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ABSTRACT
We study the notion of regret ratio proposed in [19] to deal
with multi-criteria decision making in database systems. The
regret minimization query proposed in [19] was shown to
have features of both skyline and top-k: it does not need
information from the user but still controls the output size.
While this approach is suitable for obtaining a reasonably
small regret ratio, it is still open whether one can make the
regret ratio arbitrarily small. Moreover, it remains open
whether reasonable questions can be asked to the users in
order to improve efficiency of the process.

In this paper, we study the problem of minimizing regret
ratio when the system is enhanced with interaction. We as-
sume that when presented with a set of tuples the user can
tell which tuple is most preferred. Under this assumption,
we develop the problem of interactive regret minimization
where we fix the number of questions and tuples per ques-
tion that we can display, and aim at minimizing the regret
ratio. We try to answer two questions in this paper: (1) How
much does interaction help? That is, how much can we im-
prove the regret ratio when there are interactions? (2) How
efficient can interaction be? In particular, we measure how
many questions we have to ask the user in order to make her
regret ratio small enough.

We answer both questions from both theoretical and prac-
tical standpoints. For the first question, we show that inter-
action can reduce the regret ratio almost exponentially. To
do this, we prove a lower bound for the previous approach
(thereby resolving an open problem from [19]), and develop
an almost-optimal upper bound that makes the regret ratio
exponentially smaller. Our experiments also confirm that,
in practice, interactions help in improving the regret ratio
by many orders of magnitude. For the second question, we
prove that when our algorithm shows a reasonable number of
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points per question, it only needs a few questions to make
the regret ratio small. Thus, interactive regret minimiza-
tion seems to be a necessary and sufficient way to deal with
multi-criteria decision making in database systems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

Keywords
Skyline, Top-k, Regret Minimization

1. INTRODUCTION
Assisting the end-users in finding the most desired tuples

in the database is an important task in many application
domains. Top-k [9] and skyline [1, 6] queries are two well-
studied tools in such settings but they have some drawbacks
that motivate the proposals of many later queries. In this
paper, we adopt the notion of maximum regret ratio pro-
posed in [19]. To motivate the notion of maximum regret
ratio, consider the following example from [19].

Suppose Alice is searching for a car with high miles per
gallon (MPG) and high horse power (HP). Note that horse-
power comes at the expense of fuel economy. How does a
car dealer’s database system best assist Alice in trading off
between these two criteria?

One way is by using the top-k operator (see [9] for a re-
cent survey). This approach is based on a widely-accepted
assumption that users pick tuples based on their utility func-
tions (or ranking functions). This operator asks the users
to provide their utility functions and then finds the best k
tuples in the database that maximize the function. For ex-
ample, Alice could indicate that she gives weights 70% to
the MPG and 30% to the HP. In this particular case, where
Alice has a linear utility function, the system could use a
well-developed system such as PREFER [8] and employ so-
phisticated techniques such as ONION [4] and Ranked Join
Indices [22] to effectively assist her. However, the major
drawback of this approach is that asking Alice for her util-
ity function is unreasonable since she might not know what
weights she wants to give to each criterion.

An alternative for avoiding this problem is the skyline op-
erator proposed by Börzsönyi et al. [1]. (For further details,
see, e.g., [6] and references therein.) This operator asks the
customer only for a set of criteria and outputs everything
that the user might be interested in. For example, if Alice



specifies that she wants to maximize the MPG and the HP,
then the operator will output all the cars based on these cri-
teria. A car will not be shown if there is another with more
MPG and HP. However, this approach has a major drawback
in that it cannot control the output size. In fact, the skyline
size is usually large in practice. This poses a big challenge
in adopting the skyline operator even in giving users the big
picture of the database, leaving almost impossible the task
of using it as a stand alone operator.

To deal with the drawbacks of top-k and skyline discussed
above, many papers proposed different approaches (e.g., [2,
3, 5, 7, 12, 15, 18–21, 23, 24]). In this paper, we adopt the
notion of maximum regret ratio when users have linear util-
ity functions proposed in [19] since it makes no additional
assumptions about the users. Moreover, it has attractive
properties such as scale invariance and stability, and one can
guarantee the effectiveness of this approach independent of
the database size (see further discussion and details in [19]).

