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ABSTRACT
Viral marketing is a powerful tool for online advertising and
sales because it exploits the influence people have on one
another. While this marketing technique has been benefi-
cial for advertisers, it has not been shown how the social
network providers such as Facebook and Twitter can bene-
fit from it. In this paper, we initiate the study of sponsored
viral marketing where a social network provider that has
complete knowledge of its network is hired by several ad-
vertisers to provide viral marketing. Each advertiser has its
own advertising budget and a fixed amount they are willing
to pay for each user that adopts their product or shares their
ads. The goal of the social network provider is to gain the
most revenue from the advertisers. Since the products or
ads from different advertisers may compete with each other
in getting users’ attention, and advertisers pay differently
per share and have different budgets, it is very important
that the social network providers start the “seeds” of the vi-
ral marketing of each product at the right places in order to
gain the most benefit.

We study both when advertisers have limited and unlim-
ited budgets. In the unlimited budget setting, we give a tight
approximation algorithm for the above task: we present a
polynomial-time O(logn)-approximation algorithm for max-
imizing the expected revenue, where n is the number of
nodes (i.e., users) in the social network, and show that no
polynomial-time O(log1−ε n)-approximation algorithm ex-
ists, unless NP ⊆ DTIME(npoly logn). In the limited bud-
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get setting, we show that it is hopeless to solve the problem
(even approximately): unless P = NP, there is no polynomial-
time O(n1−ε)-approximation algorithm. We perform exper-
iments on several data sets to compare our provable algo-
rithms to several heuristic baselines.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms

General Terms
Algorithms, Theory

Keywords
social networks, approximation algorithms

1. INTRODUCTION
Online advertising has become the main source of revenue

for many companies which provide free services over the
Internet, such as Google Search, Facebook, YouTube and
Flickr. Since HotWire sold the first banner ads in 1994, on-
line advertising has evolved into many forms and techniques.
Some of these techniques, such as Google’s sponsored search,
have benefited their developers tremendously. In this paper,
we propose and study a new form of adversing, which could
potentially benefit social network providers such as Face-
book and Twitter. We call it sponsored viral marketing.

We are motivated by the current situation where big so-
cial network providers such as Facebook continue to explore
various different approaches for monetization. According to
the research company eMarketer1, the current main source
of revenue for Facebook is from the display ads market where
Facebook can use the demographic information from the
profiles of hundreds of millions of its users to target the ads
directly to them. However, many recent data and reports
(e.g. [17, 18, 33]) suggest that it is not clear how much ad-
vantage Facebook has over other internet companies which

1http://www.emarketer.com/newsroom/index.php/
google-display-ad-leader/
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can also collect user information in many other ways, like
Google, in this market. For a definitive competitive ad-
vantage that goes beyond exploiting just user information,
one needs to explore new monetization schemes that bet-
ter exploit the strength and distinguishing features of social
networks.

In this paper, rather than leveraging users’ demographic
information, we aim at exploiting the word-of-mouth effects
uniquely provided by social networks: people tend to trust
their friends’ recommendations more than other advertis-
ing channels. Even with all the data that social network
providers have about each of their users, social influence can
be even more reliable in influencing a person’s online pur-
chasing behavior. Much research work has been undertaken
recently in finding ways to capitalize on this observation
(e.g. [3,5,15,28,29,31,36]). There has also been much effort
in exploiting this feature by both social network providers
and marketers. For example, Facebook used to have Beacon
as part of its advertisement system to send data from exter-
nal websites to its website; e.g., if a user buys a movie ticket
on Fandango, Facebook would publish the purchase to her
friends, presumably increasing their likelihood of watching
the movie as well. More recently, Facebook has introduced
Sponsored Stories Ads: if a user engages with a business’s
page, app, or event, the business can pay Facebook to high-
light this activity to her friends. While there is some ev-
idence that this type of advertising is more effective than
display ads (e.g. [16]), it tends to degrade users’ comfort
with the social network and has led to several lawsuits as
the information is usually published without users’ consent.

Another way to exploit the word-of-mouth effect is viral
marketing. This strategy is used by many advertising com-
panies to exploit existing social networks by encouraging
users to share product information with their friends, e.g.
by offering a discount for each friend adopting the product.
The fact that this strategy lets users share their information
at will helps avoid degrading users’ experiences. It, how-
ever, makes this strategy trickier to use: Since information
is not forced to spread, there is a chance that, if the strat-
egy is not implemented well, the product information might
not spread as widely as it might have otherwise. This diffi-
culty, which exists even when there is one product, has led
to an active area of research namely influence propagation
(e.g. [3, 5, 15, 28, 29, 31, 36]). The situation becomes much
more difficult when there are many independent advertising
companies competing for users’ attention.

In this paper, we study the opportunity of social network
providers to generate revenue from advertising companies
who want to employ viral marketing in the presence of com-
petition. The viral marketing services provided by the so-
cial network providers give many advantages to advertising
companies. For example, the social network providers have
much more information about their social networks and thus
they can employ viral marketing campaigns more efficiently
than the independent companies might. More importantly,
social network providers can avoid unnecessary competition
since they know information being shared in their networks
and can organize several viral marketing campaigns from
different advertising companies in a centralized manner.

Consider, for example, a situation where a phone com-
pany wants to advertise its cell phone on a social network.
It is willing to give away some free phones (called seeds)
to some users who express their interest. The hope is that

these users will recommend the phone to their friends who,
in turn, might buy the phone and recommend it further.
There are many existing algorithms that the company can
employ (e.g. [28]). However, the company might not be able
to do this efficiently by itself. One reason is that it might not
have so much information about the social network. More-
over, the company might not be able to measure the effec-
tiveness of its campaign since it cannot track users’ behavior
in the social network. Further, there might be many other
phone companies who want to do the same task. Since the
phone companies know nothing about other companies or
their approaches, they might end up giving free phones to
the same group of people, leading to unnecessarily fierce
competition (since most users will buy at most one phone)
and sub-optimal revenue for everyone.

