by the results in
our evaluations section.

5. EXTENSIONS
In this section, we discuss about extending our algorithms

to various settings. First, we show that it can be extended
to efficient distributed algorithms. Secondly, we show a
deterministic variant of the algorithms for the case of 2-
dimensions. Finally, we show that the algorithms can solve
a more general problem on posets.

5.1 Extending to Distributed Algorithm
We extend our algorithm to the distributed setting, where

the database is horizontally partitioned, i.e., the set of points
is partitioned across several machines. The model assumes
that there is a central machine (coordinator) that queries
the other machines and outputs the final answer. While ex-
ecuting the algorithm, there is point to point communication
between the coordinator and every other machine. In partic-
ular, the central machine may broadcast information to all
other machines. A key objective, however, is to minimize
such communication. See Zhu et al. [36] for an excellent
survey and description of a similar distributed model.

We start by making Eliminate-Points algorithm (cf.
4.1) suitable for the distributed setting. The main diffi-
culty is that Pass 2 relies on the input order. We mod-
ify Pass 2 slightly to make it order-independent, as follows.
(Note, however, that this version loses its generality. For
example, it cannot solve the problem on posets discussed in
Section 5.3.)

Pass 2: For each p′
j , pick pi in the stream that dominates

p′
j and is lexicographically maximum (break tie by picking

the first such points in the stream).

We call this algorithm Lex-Eliminate-Points. We claim
that this algorithm also has the same bound guarantee as
the Eliminate-Points algorithm (as in Lemma 5). Since
the proof is essentially the same (with the definitions of “big
sets” slightly modified), we omit the details.

Remark: The lexicographic order can be replaced by
any total ordering that preserves domination. For example,
if the input data is a set of vectors, we can pick pi that
dominates p′

j and has maximum summation of values over
all coordinates, or maximum entropy, instead.

Now, let us consider the following distributed version of
the Lex-Eliminate-Points algorithm.

To analyze the Distributed-Lex-Eliminate-Points al-
gorithm, consider a stream obtained by concatenating the
streams from all machines (order the streams by the cor-
responding machines’ IDs). It can be easily observed that
the Distributed-Lex-Eliminate-Points algorithm gives
the same result as the Lex-Eliminate-Points algorithm
on the stream defined above. We get the following theorem.

Algorithm 3 Distributed-Lex-Eliminate-Points(m)

1: Let k machines be denoted by M1,M2, ...,Mk. Let
n′

i be the current number of points in Mi, and de-
note points by pi

1, p
i
2, ..., p

i
n′

i
(in order). Let x =

dm ln(mn log n)e. Let C denote the central machine.
2: Pass 1: C finds x random numbers, in the range 1

to
Pk

i=1 n′
i, denoted by s1, s2, ..., sx. For each j =

1, 2, ..., x, let ij and s′j be such that s′j +
Pij−1

z=1 n′
z = sj .

For each j, C sends s′j to Mij
and Mij

responds with

p
ij

s′

j

. Let p1, p2, ..., px be the returned points.

3: Pass 2: C broadcasts p1, p2, ..., px to all machines. For
each j = 1, 2, ..., x, each machine returns the lexicograph-
ically maximum point in the stream that dominates pj .
For each j, C keeps the returned point that is lexico-
graphically maximum (breaking ties by prioritizing ma-
chines with smaller ID). Let the set S′ = {p′

1, p
′
2, ..., p

′
x}

denote points kept by C.
4: Pass 3: C broadcasts S′ . Each machine deletes from

its stream all points in or dominated by S′.
5: return S′

Lemma 10. The Distributed-Lex-Eliminate-Points al-
gorithm uses O(1) rounds of communication. In each round
of communication, the central machine broadcasts O(x) points
and each of other machines sends O(x) points to the central
machine, where x = dm ln(mn log n)e. Moreover, after the
algorithm finishes, at least half of the input data will be elim-
inated with probability at least 1 − 1/(n log n).

Using the above lemma, one can modify algorithms Streaming-

RAND and FixedWindow-RAND to get distributed algo-
rithms. The number of random I/O’s becomes the number
of rounds and the memory space becomes the communica-
tion per round. We get the following results from Theorem 7
and Theorem 9.

Theorem 11. There is a distributed streaming skyline al-
gorithm such that the central machine broadcasts and each of
other machines sends O(m log n) points per round and, with
high probability, finishes in O(log n) rounds with probability
at least 1 − 1/n.