Intuitively, the maximum regret ratio is as follows. Given
a list of k tuples, we say that a user is x% happy with the
list if the utility she obtains from the best tuple in this list is
at least x% of the utility she obtains from the best tuple in
the whole database. We say that the happiness ratio of the
user on this list is x%. Since we are hoping to make x large,
we will focus on minimizing the smaller quantity called the
regret ratio which is simply (100 − x)%. The problem of
minimizing the regret ratio aims at making the regret ratio
as small as possible, given the output size limit of k without
asking the user any questions. This problem has features
of both top-k and skyline operators, i.e., the output size
(k) can be controlled (like top-k) and it does not need any
feedback from users (like skyline).

In [19], it is shown that a reasonably small regret ratio can
be achieved by displaying only a few tuples. For example,
to guarantee a maximum regret ratio of 10% in the worst
case when there are two criteria, one has to show only ten
tuples. Moreover, experiments in [19] show that even for the
rare case of ten criteria, showing ten tuples still makes the
maximum regret ratio below 35% in practice. This makes
the notion of maximum regret ratio suitable for giving a “big
picture” of the database.

Despite this good news, it remains open whether interac-
tions with users will help. Intuitively, questions can make
the maximum regret ratio smaller even when we display the
same number of tuples. Moreover, it might help the user find
the most desired tuple in the database (i.e., make the max-
imum regret ratio zero). Without interactions, the latter
task is impossible while the former is very hard to achieve
when there are many criteria and one wants a very small
maximum regret ratio.

For example, while experiments in [19] suggest that, in
practice, a maximum regret ratio of 35% can be guaranteed
using only ten tuples for the case of ten criteria, it turns out
that one needs more than a thousand tuples to guarantee a
1% maximum regret ratio (as we will show later in this pa-
per). The situation is even worse from the theoretical point
of view since, in the worst case, there exists a database such
that a maximum regret ratio of 10% cannot be guaranteed
without displaying all tuples—and the database could con-
tain billions of tuples! (We will show this fact later in this
paper.) Thus, while having no interactions was proved to be
sufficient in presenting a “big picture” of the database (by
guaranteeing a reasonable regret ratio), it is not suitable for

targeting a small maximum regret ratio or dealing with a
large number of criteria.

In this light, we study how interaction helps in this paper.
The first consideration is what kind of questions should the
system ask the users? Since we do not want to run into
the issue of asking a question that is too hard to answer
by users, as we faced earlier in the case of top-k query, we
try to make no additional assumptions about the users. In
particular, we observe that in order to make the whole area
of multi-criteria decision making well-defined, it is always
assumed implicitly that the users know which tuple they
desire the most when presented with choices. We therefore
make only this assumption: The users are able to tell which
tuple they prefer the most from a set of tuples presented to
them.

The above observation leads us to the following frame-
work. The database system interacts with the end-user in
rounds. In each round, the system displays some tuples
to the user (these tuples do not necessarily come from the
database). Then, the user picks the tuple that she prefers
the most. At any time, the system can notify the user that
there are no more tuples to display or the user can notify
the system that she wants to stop answering questions—at
this point, the system can only display tuples without ask-
ing any further questions. The user is now free to pick one
of the tuples presented to her so far as her desired tuple.

We are interested in minimizing the minimum regret ratio
of the user on the set of all displayed tuples (in any round).
In other words, we compare the happiness of the user in two
scenarios: (1) when the user spends the effort to go through
and find her favorite tuple in the entire database, and (2)
when she picks her favorite tuple among some displayed sub-
set. Our goal is to make the user’s happiness in the latter
case as close to that in the former case as possible.

