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ABSTRACT

Error estimating codes (EEC) have recently been proposed for mea-
suring the bit error rate (BER) in packets transmitted over wireless
links. They however can provide such measurements only when
there are no insertion and deletion errors, which could occur in
various wireless network environments. In this work, we propose
“IdEEC”, the first technique that can do so even in the presence
of insertion and deletion errors. We show that idEEC is provable
robust under most bit insertion and deletion scenarios, provided in-
sertion/deletion errors occur with much lower probability than bit
flipping errors. Our idEEC design can build upon any existing EEC
scheme. The basic idea of the idEEC encoding is to divide the
packet into a number of segments, each of which is encoded using
the underlying EEC scheme. The basic idea of the idEEC decoding
is to divide the packet into a few slices in a randomized manner
— each of which may contain several segments — and then try to
identify a slice that has no insertion and deletion errors in it (called
a “clean slice”). Once such a clean slice is found, it is removed
from the packet for later processing, and this “randomized divide
and search” procedure will be iteratively performed on the rest of
the packet until no more clean slices can be found. The BER will
then be estimated from all the clean slices discovered through all
the iterations. A careful analysis of the accuracy guarantees of the
idEEC decoding is provided, and the efficacy of idEEC is further
validated by simulation experiments.
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1. INTRODUCTION

Recently, there has been a series of works on designing error es-
timating codes, that is, estimating the bit error rate (BER) in pack-
ets transmitted over wireless networks [2, 5, 6]. The basic idea of
such codes is to have the transmitter send a small error estimat-
ing codeword of O(log(n)) bits along with a packet n bits long,
which allows the receiver to decode the information and estimate
the number of bits in the packet flipped during the transmission
(i.e., the BER). Such codes are in general stronger — and a bit more
expensive — than error detection codes, which inform whether or
not there are bit errors, but weaker — and much less expensive —
than the error correction codes.

The aforementioned techniques, however, can provide such esti-
mations only when there are no insertion and deletion errors. None
of them will work even if a single bit is inserted or deleted for
the following reason. In all existing error estimating coding (EEC)
schemes, a sub-codeword is computed as a function of a subset
of bits sampled from the packet as identified by their indices, i.e.,
their positions in the packet relative to the beginning of the packet.
If there are one or more insertion and deletion errors, a very dif-
ferent set of bits will be sampled and hence a very different sub-
codeword computed from them. In wireless network applications
EEC schemes are designed for, however, insertion and deletion er-
ror may occur due to factors such as imperfect synchronization be-
tween a transmitter and a receiver, or uneven propagation delays to
successive bits in a packet (e.g., due to the movement of a transmit-



ter or receiver). Therefore, for existing EEC schemes to be widely
applicable in various wireless network environments, it is impor-
tant that they are enhanced to work over insertion/deletion chan-
nels. However, this appears an extremely difficult task, and readers
will appreciate this difficulty when we describe in Sec. 2.

In this work, we make an attempt at filling this gap and pro-
pose error estimating codes for the insertion and deletion chan-
nels, called “idEEC”. More specifically, our idEEC scheme allows
for the estimation of the number of bit flipping errors in a packet
despite the existence of bit insertions and deletions. Our idEEC
scheme can build upon any existing EEC scheme, and its encoding
efficiency (i.e., code density) is proportional to that of the underly-
ing EEC scheme. For the purpose of describing how idEEC works
— which is the main thrust of this paper — however, we pick the plain
vanilla tug-of-war sketch [1] as the underlying EEC, even though
its encoding efficiency is worse than the two most recent EEC
schemes, namely EToW and gEEC [5, 6], for two reasons. First,
the encoding efficiency of Tug-of-War (ToW) is worse than that of
EToW and gEEC by only a constant factor, and is still asymptot-
ically optimal. Second, the encoding and decoding algorithms of
ToW, which idEEC must “interface” with, are much simpler than
that of EToW and gEEC. Building idEEC upon ToW allows us
to focus on describing the encoding and decoding algorithms (for
withstanding insertion/deletion errors) of idEEC and their mathe-
matical analyses, without being entangled into additional mathe-
matical and algorithmic details involved in “interfacing” with more
efficient but mathematically sophisticated EEC schemes such as
EToW and gEEC, and risking diluting the main thrust of this pa-
per.

We describe here the basic idea behind idEEC encoding (at the
transmitter) and decoding (at the receiver) algorithms, deferring
readers to Sec. 3 for details. We assume that, during the transmis-
sion, no more than a total of ¢ insertion and deletion errors may
occur to the packet. This ¢ is usually a small number (say no more
than 10) in the aforementioned wireless applications. The encod-
ing algorithm is very simple. A packet is first divided into a number
of segments, and an EEC codeword for each segment is computed.
The number of segments needed for accurate BER estimation is in
general no more than an order of magnitude larger than ¢. The
idEEC codeword is simply these EEC codewords pieced together,
and will be further protected by error detection or correction codes
against one or two insertion/deletion errors and a small number of
bit flipping errors that may occur to the EEC codeword [4]. Since
adding this protection will only increase the size of an idEEC code-
word by a small constant factor, it will not affect the asymptotic
space complexity of the idEEC.

The decoding algorithm — for inferring the number of flipping
errors from the packet and its idEEC codeword — at the receiver’s
end is more involved. Suppose the actual number of insertion and
deletion errors are ¢. The basic idea of the algorithm is to uni-
formly randomly insert or delete ¢ or (slightly) more “phantom”
bits along the segment boundaries in the packet. These phantom
insertions and deletions are intended to partially “cancel out” the
actual insertions and deletions that occur to the packet during the
transmission, and the uniform randomization is needed for this par-
tial cancellation to be provably robust under all bit insertion and
deletion scenarios, with high probability. The “bit-stuffed” packet
will then be divided into at least ¢+1 slices by the positions (at least
¢ of them as explained earlier) at which the phantom insertions or
deletions occur. Each slice may contain one to several segments. It
can be proved that no insertion or deletion happens to at least one
out of these slices, which we call a “clean slice”. In other words,
in a clean slice, the index of every bit, relative to beginning of the

“bit-stuffed” packet, is equal to a constant (could be 0) plus that
relative to the beginning of the original packet.

Our decoding algorithm then searches for and removes such a
clean slice from the packet. A clean slice can be found by shift-
ing the “bit-stuffed” packet around, computing the EEC codewords
for the shifted slice, and comparing them with the EEC codeword
for the slice in the original packet (equal to the sum of EEC code-
words for the segments that the slice consists of). Once a clean
slice is found, it is removed from the “bit-stuffed” packet, and this
“randomized slicing and shift-and-compare” procedure will be per-
formed on the rest iteratively to identify more clean slices, un-
til these ¢ insertion and deletions errors are localized to within
roughly ¢ “dirty slices”, each of which ideally contains only a
single “dirty segment”. The number of bit errors in the original
packet can then be estimated from the bit errors that occur in all the
clean slices discovered through the above iterative procedure, under
a very mild assumption on the fluctuations of bit flipping error rates
across the original packet. Note the randomizations performed in
these iterations are mutually independent, allowing us to establish
accuracy guarantees of our estimation procedure as rigorously as
possible.