Theorem 12. For any w, there is a distributed streaming
skyline algorithm such that the central machine broadcasts
and each of other machines sends O(w) points per round
and, with high probability, finishes in O( m

w
log n) rounds.

5.2 Deterministic 2D algorithm
Among deterministic and randomized algorithms with the

same performance, the former is preferable. We show that
when the points have only two dimensions, there is an ef-
ficient deterministic skyline streaming algorithm. We note
that previous algorithm [14] could not be adapted for se-
quential access since it requires sorting.

The main idea is to replace the Eliminate-Points by
the deterministic algorithm called 2D-Eliminate-Points

(cf. Algorithm 5.2).
The main component of the 2D-Eliminate-Points al-

gorithm is Greenwald-Khanna’s approximate quantile sum-
mary [11]: Suppose we read n numbers from stream a1, a2, ..., an.
Let π be a sorting permutation of data; i.e., aπ(1) ≤ aπ(2) ≤



Algorithm 4 2D-Eliminate-Points

1: Let n be the size of the stream
2: Pass 1: Compute ε-approximate quantile summary

of the first coordinate using Greenwald-Khanna’s algo-
rithm [11] where ε = 1/4m. From this summary, find
v0, v1, ..., vm, which are the 0-th, (1/m)-th, (2/m)-th, ...,
(m/m)-th approximate quantiles respectively.

3: Pass 2: For any 0 ≤ i ≤ m, let p′
i be a point such that

vi ≤ p′
i[1] < vi+1. Let S = {p′

0, p
′
1, ..., p

′
m}

4: Pass 3: For any pi: (1) If pi is dominates some points
in S then delete those dominated points from S. (2) If
(1) holds and pi is not dominated by any points in S
then add pi to S.

5: Pass 4: Delete all points in S and all points dominated
by any point in S from the stream.

6: return S

... ≤ aπ(n). For any 0 ≤ φ ≤ 1, the approximate φ-quantile is
a number t that is not too far from adφne; i.e., aπ(dφn−εne) ≤
t ≤ aπ(dφn+εne). In particular, the value of vi has rank be-
tween (ni)/m − εn = (ni)/m − n/(4m) and (ni)/m + εn =
(ni)/m + n/(4m). As a consequence, for any i the num-
ber of element of value (of the first coordinate) between vi

and vi+1 is between n/(2m) and 6n/(4m). (Note that v0 is
always the minimum value and vm is the maximum value.)

Lemma 13. After the 2D-Eliminate-Points algorithm
finishes, either |S| ≥ m/2 or the stream size is at most n/4.

Proof. Let S′ be the set returned by the algorithm. Sup-
pose that |S′| < m/2. We partition the points p′

0, p
′
1, ..., p

′
m

obtained from Pass 2 into three sets. Let S0 be the set of
p′

i’s that are in S after the algorithm ends. Let S1 be the
set of p′

i such that p′
i is dominated by a point in S0, or there

is a point p in S′ that dominates p′
i and p′

j for any j > i.
Let S2 be the rest of the points. Note that every point in S1

and S2 must be dominated by some point in S′. We present
two simple claims whose proofs are placed in the appendix.

Claim 14. |S1| > m/2.

Claim 15. For any i, if p′
i ∈ S1 then every point p in

the stream such that vi ≤ p[1] < vi+1 is dominated by some
point in S′.

It follows, as before, that for any i there are at least
n/(2m) points whose first coordinate lies between vi and
vi+1. Therefore, there are at least |S1| ·

n
2m

> n/4 points
deleted from the stream.

We obtain deterministic algorithms by using 2D-Eliminate-

Points as a subroutine of the Streaming-Skyline and
FixedWindow-Streaming-Skyline algorithms.

5.3 Posets
Although the algorithms we described so far are developed

primarily to compute skylines where the input is assumed
to be a set of vectors, they can in fact solve more general
problems on mathematical objects called posets.

We begin by defining posets formally. A partial order
is a binary relation � that is reflexive, antisymmetric and
transitive. (That is, for any element a, a � a. For any a
and b, if a � b and b � a then a = b. And, for any a, b and
c, if a � b and b � c then a � c.) A set with a partial order

Dataset n dimensions Skyline size
House 127931 6 5774
NBA 17264 5 495
Island 63383 9 467
Color 68040 9 1533

Figure 3: Comparison of Real Datasets

is called a partially ordered set (poset). It is easy to see that
the following forms a poset: a set of vectors where we say
that p � q if and only if p dominates q, for any vector p and
q.