Instead, the phone companies might delegate the task of
running their campaigns to the social network itself. For
each phone sold in the social network, the company pays
the social network provider a commission (perhaps based
on the profit margin of the company). One clear advantage
of this approach is that the provider has a better knowledge
of the social network structure; so, it might be able to run
the viral marketing campaigns more efficiently. Moreover,
the social network provider might encourage users to buy
phones through its website (e.g. by giving discounts) so that
the effectiveness of the campaigns can be measured. More
importantly, the social network provider might be able to
help companies avoid unnecessary competition; e.g., it might
give phones from different companies to users in different
locations or social groups. Similarly, this model can be used
for many other commodities, from movie tickets to laptops.

In some situations, the spread of the products or ads might
not correspond directly to income of the advertising compa-
nies. For example, companies might want to promote their
new fan page or spread movie trailers. In these situations,
companies may impose budgets on their campaigns as the
maximum amount of money they will pay the social network
provider. Since the social network provider has no way to
restrict the spread of the product across the network, the
advertising company only agrees to pay per user until its
advertising budget has been exhausted. This has the effect
of making the problem more interesting because otherwise
the advertising company which is willing to pay the most
per user may dominate over the other advertising compa-
nies. We consider both the cases of limited and unlimited
budgets.

In this paper, we initiate the study of how a social network
provider can maximize its expected revenue in the above situ-
ation. To model the spread of the products based on friend
recommendations, we use a generalization of the indepen-
dent cascade model that was proposed in [22] and popular-
ized in [28]. Unlike most models in the past that consider
only a single advertising company, we assume that there are
a number of competing advertising companies. Having mul-
tiple advertising companies makes the problem considerably
more interesting.

The challenge of this problem is to choose the seeds (e.g.,
free phones) of different campaigns to the right group of
users to ensure that many users will adopt these campaigns
while campaigns do not interfere with each others’ spread
too much. Moreover, since different companies might offer
different commissions and impose different budgets, it is im-
portant to make sure that campaigns from companies that



pay more are spread more. This precludes the possibility of
optimizing total revenue by simply maximizing the revenue
of each advertising company independently.

Our problem is a generalization of the classic problem con-
sidered by Kempe et. al. [28] in that ours reduces to it in
the case of a single advertising company. As a result, it is
straightforward to see that their NP-hardness proof applies
to our problem, and their algorithm applies to our problem
for the case of a single advertising company. The most sig-
nificant generalization in our paper is that our goal is to
maximize the social network provider’s revenue from multi-
ple competing advertising companies.

The main contributions of this paper are as follows:
• We formulate the expected revenue maximization prob-

lem via influence propagation in online social networks
from the perspective of the social network provider in
the presence of multiple competing advertising entities
with varying constraints.
• We show a simple polynomial-timeO(logn)-approximation

algorithm for this problem in the unlimited budget
case, where n is the size of the social network.
• We show that the above algorithm is almost tight in the

sense that, for any ε > 0, there is no polynomial-time
algorithm that has an approximation ratio ofO(log1−ε n)
unless NP ⊆ DTIME(npoly logn). Since the latter is
highly improbable, our abovementioned algorithm is
likely the optimal solution for this problem.
• In the limited budget setting, the problem turns out

to be very hard to approximate in the sense that there
is no O(n1−ε) approximation algorithm for any ε >
0, unless P = NP. Hence, it is very unlikely that a
reasonable algorithm exists for this problem.
• We perform extensive experiment evaluation on sev-

eral data sets. We test our algorithms and heuristics
along various dimensions and show detailed compara-
tive benefits of our techniques.

Organization. The rest of this paper is laid out as follows.
Section 2 defines the terms and notation used in this paper
and formalizes the problem. Our proposed approximation
algorithms and their guarantees are presented in Section 3,
and the corresponding hardness lower bound results are pre-
sented in Section 4. Section 5 shows the efficacy of our al-
gorithms using real social network data. In Section 6 we
discuss the related work most relevant to us. Finally, we
state our conclusions and discuss future work in Section 7.

2. DEFINITIONS
We model the social network by a weighted directed graph

G = (V,E,w) with n nodes. Each node corresponds to
a user in the social network, and each directed edge (u, v)
with weight w(u, v) ∈ [0, 1] represents the fact that user u
can influence user v with probability w(u, v). The spread of
product adoption across the social network follows the inde-
pendent cascade model [22]. That is, the spreading process
works in rounds as follows. If node u adopts product i at
time t, then each neighbor v of u that has not adopted any
product in a previous round puts product i into her con-
sideration set at time t + 1 with probability w(u, v). Note
that there might be multiple copies of i in the consideration
set; this could happen when more than one neighbor of v
adopts product i in the previous round. User v will pick a
product from her consideration set to adopt based on her

preference ordering �v over the products, breaking ties ran-
domly. Since the social network provider does not know �v,
our algorithm will not assume this knowledge as well—its
existence is assumed to make the model well-defined.

We consider the problem of advertising products from m
advertisers on the network. Each advertiser i is defined by a
quadruple (ki, pi, Bi, Si) where ki is the number of products
the advertiser is willing to give away for free to “seed” the
network, pi is the commission the advertiser pays for each
product adoption, Bi is the total budget for the advertiser,
and Si ⊆ V (G) is the set of nodes that we can seed with
the advertiser’s product (i.e., the set of users willing to use
advertiser i’s product for free). Our goal is to place seeds for
each advertiser i on ki nodes so as to maximize the expected
revenue of the social network owner, as explained below. We
note that many seeds could be put on a single node; however,
only one seed (i.e. the one that the node prefers the most)
will be adopted by such a node. (For example, if we give two
phones to a user, she will likely to use only one of them.)

Suppose T = {Ti ⊆ Si | |Ti| ≤ ki}mi=1 is a valid solution to
the problem (G, C) where C = {Ci}mi=1 = {(ki, pi, Bi, Si)}mi=1.
The expected revenue associated with this solution is com-
puted as follows. For each product i, let ni be a random
variable denoting the number of nodes that adopts i after
the spreading process is complete. Then, the expected rev-
enue of the social network is

rev(G, C, T ) = E[

m∑
i=1

min(pini, Bi)] =

m∑
i=1

E[min(pini, Bi)].