For a packet n bits long, the encoding overhead of the idEEC
is O(¢log(n)), where O(log(n)) is the encoding overhead of the
underlying EEC (ToW in our case). Therefore, asymptotically we
are paying only a multiplicative factor of ¢ for making idEEC ro-
bust against insertion and deletion errors. We are able to make this
encoding overhead so small because an idEEC codeword needs to
help us localize an insertion and deletion error only to the segment
rather than to the very bit position where it occurs, as in the er-
ror correction codes for the insertion and deletion channels [4, 9,
11]. The computational complexity of idEEC decoding is O($2A),
where A is computational complexity of decoding the underlying
EEC codewords. This multiplicative factor of ¢? is tolerable when
¢ is quite small (< 10) as in the aforementioned communication
applications. Furthermore, when there are only insertions or only
deletions, this computational complexity decreases to O(¢pA), for
a clean slice can be found without shifting the “bit-stuffed” packet
around in such a situation, as we will show in Sec. 3.

Note that even if the transmitted and the received packets (i.e., bit
strings) were placed side-by-side, it is not possible to say with cer-
tainty how many insertion, deletion, and substitution errors occur
respectively that results in the difference between the two strings.
For one thing, it could be impossible to distinguish a substitution
error from that caused by a pair of insertion and deletion. However,
under mild assumptions such as that insertions and deletions hap-
pen with very low probabilities, it can be proven that the “simplest”
explanation for this difference — as implied by the calculation of the
edit distance between the two strings [8] — is also the most likely
and with high probability equal to the ground truth. Therefore, by
comparing the estimates of substitution/flipping errors with that im-
plied by the edit distance between the two strings in our evaluations
of idEEC, we are not distorting the ground truth in any significant
way.

The remainder of this paper is organized as follows. In Sec. 2
we discuss the background and related work most pertinent to this
paper. In Sec. 3, we propose the EEC scheme for insertion and dele-
tion channels under homogeneous bit flipping model, and provide
detailed corresponding analysis and estimator design. In Sec. 4,
we generalize the scheme to heterogeneous bit error models. We
evaluate the performance of the schemes experimentally in Sec. 5.
Finally, we conclude the paper in Sec. 6.



2. BACKGROUND AND RELATED WORK

In this section, we introduce some background on insertion and
deletion channels, and briefly survey the existing error correction
codes for such channels. We describe prior approaches for solv-
ing bit error rate (BER) estimation problems, and demonstrate the
difficulty of doing so in insertion and deletion channels.

2.1 Error Correcting Codes for Insertion and
Deletion Channels

Channels that allow insertions and deletions as well as substi-
tution (i.e., bit flipping) errors enjoy a long and rich history, and
are remarkably challenging. Insertion and deletion errors do oc-
cur in various wireless network environments. For example, poor
time synchronization between a sender and a receiver may lead to
some bits (of a packet) being deleted, or some non-existing random
bits being inserted [10]. While much progress on error correction
codes for such insertion/deletion channels has been made in the
past decade, a coding scheme with provably asymptotically opti-
mal coding efficiency remains elusive thus far [10].

In most of the literatures on insertion and deletion channels, er-
ror correcting coding has been playing a key role. Some researchers
started with the additional properties of the channels, and proposed
1-deletion / 1-insertion correcting codes. In [9], it has been as-
sumed that there is a minimal gap between insertions and deletions,
as many synchronization errors are due to small drifts in clock syn-
chronization and a minimal amount of time is needed before the
timing mismatch results in another bit error. They made a segmen-
tation assumption that there is at most one insertion or deletion per
segment (a contiguous chunk of a packet), which appears natural
for many practical settings. In [4], Reed-Muller RM (1, m) codes
were studied and used for correcting substitution errors over chan-
nels in which a bit sampling error could cause a synchronization
error (similar but not identical to an insertion/deletion error). This
scheme can correct multiple substitution errors in the presence of
one synchronization error. In [11], codes for correcting synchro-
nization errors were designed, which were capable of correcting a
certain number of synchronization errors, in the presence of one
substitution error.

2.2 Error Estimating for Channels Without
Insertion and Deletion Errors

While there has been much work on error correction codes, error
estimating coding began to be studied only recently in the semi-
nal work of Chen et al. [2]. The basic idea of this work [2] is for
the transmitter to send along with a packet a set of parity-check
bits, each of which is the exclusive-or of a group of bits randomly
sampled from the packet. These parity equations are designed in
such a way that, by counting how many of them are violated after
the packet transmission, the receiver can estimate, with low relative
error, this BER.

Hua et al. made further studies on error estimation coding in
[5] and [6]. In [5], they used tug-of-war (ToW) sketch, which is
a sketch data structure to estimate the Lo norm of a data stream,
for Hamming distance estimation. The ToW sketch of a bit array
(packet) b consists of a set of sub-sketches, each of which is set to
the inner product of b with a pre-defined pseudorandom vector 3.
Upon the receipt of the transmitted bit array v’ and the sketch, the
receiver computes the inner product of V' - 3 takes the difference
between it and that contained in the corresponding sub-sketches,
and squares the result. Furthermore, they proved that even when
approximation and randomization are allowed, the cost of BER es-
timation to achieve an (e, §)-approximation is ©2(log(n)), and EEC

in [2] is therefore asymptotically optimal. They also showed how-
ever that EEC had not achieve the optimal tradeoff down to the
constant factor, and proposed the Enhanced Tug-of War (EToW)
sketch that attains a better constant factor. In [6], they present an
information-theoretic study of EEC, stemming from the question
whether EEC achieves the best tradeoff between the space and es-
timation accuracy, through the lens of Fisher information analysis.
This analysis led to a new and better EEC scheme, called “gEEC”,
which could hold 25 — 35% more information — and hence deliver
better estimation accuracy — with the same coding overhead.

Though these approaches can all estimate the BER with good ac-
curacies, they cannot handle insertion and deletion channels. This
is because, when an insertion or deletion error occurs, certain parts
of the packet will be shifted, and about half of these shifted — but
correct — bits will be counted as substitution errors by existing EEC
techniques. Our idEEC scheme, to be described next, is designed
to fill this gap.

3. DESIGN AND ANALYSIS OF IDEEC UN-
DER HOMOGENEOUS BIT FLIPPING
MODEL

This section describes the encoding and decoding algorithms of
idEEC. Our goal is to estimate the number of bit flipping errors as
accurately as possible, despite the presence of insertion and dele-
tion errors. Here the estimator used in the decoding algorithm as-
sumes that the flipping error happens to each bit independently and
with an identical — but unknown — small probability p << 1. This
model will be much relaxed later in Sec. 4. We further assume that
the probability with which an insertion or deletion error occurs, re-
ferred to as pe, is much smaller than the flipping error probability
p. This is clearly a reasonable assumption since it would otherwise
be impossible to distinguish between insertion/deletion errors and
flipping errors. In the following, we will first give an overview of
idEEC in Sec. 3.1, then describe the key routine of identifying a
clean slice in Sec. 3.2, and finally present the detailed analysis of
the accuracy of our estimations in Sec. 3.3.

3.1 Overview

Like in the Code Division Multiple Access (CDMA) litera-
ture, we view a ‘0’ bit as symbol ‘-1°, and a ‘1’ bit as symbol
‘+1’. Then a packet b is modeled as a symbol vector of length
n, with each symbol takes value in {—1,+1}. In idEEC encod-
ing, the packet is first divided into m segments of equal lengths,
say b= [51, gg, R Em] For idEEC to be robust against inser-
tion and deletion errors, m should be at least several times larger
than the actual number of insertion and deletion errors, which _js
typically quite small, as explained before. For each segment b;,
we generate its EEC codeword. Our idEEC codeword is simply
these EEC codewords pieced together. Since this idEEC codeword
itself may be subject to insertion/deletion and bit flipping errors
during transmission, it needs to be protected by error detection or
correction codes against such errors. Since the length of such error
detection or correction codes will only be a fraction of that of the
idEEC codeword, this extra protection will not increase the asymp-
totic coding overhead of the idEEC scheme. The details of our
encoding scheme are given in Algorithm 2.