The problem of finding minimal elements on posts is to
find all element p such that there is no element q � p. In
other words, we want to find all elements that are not “dom-
inated” by any other elements. It follows that skyline com-
putation is a special case of such problem when the elements
are vectors and “�” is equivalent to “dominate”.

One of the results in Daskalakis et al. is a randomized
algorithm that solves the problem using O(ωn + ω2 log n)
“queries” in expectation where ω is the “width” of the poset.
Since our algorithms presented in section 4 do not need any
structure of vectors, it can be used to find minimal elements
on posets as well. In particular, the Streaming-Skyline

is a streaming algorithm that uses O(mn) = O(ωn) queries
in expectation. Moreover, it uses only O(m log n) space,
O(log n) passes. Thus, it is asymptotically as good as the
previous algorithm in terms of the number of queries. More-
over, to the best of our knowledge, it is the first non-trivial
streaming algorithm.

This version of our algorithm on posets can be adapted to
compute skylines with partially-ordered domains (see, e.g.,
[6, 32, 33, 22] and references therein).

6. EXPERIMENTAL EVALUATION
In this section we present results from an experimental

study comparing our external randomized algorithm (FixedWindow-

RAND or RAND) with the best known non-indexing algo-
rithms. All our implementations were done in Java. To
remove the effects of caching on our I/O times, we padded
each record up to 104 bytes, similar to [4, 10]. Further-
more, we decreased the memory size of our machine to just
256MB so that very little memory would be available for
caching. All our experiments were performed on a dual-core
1.7GHz Intel Xeon running Linux 2.6.9. The machine had
two hard disks and we implemented all algorithms to use
both of them.

We performed experiments on both synthetically gener-
ated and real datasets. We generated independent, corre-
lated, and anti-correlated data using the dataset generator
that was provided by the authors of [4]. The real data sets
that we used are summarized in Table 3 2. For all these
datasets, we computed the skyline using min in all dimen-
sions.

We compared the performance of our algorithm against
the state of the art external non-indexed algorithms : BNL [4]
and LESS [10]. In particular, we did not compare against
indexed algorithms such as BBS [18] as they are not com-

2All these datasets are available for download from Dr. Yufei
Tao’s homepage: http://www.cse.cuhk.edu.hk/∼taoyf/.
We note that Island is in fact a synthetic data set [26].



parable in this setting. We also evaluated the performance
of some other algorithms, including SFS [8] and BEST [28],
but they were considerably slower (as noted earlier in [10])
and we do not show the results for them here.

In our experiments, we compare the wall-clock running
time, number of comparisons and I/O’s. Unless otherwise
stated, each experiment used as default a window size equal
to 1% of the number of points (as in [4, 10]). Therefore,
in our implementation, for any comparison, all three algo-
rithms use same amount of memory. The synthetic data sets
each had one million data points and five dimensional data.

Since our algorithm is randomized we measured the vari-
ance in its performance for a single data set. We repeatedly
ran RAND on the House data 500 times and measured the
standard deviation of the running time to be less than 1%
of the mean. Furthermore, in 95% of the runs the running
time of RAND exceeded the mean running time by at most
2%, and in all the runs it never exceeded the mean by more
than 4%. Hence, the performance of RAND does not vary
much due to randomization.

6.1 Baseline Comparisons
We compared our algorithm with BNL and LESS for all

the datasets described above. For brevity, though, we only
show the results for the House and anti-correlated datasets,
and comment on how the results were different in other
cases.

We do not wish to assert any quantitative comparisons be-
tween these algorithms since we believe that the time taken
by each algorithm is dependent on several variables such
as the machine specifications, implementation details, and
data type. Instead, we present these results as a qualitative
analysis to show the relative performance of each algorithm
as some parameter is varied.

In Figures 4 and 5, we show the performance of the differ-
ent algorithms when the window size w (i.e., the number of
points that can fit in main memory) is varied between 0.1%
and 10% of the number of points n in the datasets. We
show the graphs of I/O’s and comparisons only for the anti-
correlated case. The trends are similar for the house data.
Since the number of I/O’s (Figure 5(b)) decreases rapidly
and the number of comparisons (Figure 5(c)) increases very
slowly, RAND and LESS benefit from the larger window
size. However, beyond some point, there is only marginal
benefit. The running time of BNL increases as the window
is made larger beyond some point. This is because, as the
window size increases, the number of comparisons increases
and BNL has book-keeping costs associated with each com-
parisons.