Our objective, given the problem input (G, C), is to iden-
tify seeds of nodes in such a way that this expected revenue
is maximized. More precisely, we want to compute a set
of seeds whose expected revenue is as close as possible to
OPT(G, C), the maximum value of rev(G, C, T ′) among all
possible T ′ = {T ′i ⊆ Si | |T ′i | ≤ ki}mi=1.

3. APPROXIMATION ALGORITHM FOR UN-
LIMITED BUDGET SETTING

In this section we present an O(logn)-approximation algo-
rithm for the sponsored viral marketing problem when each
company Ci has unlimited budget Bi = ∞. Notice that
this is still an interesting problem since only the budget is
removed and the objective is still to maximize the expected
revenue which operates on the commission values of pi. Our
algorithm crucially relies on the fact that the uniform com-
mission case of the problem, i.e. when all companies offer
the same commission per user (pi), can be approximated
within a constant factor. This is done by adapting an al-
gorithm for the submodular function maximization problem
with a matroid constraint [9, 19] to this setting. We will ex-
plain this in Section 3.1. Then, in Section 3.2, we will show
how to transform the general case (i.e., non-uniform com-
mission) to the uniform commission case, paying an extra
cost of O(logn) in the approximation factor.

3.1 Uniform Commission Case
First, let us formally define the instances of the uniform

commission case of the problem. We say that an instance
(G, C) is uniform if there is a number p′ such that for all
company Ci ∈ C, we have pi = p′. We show later that in
this case, the revenue function rev(G, C, ·) turns out to be a
submodular function with respect to the solution set T , thus



allowing us to use the theory of submodular optimization to
solve the problem.

Maximizing a Monotone Submodular Function sub-
ject to a Partition Matroid Constraint. Consider the
following problem. We are given a ground set X of n ele-
ments and a function f : 2X → R+ that is monotone non-
decreasing submodular where we say that f is submodular
if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for all A,B ⊆ X
and monotone non-decreasing if f(A) ≤ f(B) for all A ⊆ B.
Since describing f explicitly (i.e. values of f(S) for all pos-
sible sets S ⊆ X) can be computationally expensive, we are
interested in the approximate value oracle model; i.e., there
is a polynomial-time algorithm (called an oracle) with pa-
rameter γ ≥ 1 that takes a set S ⊆ X as an input and com-
putes the function f̃(S) such that f(S)/γ ≤ f̃(S) ≤ γf(S).
In the monotone submodular function maximization prob-
lem, we are given an integer c and want to find a set S ⊆ X
such that |S| ≤ c and f(S) is maximized.

In this paper, we use the generalization of the above prob-
lem where we have an additional restriction on the set S we
want to find. This restriction is called the partition ma-
troid constraint. In this case, X is partitioned into ` dis-
joint sets X1, X2, . . . , X` where each Xi has associated inte-
ger ci, so the problem instance can be specified by a triple
(X =

⋃m
i=1Xi, {ci}

m
i=1, f). Our goal is to find a set S ⊆ X

such that |S ∩ Xi| ≤ ci, for all i, and f(S) is maximized.
Observe that this problem generalizes the previous problem
since the previous problem corresponds to the setting where
` = 1, X1 = X and c1 = c.

The problem of maximizing a monotone submodular func-
tion subject to a partition matroid constraint is a special
case of the problem of maximizing a monotone submod-
ular function subject to an arbitrary matroid constraint2.
The latter problem has been extensively studied, and many
constant-approximation algorithms have been previously dis-
covered (e.g. [9,19]). In particular, the tight 1

1−1/e
-approximation

algorithm based on pipage rounding and continuous greedy
process techniques was presented by Calinescu et al. [10].
Another algorithm which is simpler and computationally
more efficient is the greedy 2-approximation algorithm by
Fisher, Nemhauser, and Wolsey [19]. We will use the latter
algorithm in this paper due to its simplicity and efficiency.
This algorithm simply starts with the empty set, and repeat-
edly adds an element that maximizes marginal gain, while
maintaining the partition matroid constraint as an invariant.
See Algorithm 1 for details.

Fisher et al. [19] analyzed the greedy algorithm when

f̃(S) = f(S) and showed that this algorithm is a 2-approximation
algorithm. Calinescu et al. [9] analyzed the algorithm when

f̃ is an approximate oracle (more importantly, they general-
ized the result of [19] to p-systems). We need an approximate-
value-oracle version of this result which follows from [9], as
stated below.

Lemma 1. ( [9, 19]) For a non-negative, monotone sub-
modular function f , let S be a set obtained from Algorithm 1.
Let f̃ and γ ≥ 1 be such that f(S)/γ ≤ f̃(S) ≤ γf(S) for
all S ⊆ X. Let S∗ be a set that maximizes the value of
f over all sets satisfying the partition matroid constraint.
Then, f(S) ≥ f(S∗)/2γ; in other words, set S gives a 2γ-
approximation.
2We do not define the general matroid constraint here, since
it is more complicated and not needed in this paper.

Algorithm 1 Greedy 2γ-approximation algorithm for sub-
modular maximization subject to a partition matroid con-
straint
Input: Ground set X =

⋃
iXi, constraints {ci} and an

oracle computing function f̃ where f̃(S) ∈ ( 1
γ
f(S), γf(S))

for all S ⊆ X
Output: Set S ⊆ X such that f(S) ≥ (maxS′ f(S′))/(2γ).

1: S = ∅, A = ∅.
2: repeat
3: A = {e | ∀i : |(S ∪ {e}) ∩Xi| ≤ ci}
4: if A 6= ∅ then
5: e = arg maxe′∈A f̃(S ∪ {e′})
6: S = S ∪ {e}
7: end if
8: until A = ∅
9: return S

Algorithm for Uniform Commission Case. We convert
an instance (G, C) of our sponsored viral marketing problem
into instance (X, {ci}mi=1, f) of the function maximization
problem as follows. For each company Ci ∈ C, we create
Xi = {(i, u) | u ∈ Si} and let ci = ki. We then let the
ground set be X =

⋃
iXi. Consider a function f : 2X → R+

where f(S) = rev(G, C, T ) where T = {Ti}mi=1 is defined
by Ti = {u : (i, u) ∈ S}. In other words, f(S) captures the
expected revenue we get when we place seeds of company Ci
on all nodes u such that (i, u) ∈ S. Also note that a set S
satisfies the partition matroid constraint (i.e., |S ∩Xi| ≤ ci
for all i) if and only if the corresponding set T satisfies the
constraint of the sponsored viral marketing problem (i.e.,
we put at most ki seeds of company i on nodes in Si). This
leads us to the following simple observation.