The procedures for encoding and decoding of a bit array b using
plain vanilla tug-of-war sketch are illuminated in Algorithm 1. The
ToW sketch consists of a constant number ¢ 9f counters, each of
which is generated by the inner product of b with a pre-defined

pseudorandom vector 5; € {+1,—1}®. At the time of decoding,
the receiver computes the inner products of the transmitted bit array



Algorithm 1 The tug-of-war sketch for EEC [5].

Algorithm 3 Decoding of idEEC.

SKETCH—CREATION(E)
Input b: original data bits vector.
Output G the sketch encoding b.
pre-compute random vectors §;.1<j< : [|b]] = {—1,1}
forj =1 toc do
G = (b-5,)/2
return ¢ = (¢1,...,q.)

DISTANCE-ESTIMATION (Y, §)
Input Z_)":Areceived data bits vector, ¢ received sketch.
Output d: the estimated number of flipping error.
pre-compute random vectors 5 1<j<c : [|b]] = {—1,1}
for j = 1tocdo
Xj = (3 — V- 5/2)
return d=average(X1, ..., X.)

Algorithm 2 Encoding of idEEC.

Input: b= [by,bo, ...
Output: z: the sketches encoding b.
1: for i = 1tomdo .
2: @ = EEC.SKETCH-CREATION(b;)
3: return 2= (G1,...,Gm)

, 5m]: original data bits vector.

b’ with 85,7 =1,2, ..., c, takes the differences between the c inner
products and the ¢ counters respectively, and infer the hamming
distance d between b and b’ from | these differences.

Upon the receipt of a packet b, the original (before any inser-
tion/deletion) length of the packet [ (sent along with the packet and
could also be protected by the error correction or detection codes
that protect the idEEC codeword), and the sketch Z, the receiver
uses a iterative algorithm EST to estimate the BER during the trans-
mission. The EST algorithm returns two values, namely d’ and
I, where d’ denotes the estimated number of flipping errors in all
the clean slices in which the idEEC decoder believes no insertion
or deletion errors occur, and I’ is the total length of these clean
slices. Therefore, the number of flipping errors can be estimated
by d=d - li, and one can further obtain the BER estimation by

p=d /1. The accuracy of this estimator will later be analyzed in
Sec. 3.3. However, our algorithm may return “Failed” meaning that
it is not able to provide an accurate estimate. There are two possi-
ble ways for this to happen. First, our algorithm may find that the
number of insertions and deletions is larger than the pre-determined
upper bound. Second, our algorithm may find that the number of
flipping errors exceeds a pre-determined upper bound. In both sit-
uations, the idEEC decoder will inform us which situation causes
it to “fail”. The aforementioned decoding procedure of our idEEC
scheme is shown in Algorithm 3. The detailed design and analysis
of the iterative algorithm EST will be presented in the following
sections.

The receiver views a packet as a “manifold”, identifying the first
bit of a packet with the bit immediately following the last bit. When
cutting up packets into slices for decoding, the receiver will ran-
domly choose a starting position. As will be explained shortly, such
randomization is needed for the decoder to be robust against in-
sertions and deletions that happen to the beginning and/or the end
of the original packet. Furthermore, the aforementioned shifting-

Input: b': received data bits vector, 2 received sketch, [: length
of original packet b.

Output: d: the estimated number of flipping errors.

/* ' is the length of selected part of packet in which there is
no insertion or deletion. d' is the estimator for the number of
Sflipping errors in this selected part. */

1: (d,I'Yy =Est (V,%,1)

2:ifl' #0and d’ - . < D then

3: return d=d - &

4: else

5:  return Failed

and-compare procedure needed for identifying clean slices will also
benefit from this “manifoldization”.

3.1.1 Case with Only Insertions or Only Deletions

In this section, we study the simpler case where either insertion
errors or deletion errors — but not both — occur during the trans-
mission, in addition to flipping errors. We believe this is the more
common case, since insertion and deletion errors are often caused
by clock speed mismatch between the sender and the receiver, and
this mismatch should not change direction often.

We propose a divide and conquer algorithm called EST(Z, Z, h)
that given a packet or a packet residue Z — which is the received
packet at the first iteration but later becomes the “residue” of the
packet with more and more clean slices removed during the itera-
tions — and its idEEC codeword Z, tries to identify all clean slices
within Z, and returns (a) the total number of bit errors in them and
(b) the total length of all these clean slices. Here h represents the
length of what remains of the packet after zero or more clean slices
had been removed from the packet during the recursive execution
of the “Est” routine up until this point. The description of the algo-
rithm can be found in Algorithm 4.

In describing algorithm EST, we assume there are only inser-
tions. In cases where there are only deletions, we need only replace
the phantom deletions by phantom insertions in Step 6 of the al-
gorithm. One may infer the number of insertions gz@ from the dif-
ference between the lengths of the received packet and the original
one. In each iteration of the algorithm, it randomly deletes é (phan-
tom) bits uniformly along the segment boundaries in the packet, to
“cancel out” the actual insertions in the transmitted packet. By
the qg positions at which bits are deleted, the packet is divided into
gz@—l— 1 slices. From the pigeonhole principle, there should be at least
one slice that has no insertions in it, which we call a “clean slice”.
Furthermore, with Lemma 1 which will be proven in Sec. 3.2, one
should be able to find a clean slice that not only has no insertion
errors in it, but also has the same starting bit index, relative to the
beginning of the “bit-destuffed” packet, as that relative to the be-
ginning of the original packet. We call such a clean slice a “perfect
match”. We will show in Theorem 1 that, our scheme benefits from
the existence of such a perfect match to reduce the computational
overhead by a factor of ¢.

This algorithm first performs a hypothesis testing to confirm the
suspected number of insertions qB, by trying to find such a perfect
match, after these gz@ phantom deletions are made. Intuitively, when
we try to estimate the number of bit errors in a dirty slice (in which
insertion and deletions errors are localized) from its EEC code-
word, this number is going to be quite large, with high probability,
because a single insertion may lead to many bits being shifted and



Algorithm 4 The iterative algorithm for EEC with insertions only.
EsT(Z, Z, h)
Input: Z: received data bits; 2 received sketches corresponding
to Z; h: length of the original data bits.
Output: (cf, fz): d is the estimated number of flipping errors in all
clean slices, d is the total length of clean slices.
I: g=|Z| —h

. /* Test the stopping criterion. */
if ¢ > hTm or ¢ > ¢mas then
return (0, 0)

: /% Phantom deletions. =/
: Delete ¢ phantom bits at random positions, and divide &
into ¢ + 1 slices (Z1,..., % 3 +1) With corresponding sketches

(Zryee s Zppn)

7: /+ Hypothesis test ifngS =¢*/

8: for j = 1t0gz3+1d0

9:  d; = EEC.DISTANCE-ESTIMATION(Z, £5)
10: if dy = mjin{dj} < threshold then

11:  /x Find a clean slice and iteratively perform the algorithm
on the others. */

12: 2’ < remove T from T
2 <= remove Z; from zZ
ht == |.’ft|, h/ == h— ht

13: (d;, h}) = EST (¢, 2", h')