In Figure 6, we varied the number of data points when the
window size is fixed to 1%. We observe that the performance
in all three metrics of all three algorithms is roughly linear
in the number of points. We only show the plots for time for
brevity. Whereas BNL is the best in the House dataset and
LESS does well for the anti-correlated data, our algorithm
performs comparably with both of them as n is increased.

In Figure 7, we studied the variation of the performance
in terms of dimensions. For House dataset, we pruned it
down to the first two, three, four, five, and finally all six di-
mensions and compared the performance of the algorithms.
All algorithms’ performance in all metrics sharply increases,
with different rates for each algorithm, when the number
of dimensions goes beyond 5. This is because the number
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Figure 6: Varying the number of points n

of skyline points increases rapidly as the number of dimen-
sions increases. This is similar to results observed in [10] for
the independent dataset. The fact that LESS becomes bet-
ter than BNL and RAND as the dimensions are increased
(equivalently the number of skyline points increased), but
BNL and RAND beat LESS when the number of points are
scaled can also be predicted from the comparisons table in
Section 4.4.

From these results it is apparent that the performance
of RAND is comparable to BNL and LESS. We observed
similar performance on the other real and synthetic data
sets.

The running time of all algorithms in all datasets is sum-
marized in Figure 8. Roughly speaking, LESS performs very
well in the synthetic datasets (Figure 8 (a)) while BNL’s
performance can be sometimes very poor. However, BNL
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performs very well in all real datasets (Figure 8 (b)) while
LESS’ performance is always the worst and sometimes very
poor. It could be concluded from these results that the per-
formance of BNL and LESS relies heavily on the structure
of input data. However, RAND is always close to the best
algorithm. This could be partly because it has a good worst
case guarantee.

6.2 Order Dependence
Next, we show how the performance of the other algo-

rithms degrade considerably with a simple re-ordering of
the data, whereas our algorithm’s performance remains ro-
bust against these changes. We perform the following simple
modifications of the data sets described above: in each case,
we sort the data in decreasing order of entropy. Defined
in [8], entropy is a scoring function that determines the like-
lihood with which a point is in the skyline. Additionally, we
plot graphs where we sort the data in decreasing order of
the entry in the first dimension.

Figure 10 shows the comparative times for all three algo-
rithms when the data is unsorted and sorted in decreasing
entropy order. In almost all the cases, our algorithm shows
little to no variance in performance. On the other hand,
BNL and LESS both degrade in performance upto a factor
of 2 or 3 times of their original running times for the real
datasets and almost an order of magnitude difference for the
larger synthetic datasets! This behavior can be explained
as follows. By sorting in decreasing entropy order, we in-

validate the effect of the entropy-based elimination filter of
LESS. This makes LESS equivalent to SFS whose sorting
phase incurs a lot of random I/O’s and makes the algorithm
much slower. In the case of BNL, the points which dominate
fewer points are more likely to be found first in the stream
and hence make their way in to the window. As a result,
not many points are deleted from the stream in each pass.
RAND, on the other hand, is still able to eliminate many
points quickly as the skyline points in each phase are found
starting from randomly sampled points.

In Figure 9, we vary w as a fraction of n, and vary d and
n on the House data and test the performance of all three
algorithms when sorted in decreasing entropy. The point
of this experiment is to see whether the trends reflected in
Figure 10 are an exception or whether this trend is expected
for various settings (in terms of sizes and choice of parame-
ters). As can be seen, in Figure 9 (b) and (c), as n or d is
increased, the performance of BNL and LESS remain poor
while RAND continues to perform a few times better. Fig-
ure 9 (a) also shows the same trend but is a little confusing
to interpret. The reason BNL climbs up rapidly after a point
is because of what we had seen in Figure 4 due to the book-
keeping cost increasing. However, the message here is that
even if this factor is ignored, RAND is consistently better
than both BNL and LESS, and therefore more resistant to
perturbations in the input.