Observation 2. OPT(G, C) = maxS:(∀i)|S∩Xi|≤ci f(S).
Moreover, any set S ⊆ X that satisfies the partition ma-
troid constraint can be transformed into a solution T of
the sponsored viral marketing problem such that f(X) =
rev(G, C, T ).

Thus, if we can compute an α-approximate solution to the
problem of maximizing f(S) with the partition matroid con-
straint above, we will immediately get an α-approximate so-
lution for the sponsored viral marketing problem as well.
The key in solving this function maximization problem is
the fact that our function f is monotone non-decreasing sub-
modular.

To show this, observe that since every company has the
same commission, say p, and an unlimited budget, the rev-
enue we get depends solely on the number of nodes that
adopt any product; it does not matter so much (in terms
of the revenue we get) which product each node adopts in
the end. To be precise, let σ(S) be the expected number of
nodes adopting any product when we put the seeds on nodes
in
⋃
Ti∈T Ti where T is as defined above. Then, the expected

revenue that we will get is f(S) = pσ(S). Thus, in order to
show that function f is monotone non-decreasing submod-
ular, it is enough to show that the function σ is monotone
non-decreasing submodular. Note that function σ is nothing
but the expected number of nodes that adopt some product
when we place seeds on nodes in

⋃
Ti∈T Ti (it does not mat-

ter which companies these seeds belong to). This is the
quantity we want to maximize in the problem of maximiz-
ing the spread of influence through a social network, which



is already shown to be monotone non-decreasing submodu-
lar [28]! This allows us to conclude that f is submodular as
well.

The above observation also allows us to construct an or-
acle for computing f : As done in [28], we put seeds of a
single product on nodes in

⋃
Ti∈T Ti and simulate the dif-

fusion process to count the number of nodes that adopt the
product. By repeating this polynomial number of times, we
are able to obtain σ̃(S) that is an arbitrarily close approxi-

mation to σ(S), with high probability. Using f̃(S) = pσ̃(S),

we get f̃(S) that is an arbitrarily close approximation to
f(S) as well. Then, we can use Algorithm 1 to obtain a
2γ-approximation of the optimal solution of the sponsored
viral marketing problem in the case of uniform commission.

3.2 General Case

Algorithm 2 O(logn)-Approximation Algorithm

Input: Social network G with unknown user preferences
(over products) and set C = {Ci}mi=1 of m companies where
each company Ci is a quadruple (ki, pi, Bi, Si).
Output: Set of seeds T = {Ti ⊂ Si | |Ti| ≤ ki} such that
rev(G, C, T ) = Ω(OPT(G, C)/ logn).

1: For any i, define p′i = 2j where j is such that 2j ≤ pi <
2j+1. Let C′i = (ki, p

′
i, Bi, Si) and C′ = {C′i}mi=1.

2: For all j, let C′j = {C′i | p′i = 2j}.
3: For all j, compute the solution T ′j of the instance

(G, C′j) (using an arbitrary user preference) such that
rev(G, C′j , T ′j ) = Ω(OPT(G, C′j)) using the algorithm for
the uniform commission case presented in Section 3.1.

4: return T ′j with maximum value of rev(G, C′j , T ′j ) among
all possible j.

Our simple O(logn) approximation algorithm is outlined
in Algorithm 2. The algorithm first rounds each company’s
commission down to the nearest power of two and partitions
them into groups based on their approximate commissions:
For each company Ci ∈ C with commission pi, the algorithm
rounds pi down to p′i as shown in Line 1. We use C′i to de-
note the same company Ci with the rounded commission
p′i. Then, the algorithm partitions C′ into C′j as in Line 2.
Observe that all companies in C′j , for all j, have the same
commission. This allows us to compute rev(G, C′j , T ′j ) for all
j using the algorithm for the uniform commission case, as
shown in Line 3. We then simply return the solution that
gives us the most revenue. Note that our algorithm can be
made slightly more efficient by considering only j between
j∗ − 2 logn and j∗ where j∗ = blog2(maxi p

′
i)c. This fact

will be clear in the analysis. It might seem counterintuitive
that our algorithm only focuses on collecting the revenue
from one commission group, but we show in the next sec-
tion that this algorithm gives essentially the best possible
approximation guarantee (so trying to collect revenues from
different commission groups will not help.) We now analyze
the algorithm.

Theorem 3. Algorithm 2 is returns a solution T ′j such
that rev(G, C′, T ′j ) = Ω(OPT(G, C)/ logn). In other words,
it is O(logn)-approximation.

The theorem states that the seeds assigned by the algorithm
result in an expected revenue that is at least a Ω( 1

logn
) frac-

tion of the expected revenue of an optimal placement of seeds

for all advertisers. This essentially suggests that the pre-
sented algorithm, while very simple, efficient and easy to
implement, is actually very good at choosing from exponen-
tially many possibilities of seeds for every advertiser and
make assignments in a manner that helps maximize the so-
cial networks’ revenue. A good comparison is to observe
that if the advertisers operated independently, this could
potentially result in a hugely negative competition that not
only affected their own revenues but resulted in an arbitrar-
ily large (depending on the number of advertisers) factor of
loss to the social network. In the subsequent section, we
will also show that our algorihm in fact performs best possi-
ble from a computational complexity standpoint.

The rest of this section is devoted to proving Theorem 3.
First, we note that changing the commission of each com-
pany Ci from pi to p′i does not change the revenue we get
from any solution too much. This is simply because p′i ≥
pi/2 for all i. We thus have the following lemma.

Lemma 4. For any solution T of the sponsored viral mar-
keting problem, rev(G, C, T ) ≥ rev(G, C′, T ) ≥ rev(G, C, T )/2.
Consequently, OPT(G, C, f) ≥ OPT(G, C′, f) ≥ OPT(G, C, f)/2.