14:  return (d; + d}, hs + h})

15: else

16:  /x Unable to find a clean slice, then test the hypothesis
whether there are both insertions and deletions. */

17:  return GEST(Z,Z, h,1)

hence a totally different EEC codeword computed. Therefore, a
clean slice can be identified through the following threshold-based
approach. The threshold is given by %, where 5 > 1is a
small constant, D is the upper bound of the flipping errors in a
packet, and thus G ﬁ ]I)z is the average number of flipping errors
in each slice. If the estimated number of bit errors in a slice is
above the threshold, it is considered dirty. Otherwise, it is consid-
ered clean. If there appears more than one clean slices, our algo-
rithm will only save the cleanest slice (i.e., with fewest estimated
flipping errors in it). It then removes this slice from the packet
(residue), and repeats the procedure iteratively on the rest, until a
stopping criterion is met (described shortly). If our scheme fails to
identify such a clean slice in this iteration, it has reason to suspect
that both insertions and deletions have occurred. In this case, we
call a more sophisticated algorithm GEST, which will be explained
in Sec. 3.1.2.

Fig. 1 shows an example indicating how this algorithm works
when 3 insertion errors occurred during the transmission. The al-
gorithm randomly divides the packet into 4 slices and deletes 3
phantom bits. The Hamming distance between each slice in the
received packet and that in the original packet is estimated using
the corresponding tug-of-war counters. Based on these estimated
Hamming distances, we are able to identify the third slice as a per-
fect match, with high probability. The Hamming distance estima-
tion for the third — and perfectly matched — slice is then used to
estimate the bit error rate of the transmission. Note that although
there is no insertion or deletion error in the second slice, this slice

O insertion error
. phantom deletion
“+1” shifting value

0 +1 +2 +2 +2 +2 +3

i S i e e

Received: } : :c; c I | B
slice segkn:int
0 +1 +2 + 0 -1 0
~~M~NANAANA
Aligned: | ——e-—ror—f———f————§——e——]

clean slice
(perfect match)

Figure 1: One of the iterations when there are 3 insertions in
the received packet.

does not align with the original part, as all the bits are right shifted
by one.

The computational complexity of the iterative algorithm when
there are only insertions or only deletions is given by the following
theorem.

THEOREM 1. Let A denote the total number of operations in-
volved in Hamming distance estimations for all slices in the origi-
nal packet, using the underlying EEC. If there are only insertions or
only deletions in the received packet, the computational complexity
of our algorithm is O(¢pA).

PROOF. Let so and ho denote the total number of operations and
number of iterations, respectively. When there are only insertions
or deletions, with high probability, the algorithm will keep operat-
ing on the packet (residue) iteratively, which shrinks by approxi-
mately a multiplicative factor of —2— in length after each iteration

. . o+1 .

instead of calling GEST. Therefore, the number of operations in the
j—1

J-th iteration is (ﬁ) A, and the total complexity is

Jj=1

=(p+1) 1—<%> “Ia
<(¢+1)A
= O0(¢A)

O

Therefore, we are paying only a multiplicative factor of ¢ on
the computational overhead of underlying EEC scheme for making
idEEC robust against up to ¢ insertion or deletion errors.

3.1.2 Case with Both Insertions and Deletions

Cases where there are both insertions and deletions are more
complicated. For one thing, even if we have made a correct hypoth-
esis on the number of insertions and deletions, it is still possible that
we cannot find a perfect match using the above algorithm without
shifting the packet around. Fig. 2 shows such an example. In case
1, the third slice is a perfect match, because there is one insertion



O Insertion error phantom insertion
X deletion error ».  phantom deletion
“+1” shifting value

0 -1 -1 0 0 0 +1
. . | H v: H l H H ~ H H | H H H | H H ~ H H H |
Received: | A I I B |
0 -1 0 +1 0 -1 0
. | H v: H L H H ~ H H H H H H H ~ H H H |
Case 1: [ ¢ 3 +O+ + + © 1

clean slice

(perfect match)
0 -1 -2 -1 -2 -1 0
N RV HEE ] R P |
Case2: | — + —-0 + ¥ © 1

clean slice
(matched after 2-bit right shifting)

Figure 2: One of the iterations when there are 2 insertions and
1 deletion in the received packet.

and one deletion in the first two slices respectively, and we happen
to insert 1 bit and delete 1 bit in these two slices respectively, result-
ing in no shift to the bit indices of the third (clean) slice. However,
in case 2, the third slice is shifted to the left by 2 bits because of the
mismatch between the phantom insertions and deletions we make
and the actual insertion/deletion errors that occur during transmis-
sion. In this case, the algorithm has to shift these slices around in
trying to identify a clean slice.

Algorithm 5 shows the details of the generalized estimation of
number of flipping errors over both insertion and deletion chan-
nels. At level k, we make a hypothesis on the number of insertions
n; and the number of deletions ng according to the length of the
received packet |Z| and that of the original one h. If we observe
that the received packet is longer than the original one (|Z| > h),
the hypothesis is that there are 71; = |&| — h + k insertions and
fig = k deletions. Otherwise, 7i; = k, and g = h — |Z| + k. Then
we randomly insert 74 and delete 71; phantom bits in the packet and
divide the packet into é + 1 slices from the é = N; + Ng insertion
or deletion positions. The algorithm then attempts to find the clean
slices by shifting the packet around to align it with the original one.
When a clean slice is identified, the algorithm will remove such a
slice from the packet and perform the search (for clean slices) on
the rest iterative at the same level k until every single clean slice
is located. If not a single clean slice can be identified at this level,
which means that the current hypothesis testing has failed, the al-
gorithm will proceed to the next (i.e, the (k + 1)-th) level, testing
the hypothesis that there is one more insertion error and deletion
error each in the packet.

The aforementioned threshold-based approach is again taken
here to identify a clean slice. However, as insertions and deletions
may cancel each other out, it might be difficult to distinguish the
flipping errors from the misaligned bits caused by insertions and
deletions since the latter could even be smaller than the former, if
such insertions or deletions happen very close to the boundary of a
slice. Therefore, in order to bound the estimator’s error to within a

Algorithm 5 The iterative algorithm for EEC with both insertions
and deletions.
GEST(Z, Z, h, k)
Input: Z: received data bits; 2 received sketches corresponding
to Z; h: length of the original data bits; k: level of recursion.
Output: (d, fz) d is the estimated number of flipping errors in all
clean slices, d is the total length of clean slices.
. /* Estimate the number of insertions and deletions. x/
: if |Z] > h then
A = |2 — h+ k, g = k, ¢ = ftg + g
else )
g =h— |2+ k, N =k, ¢ =N + Mg

. /* Test the stopping criterion. x/
o if QZS > hTm or ¢ > ¢7na;c then
return (0, 0)

9: /% Phantom insertions and deletions. x|
10: Delete n; and insert 74 phantom bits at random positions.

11: /+ Hypothesis test ifngS =¢x/

12: forall o € {0,41,42,...,+¢} do

13: /x Test all the shifting to find a clean slice. */

14: ¥, < Right shift & o bits (Left shift if o < 0).