A similar variation is seen in the case of sorting in de-
creasing order by first dimension, see Figure 10 (c) and (d).
While in the real data the variation of all three algorithms
is similar to the entropy sorted case, for synthetic data, the
variation is slightly less. Regardless, RAND remains the
most robust to such minor alteration while the performance
of both BNL and LESS degrade by a factor between about
2 and 10, depending on the case. We therefore believe that
RAND is a good choice when real time performance require-
ments are stringent. It is hard to imagine a situation where
a database sorts all records based on their entropy, however,
many databases indeed store the records sorted by an at-
tribute value. While these experiments only show trends on
sorting by simple rules, it is conceivable that by changing
the data, the performance fluctuates even more.

7. CONCLUSIONS
We present the first randomized streaming algorithm, RAND,

for skyline computation. RAND has provable worst case
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Figure 9: House, sorted by decreasing entropy. Varying w as a fraction of n, and varying d, n.

guarantees on the number of sequential and randomized
I/O’s and number of pairwise comparisons. We show that
it is optimal to within a logarithmic factor in terms of the
space and passes used. We present a distributed version
of RAND and a deterministic version for the 2-dimensional
case. Finally, we experimentally evaluate the performance
of RAND to LESS and BNL and show that it is compara-
ble in the average case. Further, RAND is robust to minor
variations in the input while the performance of LESS and
BNL deteriorate significantly. We believe that for applica-
tions where running time guarantees are desirable on skyline
queries, RAND is the best choice.

We present the most simple version of RAND, however,
variations of the algorithm may be more suitable for specific
scenarios such as low-cardinality domains or specific input
distributions etc. Further, a good question is whether a
modification of RAND can be made to handle real-time user
preferences. Finally, handling dynamic streams (additions
and deletions of points) is an interesting setting that RAND
does not yet adapt to.
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APPENDIX
A. PROOF OF CLAIMS IN SECTION WITH

ELIMINATE-POINTS
Proof of Claim 3. Let p = x0, x1, x2, ..., xt = qi be the

path from p to qi. By definition, p is replaced by x1. Ob-
serve that x2 appears after x1 in the stream (since x2 also
dominates p). Therefore, x1 is replaced by x2. For the
same reason, we conclude that xj is replaced by xj+1 for all
j = 0, 1, ..., t. In the end, qi is in S as claimed.

Proof of Claim 4. Without loss of generality, assume
that |S1| ≥ |S2| ≥ ... ≥ |Sm| (by permuting). For any set
Si, the probability that no elements in the set Si are picked

is (1 − |Si|/n′)−24m ≤ e−24m|Si|/n′

. Therefore,

E[
X

i: Si ∩ S = ∅

|Si|] =

m
X

i=1

|Si|e
−24m|Si|/n′

.

by union bound.
Now we break the quantity above into two terms with

the sets of size at least and at most n/(8m), respectively.
That is, consider Sk+1, Sk+2, ..., Sm where k is such that
|Sk| ≥ n′/(8m) and either k = m or |Sk+1| < n′/(8m). We



rewrite the previous quantity as

k
X

i=1

|Si|e
−24m|Si|/n′

+
m

X

i=k+1

|Si|e
−24m|Si|/n′

.

We now bound the first term. When |Si| ≥ n′/(8m),

e−24m|Si|/n′

≤ e−3 ≤ 1/(8).

Therefore, the first term becomes

k
X

i=1

|Si|e
−24m|Si|/n′

≤
1

8

k
X

i=1

|Si| ≤
n′

8
.

For the second term, note that |Si|e
−24m|Si|/n′

≤ |Si| ≤
n′/(8m). Therefore, the second term becomes

m
X

i=k+1

|Si|e
−24m|Si|/n′

≤

m
X

i=k+1

|Si| ≤ m
n′

8m
≤

n′

8
.

Summing the two terms together, give the claimed bound
E[

P

i: Si ∩ S = ∅ |Si|] ≤ n′/4.

B. PROOF OF CLAIMS IN DETERMINISTC
2D ALGORITHM

Proof of Claim 14. Draw a line from every point in S0

to itself in S′ and from every point in S1 and S2 to any point
in S′ that dominates them. Since those points in S0 and S2

share no points in S′ with other points and |S′| < m/2,
|S0| + |S2| < m/2. The claim thus follows.

Proof of Claim 15. Observe that in both cases that
makes p′

i in S1, there is a point q and an integer j > i such
that q[1] ≥ vj . Moreover, since q dominates p′

i, q[2] > p′
i[2].

However, p′
i[2] ≥ p[2] for any point p such that vi ≤ p[1] <

vi+1 (by Pass 2). The claim follows.