Let j∗ be the minimum integer j such that p′i ≤ 2j for all
i, i.e., j∗ = log2(maxi p

′
i). Let C′′ = ∪j∗−2 logn≤j≤j∗C′j ; i.e.,

C′′ contains only the companies having “large” commission
and ignores the rest of the companies. We show this does
not lose us too much revenue.

Lemma 5. OPT(G, C′′) ≥ OPT(G, C′)/2

Proof. Let p′max = 2j
∗

(or, equivalently, p′max = maxi p
′
i)

and wmax = maxe∈E(G) w(e). Note that

OPT(G, C′) ≥ p′maxwmax

since we can get a revenue of p′maxwmax by placing a seed of
the company with commission p′max on a node u where u is
such that there is an edge uv with w(uv) = wmax.

Note further that the revenue we can get from any com-
pany in C′ \ C′′ when we place a seed on a node u is at

most
∑
v∈V (G) w(uv)

p′max
2n2 ≤ OPT(G,C)

2n
since every company

in C′ \ C′′ has commission at most

p′max/2
2 logn+1 = pmax/2n

2.

Thus, the expected total revenue we get from companies in
C′ \ C′′ is at most OPT(G, C′)/2. In other words,

OPT(G, C′)− OPT(G, C′′) ≤ OPT(G, C′)/2.

The lemma follows.

Finally, we use the fact that C′′ consists of companies having
O(logn) different values of commission to show the following
simple lemma.

Lemma 6. max
j∗−2 logn≤j≤j∗

OPT(G, C′j) = Ω(OPT(G,C′′)
logn

).

Proof. Since C′′ =
⋃

j∗−2 logn≤j≤j∗
C′j , we have that

OPT(G, C′′) ≤
∑

j∗−2 logn≤j≤j∗
OPT(G, C′j).

Thus, there exists j such that OPT(G, C′j) ≥ OPT(G,C′′)
2 logn+1

.



Combining all above lemmas, we have that (recall that T ′j
is the solution returned by Algorithm 2)

rev(G, C, T ′j ) ≥ rev(G, C′, T ′j )

= Ω

(
max

j∗−2 logn≤j≤j∗
OPT(G, C′j)

)
= Ω

(
OPT(G, C′′)

logn

)
= Ω

(
OPT(G, C′)

logn

)
= Ω

(
OPT(G, C)

logn

)
.

This completes the proof of Theorem 3.

4. HARDNESS OF APPROXIMATION
In this section, we prove our hardness results. The Ω(n1−ε)

hardness of approximating the limited-budget case is proven
in Section 4.1. We prove Ω(log1−ε n) hardness for the un-
limited budget setting in Section 4.2.

4.1 Limited Budget Setting
Our reduction starts from the Donation Center Location

problem (Dcl), introduced by Huang and Svitkina [27]. In
Dcl, we are given a bipartite graph G = (A ∪ L,E) where
A is a collection of agents and L is a collection of centers.
V (G) is the number of vertices in G. Each center ` ∈ L
has limited capacity c` ∈ Z+ that represents the maximum
number of agents that can be served, and each vertex a ∈ A
has strictly ordered preference ranking �a of its neighbors
in L. Our objective is to compute a triple (A′, L′, σ) where
L′ ⊆ L is a set of centers to open, A′ ⊆ A, and assignment
σ : A′ → L′ such that: (1) The number of agents assigned to
any center ` is at most c`, i.e. |{a ∈ A′ : σ(a) = `}| ≤ c` and
(2) Each a ∈ A′ is assigned to its highest ranked neighbor
in L′. We are interested in finding such a triple while max-
imizing |A′|. Our starting point is the following hardness
of approximation result due to Chalermsook, Laekhanukit,
and Nanongkai [12].

Theorem 7. [12] For any positive number ε > 0, unless
NP = ZPP, it is hard to approximate Dcl to within a factor
of |V (G)|1−ε.

Now we show an approximation-preserving reduction from
Dcl to the sponsored viral marketing problem, i.e. given
an instance of DCL, we construct an instance of sponsored
viral marketing problem such that the value of the optimal
solution in the latter problem is the same as that of the
former.

Construction. Given an instance G = (A ∪ L,E) of Dcl,
we create an instance (G′, C′ = {(ki, pi, Bi, Si)}mi=1) as fol-
lows. The graph G′ is a directed bipartite graph G′ =
(A∪L,E′) on the same sets of vertices and edges. The only
difference is that we turn the graph into directed graph:
There is a directed edge `a ∈ E′ if and only if `a ∈ E.
The weight of every edge is w`a = 1. For each ` ∈ L, we
have a company comp(`) with kcomp(`) = 1, pcomp(`) = 1,
Bcomp(`) = c`, and Scomp(`) = {`}. Each node a ∈ A has the
preference �′a over products {comp(`)}`∈L in a way that is
consistent with its ranking over `, i.e. comp(`) �′a comp(`′)

if and only if ` �a `′. This completes the description of our
reduction.

Analysis. Let OPT and OPT′ denote the optimal revenue
of the Dcl instance and our instance respectively. We argue
that OPT = OPT′. First, to show that OPT ≤ OPT′, con-
sider any solution (L′, A′, σ) of Dcl. For each node ` ∈ L′,
we put the seed of company comp(`) at node `. We argue
that the total profit made from this strategy is |A′|: Consider
each node a ∈ A′ who sees the seeds at nodes {` : `a ∈ E′}.
It must be the case that comp(σ(a)) is among the products
a considers and must be highest w.r.t. the rank �′a, so we
can get the revenue of 1 from a. It is easy to check that each
company has enough budget, since for each `, we know that
|{a : σ(a) = `}| ≤ c`.

Now we argue that OPT′ ≤ OPT. Let L′ ⊆ L be a subset
of vertices on which the seeds are placed and A′ ⊆ A be
the set of nodes that contribute to the total profit. Define
σ : A′ → L′ by setting σ(a) to be the node ` ∈ L′ such
that product comp(`) is bought by a. It is easy to check
(using the arguments similar to that in the previous para-
graph) that (L′, A′, σ) is a feasible solution for Dcl instance,
thus implying that OPT′ ≤ OPT. We have thus shown the
following theorem.