15:  Divide %, into é + 1slices (o1, - ., fa,¢3+1> by the posi-
tions of phantom insertions and deletions, with correspond-
ing sketches (21,...,2; )

16:  forj=1to ¢+ 1do

17: ds,; = EEC.DISTANCE-ESTIMATION(Z5,;, Z;)

18: if ds, = mijn{da,j} < threshold then

19: 2’ < remove Zs,+ from T;

2 < remove Z; from Z;

ht = |Zst|, ' = h — hy
20:  (d}, 1) = GEST (¢, 2/, b, k)
21:  return (d; +d;, h: + h})
22: else
23:  return GEST(Z, Z,h,k+ 1)

reasonable range, it is assumed that there is a minimal gap between
the location of an insertion and that of a deletion. This assumption
is in fact quite weak: We need only assume a minimal gap between
an insertion and a deletion, and need not make any assumption con-
cerning the distance between insertions or that between deletions
like in [9].

The computational overhead of our algorithm in this case can be
given by the follow theorem.

THEOREM 2. Again let A denote the total number of opera-
tions involved in Hamming distance estimations for all slices in the
original packet, using the underlying EEC. If there are both inser-
tions and deletions, the computational complexity is O($> ).

PROOF. Similar to the proof of Theorem 1, we let s; and hy, de-
note the total number of operations and number of iterations in the
k-th level, respectively. When there are both insertions and dele-
tions, the algorithm first has to make O(¢) hypothesis testings to
find out the actual number of insertions and deletions in the packet,
each of which has a computational complexity O(¢A). Hence this
“exploratory” phase aimed at finding the very first perfect match
has complexity O(¢>A).

Once the first perfect match is found, the gEST routine then op-
erates on the “residue” of the packet iteratively to find more perfect



matches. The complexity of each iteration here can be as large as
,'71
(ﬁ)J ¢A — which is ¢ times of that in EST — because the

packet residue may need to be shifted around up to ¢ times in order
for a perfect match to emerge. The total computational complexity
of this second phase is

=1

=¢(p+1) 1—(%) k]A
< é(o+ 1A
=0(4°A)

Therefore the total computational complexity of both phases is
O(¢*A) + O(¢*A) = O(¢*A). O

The number of insertion and deletion errors in a packet is usually
very small. In such cases, the decoding computational complex-
ity of our algorithm is larger than that of the underlying EEC (for
channel that are free of insertion/deletion errors) by only a small
multiplicative factor.

3.2 Identifying ‘“Clean Slices”

Recall that our iterative algorithm randomly deletes n; phantom
bits and inserts nq phantom bits, and divides the packet Z into gz@—&— 1
slices. The goal is to find a clean slice — which must exist if the
“n; +nq” hypothesis is correct — by shifting the slices around. Fur-
thermore, in cases where there are only insertions or only deletions,
there must exist a perfect match (a slice where the index of every
bit relative to the beginning of the received packet is equal to that
relative to the beginning of the original packet) in each iteration,
provided the corresponding hypothesis is correct. This property is
proven in the following lemma.

LEMMA 1. If there are only insertions (or deletions), there is
at least one slice which is a “perfect match”.

PROOF. We prove this lemma constructively. We first define
two pointers a and b, which are initialized as a = b = 1. Denote
the number of insertions (or deletions) in the j-th slice by ¢;. If
le)_: . @7 = 0, the b-th slice is a perfect match. Otherwise, update

atobandbto b+ Z?:a ¢; and repeat these steps. Since there are

j)ill ¢; = ¢ insertions (or deletions), we always have b < ¢+ 1.
Thus we can finally find a perfect match in the (¢ + 1) slices. [

As an intuitive explanation of the proof, one can imagine this
as a race between the actual insertions (or deletions) and the phan-
tom deletions (or insertions). Since they are equal in number, they
should “meet” each other at some point by the finishing line, which
indicates that there should be at least one perfect match through-
out the packet. Therefore, when there are only insertions (or dele-
tions), it is unnecessary to shift the packet around to find a “clean
slice”. This, in addition to the fact that there is no need to test all
“n; +mnq” hypothesis, reduces the computational complexity of the
general algorithm (for handling the presence of both insertion and
deletion errors) by a multiplicative factor of ¢.

For more complex cases where there are both insertions and dele-
tions, even when the “n; + ng” hypothesis is correct, there might
still be no perfect match, as we have shown earlier. However,
we can prove similarly that a clean slice, albeit shifted, must ex-
ist, when the “n; 4+ ng” hypothesis is correct. This slice can then

be found by the aforementioned shift-and-compare steps in Algo-
rithm 5. In the following section, we will analyze the threshold-
based approach to determining whether a (shifted) slice is clean.

3.3 Mean Square Error Analysis

Once the algorithm has identified the segments that are likely to
contain insertion and deletion errors, it uses the remaining “clean”
segments to estimate the number of flipping errors. The accuracy
of the BER estimation thus depends on how reliably we can iden-
tify which slices are clean (do not have any insertions or deletions
within them) at each iteration. As described before, the decoding
algorithm tries to identify clean slices by comparing the decoded
Hamming distances against a pre-determined threshold.

There are two ways we can make an error in identifying clean
slices: a false alarm (FA) when we tag slice as dirty even though
it is clean, and a miss (M) when we do not tag a dirty slice. False
alarms and misses have different effects on the BER estimation.
When the algorithm terminates, the segments which have been la-
beled as “clean” will be used to estimate the number of flipping
errors in the entire packet. When a miss occurs, this estimation can
include segments which have an insertion/deletion error, which will
typically have a higher error rate, which in turn biases our estimate
upwards. However, as a miss happens only when the estimator is
smaller than the threshold, this bias is negligible.

False alarms affect the estimator in a different way. When a false
alarm occurs, the corresponding slice is simply dropped in the cur-
rent iteration, but it will still be involved in the next iteration. If a
false alarm occurs in all of the clean slices, the algorithm will di-
rectly go to the next level and re-slice the packet. The overall effect
of the false alarm is a slight increase in the total amount of dropped
segments, up to O (¢ + mdr a) on average, where dr 4 is an upper
bound on the false alarm rate.

Let d denote the our estimator for the number of flipping errors
in the received packet. We measure the performance of our estima-
tor using the standard Mean Square Error (MSE) metric, which is
defined as

MSE(d) = E[(d — d)?] = Var(d) + E[Bias(d)]
where Bias(d) = E[d] — d.
Theorem 3 below shows how we can incorporate uniform (over
all slices visited) bounds on the false alarm and miss probabilities
into the accuracy of the flipping error estimator.

THEOREM 3. Let Es be the event that a certain slice s contains
an insertion or deletion, and let E; be the event that our algorithm
labels it as such. Let 6 a be an upper bound on the probability of
false alarm,

Pr(E;, ES) = Pr (E;|FS) Pr(FS) < dra forallslices s,
and §pr be an upper bound on the probability of a miss,
Pr(F;, E;) = Pr (F;|ES) Pr(Es) < m  forallslices s.

Then the mean square error of our estimator on the number of flip-
ping errors, d, is bounded by

. d> s d(2 +6ra)
MSE(d) = — +dmD —m . 1
SE(d) O<C+M +1_(%+5FA) (D

PROOF. Since MSE(d) = Var(d) + E[Bias(d)?], we will
calculate the variance and bias of d respectively in the follows.

We first define some notations that will be used in our proof.
Let Z and 2’ denote the received packet and the selected part of it.



Let d and d’ denote the estimator for the number of flipping errors
in & and @’ respectlvely Let d and d’ denote the actual number
of ﬂlppmg errors in Z and #’. Let B and B’ denote the bias of
dand d’. Let 0 < @ < 1 denote the proportion of the dropped
part of the packet. Define D’ = (1 — 6)D. Generally we have
E[B] = O(6;D) and E[B'] = O(83D"). The variance of d’ is
given by
Var(d'|d') = Ep/[Var(d'|B’,d')] + Varg (E[d'|B’,d])

Recall the variance of tug-of-war sketch based EEC given in [5],
we have

Ep [Var(d’|B’, d’)] —E { (2(d + B')* —2(d' + B")) Id'}
E

IN

[2(d/ + B/)2|d/}

2(d/2 +2d/B/ +B/2)|d/]

Ol

oz
(=

=0 d+\/WD)>

—

l\J

>4 2d'suD + 5MD,2)>

and

Varg (E[d'|B’,d]) = Varg/(d + B'|d)
= Var(B")
=E[(B - E|

=E[(B)] -

B')’]
E[B]°

= E[B'|D' - E[B)?
-0 (6MD’2 - 5,%,1)’2)

-0 (6MD’2)

In the first inequality, (EB)—,,)2 < E o * because g—l, < 1. Since part
of the segments are dropped at the end of the algorithm and the
overall flipping error of the received packets is estimated just from
the selected ones, sampling errors may introduced to our estimator.
Since d = ﬁdA’, according to the proof of Theorem 2 in [12], we
have

Var(d) ~ ﬁVar(de' =(1-0)d)+ 1d—_99
= ﬁ -0 (% ((1 —0)d+ \/ED’)2 + 5MD’2>
do
19

B . df
0< +émD +—1—9>

As to the bias of d, we have

E[B’] = O (6uD?)

Generally, we have § = O (% + 0ra). Thus

MSE(d) = Var(d) + E[B?]

d? s df
= O (7 + 5]\/ID + m>
(£ +6pa) )

2
—0 (L 4 pypr 4 L 0r)
c 1—(E+6FA)

O

Here we offer an intuitive explanation of Theorem 3. The first

term in the expression for the MSE, O( %), is the same as that of
a standard EEC using tug-of-war sketches when there are no in-
sertion/deletion errors. The additional error terms result from the
need to deal with insertions and deletions errors. The second term
corresponds to the aforementioned bias introduced by a miss. D
is a parameter determined by the channel conditions, which is not
tunable in our algorithm. It characterizes to what extent potential
fluctuations of the BER across the packet can negatively impact the
accuracy of the estimator. The third term is the “sampling error”
since we estimate the BER only from up to m — ¢ clean slices
“sampled” out of a total of up to m slices. Even with this sampling
error term alone, it is clear that our algorithm requires the num-
ber of segments to be proportional to the number of insertions and
deletions. This suggests that the coding overhead of our scheme is
O(mlogn) = O(¢logn). Therefore, we are paying only a mul-
tiplicative factor of ¢ for making idEEC robust against insertion
and deletion errors. As an extreme case, when ¢ = 0, we have

MSE(d) = O (% + fijTFFAA) The second term, O (ﬁgFAA),
comes from the fact that even if there is no insertion/deletion it
is still possible for the estimator to exceed the threshold due to the
rare event that the underlying ToW sketch grossly overestimates the
Hamming distance. Although 4 # 0 when ¢ = 0, in Lemma
2 below we’ll show that this cost is very small since it decreases
exponentially when the number of codeword c increases.

It remains to determine a uniform bound on the false alarm and
miss probabilities for our algorithm. Lemmas 2, 3, and 4 below
bound these probabilities when the slice s is chosen independently
of the sketches and bit errors. These conditions hold strictly for the
first iteration of the algorithm; in latter iterations, however, a weak
dependence develops between the actual bit errors and which slice
is the “cleanest” in what remains of the packet (i.e., the “packet
residue”). Our analysis ignores this weak dependence and therefore
is an approximation from this point on. In the i-th iteration of our
algorithm, the threshold for determining whether or not a slice is
clean is given by a; = B% . l—f where 8 > 1 is a constant, D is
the upper bound on the total number of flipping errors for the entire
packet, S = gz@ + 1 is the number of slices at the current iteration,
[ is the length of the entire packet and /; is the length of the part of
the packet that remains at the ¢-th iteration.

Let ¢ denote the number of sketches (codewords) for each seg-
ment and d denote the actual number of flipping errors in the re-
ceived packet. The upper bound of the false alarm probability is
given by Lemma 2. Its proof is provided in Appendix A.

LEMMA 2. Consider a slice s chosen independently of the bit
errors and sketches. Let Es be the event that this slice contains an
insertion or a deletion, and let E'. be the event that our algorithm
labels it as such. Then if ¢ = 0, we can bound the probability of



false alarm with
Pr(ELE) <e t (~verv@ine)®

For ¢ # 0, we have
2
_ _1(_.c (2—71)c
Pr(E;7E5)<1—<1—e Hoveny ) )

. (1 — A167A2'7—1’8%)
where 0 < 11 < 1, A1 > 0 and As > 0 are constants.

Remark: In the proof of Lemma 2, we have proposed a tighter
probability tail bound on the variance of the tug-of-war instance
used in our scheme. In particular, our technique improved the
bound from vanishing quadratically fast to vanishing exponentially
fast. However, this improvement is restricted to the case when the
vectors at issue are binary and does not apply to the tug-of-war
sketch in general.

For the miss probability, if ¢ = 0, each slice in the packet is
a clean slice, meaning Pr(E,) = 0, and so Pr(E,, E;) = 0 as
well.

When ¢ # 0, and if there are only insertions or only deletions
in the received packet, the probability of a miss is bounded by
Lemma 3 below, whose proof is given in Appendix B.

LEMMA 3. Consider a slice s chosen as in Lemma 2, and sup-
pose that there are only ¢ insertions or only ¢ deletions in the re-
ceived packet. If ¢ # 0, forany 0 < 71 < 1, 72 > 2and e > 1, we
have the following bound on the miss probability

PT(E;y ES)

<1- <1 - ei<ﬁ+\/@)2> <1 — e{%)%)

. (1 — fi(d, S)eff2(d’s)'”€%) <1 — 2796 - #)
where f1(d, S) and f2(d, S) are functions of d and S.

If there are both insertions and deletions in the received packet,
it is more difficult to distinguish the flipping errors from the mis-
matched bits caused by insertions and deletions, as an insertion and
an deletion that are close together may cancel each other out. In [9],
it is assumed that there is a minimal gap between two insertion or
deletion errors, as synchronization errors that cause such insertions
or deletions often result from a slow drift in clock synchronization
and in this case it takes some time for this drift to build up to cause
another synchronization error. Here we make a weaker assumption
that there is a minimum gap between an insertion and a deletion
(but two insertions or two deletions could occur to bits very close
to each other). With this weaker assumption, the miss probability
is given by Lemma 4. Its proof can be found in Appendix C.

LEMMA 4. Suppose there are both insertions and deletions in
the received packet, ¢ # 0, and let A denote the minimal gap
between insertions and deletions. Consider a slice s chosen as in
Lemmas 2 and 3. If A > max{Tg/B%, TQE%}, then we have the
following bound on the miss probability

_ max{d1,d2} ifS<op+1
Pr(E,,E.) < t }
02 otherwise

01 and 62 are defined as
T9—2)2
G=1— (1—6*(372) ) (1—272/3.$)

§2=1- (1 - ei(ﬁﬂ/@)z) (1 - e*(?rf)%)

. (1 — f1(d, S)efb(d’s)'”é%) (1 — 219€ - #)

where f1(d, S) and f2(d, S) are functions of dand S. 0 < 11 < 1,
T9 > 2 and € > 0 are constants.