Theorem 8. Let ε > 0 be sufficiently small constant.
Unless NP = ZPP, there is no n1−ε approximation algorithm
for sponsored viral marketing problem in the limited budget
setting.

This result essentially says that the problem of identifying
good seed sets to maximize expected revenue for the social
network is computationally intractable when advertisers op-
erate under limited budgets. This still does not preclude,
from a practical standpoint, an algorithm that conceivably
does very well in practice in allocating seeds. Also notice
that while we prove the computational intractability of the
problem from the social network provider’s revenue maxi-
mization standpoint, it is important to note that (and per-
haps can be deferred to future for a concrete result in this
direction) the social network provider presumably can do a
significantly better job of maximize profit than individual
advertisers may do independently. Our objective compares
against the optimal solution from the network’s standpoint
which is a stringent comparison. More likely if independent
advertisers operate in isolation in marketing currently, they
are resulting in unnecessarily revenue-detracting competi-
tion.

4.2 Unlimited Budget Setting
To prove the hardness of approximation in this setting, we

make a connection between our problem and Unit-demand
Min-buying Pricing (Udp-Min). In the Udp-Min prob-
lem, we are given a collection of items I and consumers C,
where each consumer C ∈ C is associated with budget BC
and a subset of items SC ⊆ I she is interested in purchasing.
Once the price function p : I → R+ is fixed, each consumer
C buys the cheapest item in SC if minI∈SC p(I) ≤ BC (in
which case, we earn a revenue of minI∈SC p(I) from con-
sumer C); otherwise, the consumer buys nothing (in which
case, our revenue from this consumer is zero). The objec-
tive of the problem is to compute the price function that
maximizes the total revenue.

We remark the distinction in the terms we use. If we talk
about the items in the pricing problem, we refer to them as



items, while we refer to those in our problem as products/
companies. We need the following theorem which shows the
hardness of approximation for Udp-Min.

Theorem 9. [11] For any ε > 0, it is hard to approxi-
mate Udp-Min to within a factor of log1−ε(|C|+ |I|), unless
NP has a quasi-polynomial time algorithm.

Construction. Consider an instance (C, I) of Udp-Min.
Denote by B = {BC}C∈C the set of all possible consumers’
budgets. We create an instance (G′, C′ = {C′i}mi=1) as fol-
lows. First the graph G′ = (U ∪ V,E) is bipartite. Edges
are always directed from vertices in U to those in V . For
each item I ∈ I, for each possible budget B ∈ B, we have a
vertex u(I, B) in set U , so the total number of vertices in U
is

|U | = |B||I| ≤ |C||I|.

Now for each consumer C ∈ C, we have a vertex v(C), so
|V | = |C|. There is an edge connecting u(I, B)v(C) ∈ E if
and only if I ∈ SC and BC ≤ B. Finally, each edge e in the
graph has weight w(e) = 1. This completes the description
of graph G′.

Now we define the companies and their parameters. For
each item I ∈ I, for each possible budget B ∈ B, we
have a company/product comp(I, B) with the following pa-
rameters: the number of seeds k′comp(I,B) = 1, the price

p′comp(I,B) = B, and the node set Scomp(I,B) = {u(I, B)};
recall that the budget of each company is ∞ in this setting.
Each node v(C) ∈ V has the ranking �v(C) of companies
{comp(I,B)} based on the values ofB, i.e. comp(I,B) �v(C)

comp(I ′, B′) if and only if B > B′. This completes our con-
struction. See Figures 1 and 2 for illustration.

B1=2 B2=1 

I1 I2 I3 

C1 C2 

Figure 1: An instance of Udp-Min. An edge between
consumer and item shows that the consumer is in-
terested in that item.

Analysis. Let OPT and OPT′ denote the optimal revenue
of the pricing instance (C, I) and our instance (G′, C′) re-
spectively. We will argue that OPT = OPT′.

To show OPT ≤ OPT′, consider an optimal price function
p∗ : I → R+. Observe that any optimal price function
must have p∗(I) ∈ B for all I ∈ I: Otherwise, suppose that

u(I1, 1) 

u(I1, 2) 

u(I2, 1) 

u(I2, 2) 

u(I3, 1) 

u(I3, 2) 

v(C1) 

v(C2) 

Figure 2: The graph G′ obtained from the reduction.

B′ < p∗(I) < B for some B′, B ∈ B that are consecutive
in values. We could have increased p∗(I) to B because any
consumer C who can afford I will still be able to afford it
with the new price. Let C∗ ⊆ C be the set of consumers who
contribute to the value of OPT, i.e. consumers who made
purchases. For each consumer C ∈ C∗, let σ(C) ∈ SC denote
the item with minimum price p∗(I) in SC . This is the item
that consumer C purchases.

Our strategy to collect revenue is as follows: For each I ∈
I, each company comp(I, p∗(I)) puts its seed at u(I, p∗(I)).
The seeds of other companies are not placed anywhere. Now
consider each node v(C) for C ∈ C∗ and let I∗ = σ(C). It
suffices to argue that the revenue we get from this node is
p∗(I∗). Notice that there is an edge u(I∗, p∗(I∗))v(C) ∈ E,
so node v(C) adopts product comp(I∗, p∗(I∗)). Since I ∈
SC if and only if v(C) adopts comp(I, p(I)), it must be the
case that comp(I∗, p∗(I∗)) is ranked highest w.r.t. �v(C)

(because the price p∗(I∗) is lowest). This means that node
v(C) picks comp(I∗, p∗(I∗)) and therefore pays the price of
p∗(I∗).

Next, we prove that OPT′ ≤ OPT. Let C∗ ⊆ C′ be the set
of companies who placed the seeds in the optimal strategy.
We partition C∗ into C∗ =

⋃
I∈I C

∗
I where C∗I contains the

companies of the form comp(I, B) for some B.

Claim 10. For any I ∈ I, we can assume without loss of
generality that |C∗I | ∈ {0, 1}.