Remark: fi(d,S) and f2(d, S) in Lemma 3 and Lemma 4 are
factors from Chernoff bound and can be calculated by numerical
methods. When d — 0, we have f1(d,S) — 1 and fi(d,S) —
00. T1, T2 and € in Lemma 2, Lemma 3 and Lemma 4 are constants
used to balance the terms in the bounds. One may adjust these
factors to make the bound tight enough in different scenarios. As
an extreme case, in Lemma 3 when d — 0, we could have the miss
probability Pr(E,, Es) — 0 by making 71 — 0, 72 — oo and
€ — 00.

4. EEC UNDER HETEROGENEOUS BIT
FLIPPING MODEL

The proposed scheme for accounting for insertion and deletion
errors can be extended to the more general case where the bit-
flip probability is different in different portions of the packet. The
mitigation strategy discussed above depends only on finding gross
differences in the mismatch between (re)encoding of the received
slices and the code; it is relatively insensitive to subtle variations in
the bit error rate.

Throughout the procedure, an estimate of the bit error rate in
each of the m segments, P = [p;]1<;<m is maintained. In Step 14
of Algorithm 4 and Step 21 of Algorithm 5, the algorithm not only

returns the number of flipping errors d; in the clean slice Z, but

also stores the estimated BER p; = % of each segment b; in

the slice, where dAZ is the estimated Hamming distance between the
transmitted segment and the original one. On finishing all the iter-
ations of the algorithm, we can treat this set of estimates as a dis-
crete set of data points tells us about the BER in different regions
of the packet. With the segments containing insertion/deletion er-
rors removed, the proportion of bits left in the packet we can use to
estimate the BER is at least © ((m — ¢)/m).

The type of information we have about the channel might affect
how we combine these estimates in each segment. For example,
if we are confident that the bit error rate is changing very little
throughout the time it takes to transmit the packet, we might simply
average the estimates in each segment. Otherwise, if we have some
type of statistical model for how the error rate is changing in time,
we might weigh this against our estimates in a Bayesian framework.
In particular, if we believe the channel is being affected by “deep
fades” which are very localized in time (within one packet), we can
imagine detecting and segmenting these fades.

5. EVALUATION

In this section, we evaluate the accuracy of the BER estimation
made by idEEC using simulation experiments with various parame-
ter settings. We simulate unreliable communication channels where
insertion, deletion and substitution errors may occur during trans-
mission. In order for “enough” insertion and deletion errors to oc-
cur despite their low occurence probability, the length of the packet
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Figure 3: Empirical Results of Estimators for Insertion-Only
Channels.

is set to I = 10° bits. For the results to converge properly, each
value in each result in this study is obtained by averaging 1,000
simulation runs for it to converge properly. In all experiments, the
packet is divided into m = 50 segments, each of which is coded
by ¢ = 5 tug-of-war codewords.

In our experiments, we vary the actual BER and compare it with
the estimated number of flipping errors p, the estimated number of
flipping errors d divided by the packet length [. In this way, we ob-
tain the empirical MSE’s of the estimator under various parameter
settings, which be plotted in the following two figures.

We start with the cases where there are only insertions or only
deletions. Here we only present the insertions-only cases, since
the deletions-only cases have identical performance characteris-
tics. Fig. 3 shows the accuracy of the idEEC scheme under a set
of different BER’s and three different numbers of insertion errors
(ni = 1,5,10) in a log-log plot. We observe that the MSE of the
estimation grows roughly quadratically with the actual BER in all
three cases, as predicted by our analytical BER formula in Theo-
rem 3. In other words, the average relative estimation error remains
roughly a constant when the actual BER increases.

Next, we present the cases where there are both insertions and
deletions. We fix the number of deletions ng to 5 and let the num-
ber of insertion n; vary across three different values 0,1,5. The
experimental results are shown in Fig. 4. We observe that the low-
est line (corresponding to n; = 0,4 = 5) is almost identical to
the middle line (corresponding to n; = 5,nq = 0) in Fig. 3 as
expected. We observe also that we pay a steep price in terms of the
MSE increment — as reflected by the wide gap between the low-
est line and the middle line — for having just one insertion (i.e.,
n; = 1). In comparison, this price becomes much smaller there-
after, as reflected by the much narrower gap between the highest
line (n; = 5) and the middle line, even though four more insertions
are introduced. This behavior is expected since when there are both
insertions and deletions, the decoding process becomes more com-
plicated and error-prone. It is also consistent with that predicted
by the analytical BER formula. We observe also that when there
are one or more insertions, the MSE grows more than quadratically
with the actual BER, which implies that the average relative esti-
mation error grows larger with the actual BER.

Mean Squared Error (MSE)

BER

Figure 4: Empirical Results of Estimators for Insertion and
Deletion Channels.

6. CONCLUSION

Error estimating coding is a novel technique for measuring the
bit error rate, with applications towards improving performance of
wireless network where recent emerging systems can leverage par-
tially correct packets [2]. However, the existing approaches [2, 5,
6] meet challenges in insertion or deletion channels. In this pa-
per, we designed idEEC scheme that allows for the estimation of
the number of flipping errors in a packet despite the existence of
bit insertions and deletions during the transmission. Our idEEC
scheme can build on any existing EEC scheme, with encoding effi-
ciency proportional to that of the underlying EEC scheme. Taking
the plain vanilla tug-of-war sketch as the underlying EEC for ex-
ample, our design provides provable estimation quality with rather
low overhead. The efficacy of our approach has been demonstrated
both theoretically and experimentally. To our knowledge, this work
represents the first study of building EEC for insertion and deletion
channels.
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APPENDIX
A. PROOF OF LEMMA 2

PROOF. Let &; denote the estimator for the number of bit flip-
ping errors that occur to the i-th slice 7; in the received packet.
Recall that this estimator is simply the mean of the c estimations
given in Algorithm 1.

2

Xj=Y=| Y busjlk]
keT;
by #b},

ji=1,2... ¢

each of which is obtained from taking the difference between the
j-th counter value 3=, ;. bis;[k] encoding the slice in the tug-of-
war sketch that was sent along with the packet, and 3, ;. 55 1K],
the j-th counter value computed from the slice in the received
packet, and then squaring the difference up.

fi:lzszlzyf
¢ = ¢ =

‘We will show that, if the slice T; is indeed clean, this estimator is
sharp in the sense, with high probability, the estimated value are
very close to the real value. By the Central Limit Theorem, Y;
is approximately a Gaussian distributed random variable, thus &;
is approximately a chi-square random variable with ¢ degrees of
freedom. Recall the tail bounds for chi-square distributed variables
given in [7], for a standard chi-square random variable X ~ Xf,
we have

P(X —c>2ycx+2z)<e™ " 2)
Plc—X >2/cx)<e ” 3

As shown in Step 7 to 12 of Algorithm 4 and Step 11 to 19 of
Algorithm 5, in each iteration, after attempting all kinds of shift of

the packet, the algorithm chooses the slice with the minimal esti-
mated Hamming distance to the original packet, and test if this slice
is a “clean one”. If the selected slice in this iteration contains no
insertion/deletion but fails the test, a false alarm happens and the
slice is declared as a “dirty one”. In such a case, the estimator for
the number of flipping errors in this slice is £ = min; &;.