Proof. Assume that there are B,B′ ∈ B such that both
comp(I, B) and comp(I, B′) belong to C∗I such that B < B′.
We argue that no node v(C) buys u(I, B′) which allows us
to remove the seed at u(I, B′) while preserving the revenue.
Assume otherwise that some v(C) bought u(I, B′). From
the construction, there must also be an edge u(I, B)v(C)
and u(I, B′) ≺v(C) u(I, B). This is impossible because v(C)
would have preferred to buy u(I,B) instead.

The above claim allows us to “recover” the price function
p∗ for (C, I) that collects the same revenue. We set the price
p∗(I) = ∞ if |C∗I | = 0; otherwise, we set p∗(I) = B where
comp(I,B) ∈ C∗I . Now, let V ∗ ⊆ V be the subset of nodes



that contribute to the value of OPT′. For each consumer
C such that v(C) ∈ V ∗, let comp(I∗, B∗) be the product
chosen by v(C), so node v(C) contributes B∗ to the value of
OPT. We argue that consumer C also pays the value of B∗

with respect to the price p∗. This will conclude the proof.
Assume to the contrary that, in the pricing instance (C, I),

consumer C buys some item Ĩ with p∗(Ĩ) < B∗. This im-

plies that u(Ĩ , p∗(Ĩ))v(C) ∈ E, and that comp(I∗, B∗) ≺v(C)

comp(Ĩ , p∗(Ĩ)). Hence, comp(Ĩ , p∗(Ĩ)) would have been bought
instead of comp(I∗, B∗).

Gap Analysis. Notice that the size of the instance is
|V (G′)| ≤ |C||I|, so the hardness gap log1−ε(|C|+ |I|) trans-
lates to Ω(log1−ε |V (G′)|) as desired. We conclude by stating
our result formally.

Theorem 11. Let ε > 0 be any sufficiently small con-
stant. Then, unless NP ⊆ DTIME(npoly logn), there is no
log1−ε n approximation algorithm for sponsored viral mar-
keting problem even when each advitiser has unlimited bud-
get.

Notice that this result proves the near-optimality of our
algorithm presented in the previous section.

5. EXPERIMENTAL EVALUATION
We experimentally tested our algorithms against several

heuristic baselines via simulations. In addition to Algorithm
2 from Section 3, we introduce a heuristic extension of this
algorithm. The point of this section is to empirically show
that a coordinated strategy by the social network provider
will always outperform uncoordinated advertisers. All the
simulations in this section were run on real social network
data. All the code was written in C and run on an Intel
Core 2 Duo running Ubuntu 12.04.2.

We ran our simulations on social networks made available
by the Stanford Network Analysis Project (SNAP)3. More
specifically, we used a Slasdot user directed network col-
lected in April 2009 (82168 nodes, 948464 edges), a DBLP
coauthorship dataset (317080 nodes, 1049866 edges), and a
directed Epinions who-trusts-whom social network (75879
nodes, 508837 edges).

Recall that Algorithm 2 identifies the highest tier of com-
missions and assigns seeds only to them. It is indeed some-
times better to omit the low commission advertisers as they
may decrease overall revenue by taking away nodes from
higher commission advertisers. In the case that large parts
of the network are not influenced (e.g., if the propagation
probability is low), however, it is better to include these
lower commission advertisers as they do not interfere. Ad-
ditionally, there are business reasons why they should not
be neglected. Motivated by this, we introduce a heuristic
version of our algorithm (Algorithm 2H, described below)
to avoid this issue.

We compared the following algorithms:

• Algorithm 2 is the algorithm from Section 3.
• Random assigns seeds uniformly at random (included

as a baseline).
• GreedyEach is the result when each advertiser picks

seeds independently of each of the others.

3https://snap.stanford.edu
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Figure 3: Relative performance of algorithms with
different commission (p) distributions. (Note: the
revenues for each distribution have been normalized
by the best algorithm to make all of them fit the
same scale.)

• DegreeCentrality is a heuristic in which the highest
degree nodes are used as seeds. The higher commission
advertisers are assigned the higher degree nodes.
• GreedyPrime computes the greedy solution for all

the advertiser’s seeds assuming equal commissions and
then assigns these nodes to the advertisers in non-
increasing order of commission.
• Algorithm 2H is a heuristic version of Algorithm 2.

It adds unassigned seeds from Algorithm 2 to the high-
est degree unassigned nodes and returns the better of
this solution and that of Algorithm 2 (thus the perfor-
mance of Algorithm 2H will never be worse than that
of Algorithm 2).

Note that the GreedyEach algorithm is the most likely
algorithm used by uncoordinated advertisers. We will show
that the other algorithms (except Random) outperform this
one empirically with many different parameter settings.

In the runs of each of the greedy algorithms, the revenue
was estimated using 100 runs of simulation. Using more runs



(a) Slashdot

(b) DBLP

(c) Epinion

Figure 4: Varying the number of seeds per adver-
tiser (k) on all data sets

did not significantly change the results. The final evaluation
of each algorithm was performed with 10,000 runs of simu-
lation. All the values in the following graphs are the means
of ten independent runs of each algorithm.

Since our algorithm divides advertisers into tiers by com-
mission, we first studied the effect of the advertiser commis-
sion distribution on the performance of each of the above
algorithms. In particular, we tried the following distribu-
tions:

• PowersTwo: 1, 21, 22, . . . , 29

• PowerLaw: 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8
• 1-10: 1, 2, 3, . . . , 10
• Half1Half4: 5 1’s, 5 4’s
• All1: 10 1’s

From Figure 3, we can see that Algorithm 2H was best
or close to best for all distributions in Slashdot and DBLP.
For the Epinions dataset, the degree centrality heuristic was

(a) Slashdot

(b) DBLP

(c) Epinion

Figure 5: Varying the number advertiser (m) on all
data sets

consistently the best. The connectivity of this network is
such that using high degree nodes works better for it than
the greedy method.

For the remaining experiments, we set default values and
varied parameters one-by-one to see the effect this would
have on the performance of the algorithms. Unless other-
wise stated, all the following results used a uniform propa-
gation probability of P = 0.01 (1%), fifteen advertisers with
commissions distributed by a power law as described above
(m = 15), and k = 5 seeds per advertiser.

Figure 4 shows the effect of varying the number of seeds
per advertiser (k). In the case of the Slashdot data set,
Algorithm 2 performs the best. The DBLP dataset shows a
case in which the heuristic performs better since it spreads
unseeded advertiser on unreached parts of the network. As
in the previous figure, the degree centrality heuristic is best
on the Epinions data. Similar results can be observed when
varying the number of advertisers (m) in Figure 5.
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Figure 6: Varying the propagation probability (P )
on all data sets

When we vary the propagation probability in Figure 6,
the advantage of Algorithm 2H over Algorithm 2 becomes
apparent. For very low probabilities, there are parts of the
social network that advertisers are not reaching and it makes
sense to seed these with the low commission advertisers.
Hence, we see Algorithm 2H outperform Algorithm 2 in most
cases. However, when the probability rises to the extent that
most of the network is being influenced, Algorithm 2 rapidly
catches up.

Note that in all cases our algorithms greatly outperform
GreedyEach, the result when all the advertisers greedily as-
sign their seeds in an uncoordinated manner. This demon-
strates the advantage of a coordinated strategy by the social
network owner over uncoordinated efforts by the advertis-
ers.

6. RELATED WORK
There is a large body of work studying the correlation of

activity among friends in online communities; see examples
in [20,32,34]. Most are forms of diffusion research, built on
the premise that user engagement is contagious. As such, a
user is more likely to adopt new products or behaviors if her
friends do so [4, 29]; and large cascades of behavior can be
triggered by the actions of a few individuals [20,32].

A number of theoretical models have been developed to
model influence cascades [14,30]. In the context of social net-
works, the threshold model [24] and the independent cascade
model [22] are widely applied. The seminal work of Kempe
et al. [28] includes the general cascade model which forms
the basis of our work. There has also been a long line of
work on viral marketing starting from [15,31].

The concept of competition in influence maximization has
also been studied extensively in recent years. A paper that
adopts a follower’s perspective, by Carnes et al. [10], consid-
ers an advertiser trying to maximize influence when a com-
peting technology is already present. An extension of the
threshold models under the competitive setting was stud-
ied by Borodin et al. [7] and another model was proposed
by Bharathi et al. [5]. In more recent work, He et al. [26]
consider the setting where an advertiser wants to block the
influence of a competitor. Another recent paper that con-
siders competition and how to defeat it in an adversarial
setting is due to Shirazipourazad et al. [35].

Goyal-Kearns [23] study competitive contagion in networks
and explore equilibria and price of anarchy. Tzoumas et
al. [37] study questions around the existence of pure strat-
egy Nash equilibria by focusing on 2-player competitive dif-
fusion games. More recently Goldberg-Liu [21] provide ap-
proximation algorithms for finding the smallest set of nodes
that can trigger a cascade that results in every node in the
graph adopting the technology.

Datta et al. [13] consider viral marketing with multiple
products with a profit maximization setting that is similar
to ours. They study the problem of selecting seed nodes for
multiple products to maximize the overall influence. Like
us, they have a maximum budget for each product and have
a certain set of allowed seeds corresponding to each prod-
uct. Their work differs from ours in two fundamental ways:
(1) they consider a non-competitive setting in the sense that
each node can get influenced by multiple products and end
up adopting more than one; and (2) they enforce a hard con-
straint on each node on how many different products may
choose it as a seed. Notice that our problem is far more
general given that we consider a competitive model with in-
dividual users having their preferences across products. A
very recent work on similar lines is due to Borodin et al. [6].
Their setting is similar to us in that there are competitive
agents such as advertisers who want to spread their ads or
products on the network, and a centralized social network
owner who wishes to optimize total influence (or social wel-
fare). However, they consider the game theoretic problem
where each advertiser has a true demand on number of seeds
they would like to instantiate and the social network owner
want to design mechanisms where each agent is incentivized
to reveal their true demand. There have been several other
papers as well in general influence maximization type ques-
tions and we list some other recent ones here [1, 2, 8, 25].



7. CONCLUSIONS
As several companies fight for the attention of users in

the social context to leverage influence spread, competi-
tion for the same users on similar products becomes in-
evitable. A natural question that arises in this framework
is how do the social network advertisement managers rec-
oncile all these conflicting objectives from various compa-
nies, while maximizing their profits, by taking advantage
of users’ influence on one another. In this paper, we ex-
plore a very generic framework that takes the social net-
work’s viewpoint with the goal of revenue maximization.
The holistic theoretical study here captures the motivation,
algorithmic techniques, as well as the boundaries or limits of
this framework. Specifically, in the case of unlimited bud-
gets, we show a polynomial time O(logn) approximation
algorithm for maximizing the expected revenue and further
prove that no polynomial time approximation algorithm ex-
ists, assuming NP 6⊆ DTIME(npoly logn), with a guarantee of
O(log1−ε n). In the limited budget setting, the problem ap-
pears intractable as we show that no O(n1−ε)-approximation
algorithm exists under the assumption that P 6= NP. In
terms of experimental evaluation, we tested our techniques
against several baseline heuristics and demonstrated that
a coordinated strategy by the social network operator will
vastly outperform an uncoordinated strategy by the adver-
tisers.

From an overall motivational standpoint, several direc-
tions remain to be explored. It would be interesting to
extend our work to a setting where advertisers’ demands
can be admitted online, as often in practice new advertis-
ers, budgets, and products arrive in a continuous manner,
without a clean notion of timesteps or rounds. Further, the
associated budgets could be changing with time and/or may
need to be handled across various data centers. Another or-
thogonal yet very important consideration is that in a real
social network, often one can only learn approximate edge
influence probabilities with varying degrees of accuracy, and
these may even change with time.

There also remain specific theoretical open questions to
be addressed and we mention two here. First, recall that in
our case the preference function �v of each node is random.
That is, if there are many products in the consideration set
at the same time, each user picks the product in a random
fashion. The hardness result however does not apply to this
case. Secondly, if the seeds of each company could be placed
at any node, the hardness result would not apply. Conceiv-
ably there may be a good approximation algorithm even in
the limited budget setting.
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