Here, we only derive the false alarm probability for the first iter-
ation. As the threshold changes proportional to the remaining part
of the packet, it’s easy to generalize this result to other iterations.
Let d; denote the number of flipping errors in the i-th slice. Define
random variables x;, ; as

{ 1 if the j-th bit in the ¢-th slice is flipped
Tij =

0 otherwise

Apparently x; ; ~ Bernoulli(p) and d; = Y7 | x; ;, where n;
is the length of the ¢-th slice.

When ¢ # 0, we have S > 2. By the theory of order
statistics [3], ms, ¢ = 1,2,...,.5, is approximately a Beta dis-
tributed random variable' with shape parameters 1 and S — 1, i.e.
1m; ~ - Beta(1,S — 1). According to Chernoff bound, for any
t > 0 we have

Pr(d; > mion) < e Pt E[e) “4)

where 0 < 71 < 1 and

E [edit} =E [ezﬁl z”'t] (5)
= E,, [E [ ] ©)
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< / (5 —1)(1 —w)F 72l P gy, (10)
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6(et—1)D
- (N(S-1)-T(S—-1,(c —1)D))
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where I'(S — 1) is the gamma function and " (S — 1, (¢" — 1)D)
is the upper incomplete gamma function.” The inequality (8) holds
since 1 + = < e” for any = > 0.

Minimize the right-hand side of Equation (4) over t > 0, we
have

. —riantyardit —A
mine T E[e®'] = Aje” 2
>0

where A1 > 0 and A2 > 0 are deterministic constants.

' A random variable 0 < X < 1 that is Beta-distributed with shape

parameters « and 3 is denoted as X ~ Beta(a, 3). The PDF of
3 . _ T(a+B) ,a-1 —1

Beta(a, B) is f(z; 0, B) = reyry e (1 — z)# 1

*The gamma function is defined as I'(s) = [;~¢" e dt.

The upper incomplete gamma function is defined as I'(s,z) =

[t e dt
xT



Since £ = min; &;, we have
Pr(EL|Es)
= Pr(¢ < a1|E;)
> Pr(& < oau|E)
> Pr (fl <di+ (1 —11)oa,d; < T1a1|FS)
— Pr (& <di+ (1 -1 |d¢ < TlahES)
- Pr(di < mion| Es)
(1_7-1)al |di <7'10(17Es) (11
- Pr(d; < mion)

> Pr(&<di+

>P <£L<c+ (1—7'1)

- dl dz

d; < 7'10517E )
-PT(di < 7'1051)

> Pr (Xf <c+ Qc) (1 — Aje=A2m1en) (12)
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In the inequality (11), Pr (d; < mion| Es) > Pr(di < T101)
because the smaller the slice is, the less possible it is corrupted,
and vice versa. Also, the inequality (12) holds since % ~ X2

and d;/a1 > 71. And finally, the last inequality follows from

2
Inequation (2), in which z = — = ( Vet /8= Tl)‘) .

Thus, when ¢ # 0 the probablhty of false alarm is

13)
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When ¢ = 0, we have S = 1. Let 11 =

% in Equation (4), we
have

P”I‘(di 2 Tlal) = P”I‘(di 2 D) ~0

Similarly, we can prove
Pr(E,,E.) < Pr(E,[E.)
=1 - Pr(EI[E.)
<1- (1 - e*%(*ﬁ+\/<2’3*1>6)2>

_ i (-veryEine)”
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B. PROOF OF LEMMA 3

PROOF. If there are only insertions or only deletions in the re-
ceived packet, there is at least one clean slice in each iteration.
Similar to Lemma 2, we only derive the miss probability for the
first iteration as the derivation can be generalized, in a straightfor-
ward manner, for other iterations. In the first iteration, let £; denote
the estimator for the i-th “clean slice”. Let &, denote the estimator
for the i-th “dirty slice”. Define £ = min; &; and £’ = min; &].

Let t = argmin; &,. Slice Z; is the dirty slice with minimal
estimated Hamming distance. Let \; denote the length of its mis-
matched part. Let z;; denote the distance between the j-th inser-
tion (or deletion) and the k-th phantom deletion (or insertion). As
shown in Step 6 of Algorithm 4 and Step 10 of Algorithm 5, the
phantom deletions (or insertions) are uniformly distributed. Thus,

d d 1
Pr (zj,k < TQE§> =2 Teg

where 72 > 2, € > 1 are constants. Since A} > min; x{z;x}, we
have

d
1mln {zjp} < T2e—5
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When )\; is given, we have E[¢'] > 2 Thus
/ d d d
T (§ > e§) > Pr <§ > 657)\,5 > 7'265)
/ d|, d ; d
= Pr <§ > e§ Ay > 7'26§> Pr ()\t > 7'26§>
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- Pr ()\2 > TQE%)
> Pr <XE > %> <1 — 2T9€ - @> (14)
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The inequality (14) holds since [ ] ~x2,E[¢] > %; and % >
T2. The last inequality follows from Inequation (3), in which z =

—(?—;22)20. Similar to Lemma 2, we can prove

Pr(¢ < 6%)

> (1 — eii( \/_Jr\/m) ) (1 — f1(d, S)e*b(d,é‘)-ne%)

where f1(d, S) and f2(d, S) are functions of d and S.
Furthermore, we have

Pr(Es) > Pr(§ <€)

> Pr <§ < e%@' > 6%)
Pr <£ < eg

"> e%) Pr (f' > e%)
r <£ < e%) Pr (f’ > e%>




Thus
PT(E_./s‘v ES)
= Pr(E.|E;s)Pr(Es)
< Pr(Es)
=1- Pr(E;)
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C. PROOF OF LEMMA 4

PROOF. (Notations used in this proof is identical with that used
in the proof of Lemma 3.) If there are both insertions and deletions
in the packet, when S < ¢ + 1 it is possible that there is no clean
slice in some iterations. If this happens, we have

Pr(Es) =1
and
Pr(E%, Bs) = Pr(E{|Es)P(E:)
= Pr(EL|E)
= Pr(¢ <ai) (15)
=1-Pr(¢ >a)
<o

The proof of the above upper bound for Pr(¢’ > 1) is quite
similar to the proof of Pr (¢’ > €%) in Lemma 3. The only differ-
ence is the lower bound of E[¢']. Specifically, we want to prove

Pr(E[E) > gmaan) > 1~ 2728 22 (16)

Note that A\; > min; x{z;} if there are only insertions or only
deletions in the selected slice. Otherwise, there are at least one
insertion W;,,s and one deletion W ,; in the slice. Without of loss
of generality, assume Wy, is located on the right of W;,s, and
there’s no other deletions between W, s and the left end of the
slice. Let &+1 denote the part of slice between Wi,s and We;.
Let & o denote the part between W, and the left end of the slice.
Then, either &1 is mismatched or & 2 is mismatched. Since the
length of & ; is larger than A and the length of Z; > is larger than
min; 5 {2;%}, we have A\{ > min {min; ,{z;x}, A}. Hence,

Y

Ble) > 2

A%

1
3 min {rg_nknzj,mA} a7

Furthermore, we have

Pr (min {mikn Zj.ks A} < 7'2041>
7,

= Pr (miknzm < Tzal) (18)

s
D

< 272f3 - ¢T

Thus, Inequation (16) can be obtained by combining Inequation
(17) and (18).

When S > ¢+1, there must exist at least one clean slice. Similar
to that in Lemma 3, we can prove

Pr(E7L, E.) < Pr(E,) < 6, (19)

Thus the lemma follows by combining Equation (15) and Equa-
tion (19). [