Although the above framework is quite flexible in that it
allows the system to display any tuple to the user, even those
outside the database, its natural applications require the
system to have one important property called truthfulness.
Imagine that Alice is looking for a car from some website
that runs our system. Naturally, the website should try to
show the best car it has to attract Alice to stay and answer
more questions. Now, suppose that Alice sees a car having
60 MPG and 200 HP in one set of the tuples the website
displays, and gets excited by this car. This encourages her
to put more effort in answering the questions in the hope
that the website might be able to find her an even better
car. However, if in the end she found out that the best car
the website can offer has only 50 MPG and 190 HP, she
might think that this website is a fraud (using a bait-and-
switch tactic) and never come back. Thus, although the
system may want to show tuples that attract users, it must
always be truthful: The tuple that the user picks (i.e., her
favorite tuple among all displayed tuples) must be in the
database. We note that previous approaches such as Top-k
and skyline are truthful but suffer from other problems as
discussed earlier. Displaying only tuples in the database is
a stronger form of truthfulness and is crucial in some cases.
The algorithm in this paper does not satisfy this stronger
property and we leave this as an interesting future direction.

Moreover, in order to attract users to answer questions as
long as they can, it is desirable (although not crucial) that
the system is informative and ρ-progressive. The system is
informative if it is able to inform the user how much better



she can expect the best tuple in the database to be, com-
pared to the displayed tuples. This helps the user decide
whether she should continue answering questions or stop.
The system is ρ-progressive if the user’s regret ratio is im-
proved by a factor of ρ in every round. This gives the user
a feeling of improvement and thus encourages her to answer
more questions. We will define these properties formally in
the next section.

The above framework generalizes the problem of mini-
mizing the maximum regret ratio in [19] since it adds inter-
actions between the system and users. The main problem
of this paper is how much does this interaction help. In
particular, we consider the following problem which comes
from [19]:

How small can the user’s regret ratio be made
when the system can display at most k tuples to
the user?

An equally important question is the following:

How many tuples does the system need to display
in order to make the user’s regret ratio at most
ε, for some 0 ≤ ε ≤ 1?

We are interested in comparing the answers to the above
questions in the cases when interactions are used or not used
(in both cases assuming linear utility preferences). We note
that we are also interested in the special case of ε = 0, i.e.,
we want the user to find her favorite tuple in the database.

Besides comparing with the previous approach, we are also
interested in measuring the efficiency of the new approach—
we would like to know if this minimal assumption we made is
enough to make the system efficient or if we need a stronger
assumption. In particular, since answering questions needs
effort on the part of the user, we are interested in the fol-
lowing question:

How many rounds do we need to ask the user
to get the user’s regret ratio below ε, for some
0 ≤ ε ≤ 1?

The parameter that comes into play in answering the
above questions is the number of tuples that we can display
per round (since it turns out that the more tuples we display
per round, the faster the regret ratio decreases) which can
be specified either by website creators or end-users. There-
fore, we study the effect of this parameter on the number of
rounds.

Our results
In this paper, we show that interaction is necessary and
sufficient. From a theoretical point of view, our main results
are upper bounds (with interactions) and lower bounds (for
the case of no interactions) of the cases where there are and
are not interactions:

• When interactions are allowed, we develop an algo-
rithm called UtilityApprox that guarantees a regret
ratio of ε by displaying O(sd logs(d/ε)) tuples (equiv-
alently, O(d logs(d/ε)) rounds), where s is the number
of tuples displayed per question and d is the number
of criteria chosen (by the user) from a larger set of
attributes. Moreover, we show that this algorithm is
truthful, informative, and progressive. The algorithm
is also efficient as it streams through the database just
once in each round.

• We show that UtilityApprox is almost optimal, i.e.,
any interactive algorithm needs to display Ω(sd logs(1/ε))
tuples in order to achieve a regret ratio of ε.

• In contrast to the positive result for UtilityApprox,
we show that without interaction, an algorithm can

achieve a regret ratio of ε only when it shows Ω((1/8ε)
d−1
2 )

tuples to the user. This gives the first lower bound for
the regret minimization problem for a general value of
d, a question that was left open in [19].

Using the above results, we conclude the following answers
to the questions previously stated.

• Using UtilityApprox algorithm with constant s, to
achieve a regret ratio of ε, interaction exponentially re-

duces the number of tuples required: If T = (1/8ε)
d−1
2

then we need only O(log T +d log d) tuples when there
are interactions while we need Ω(T ) tuples otherwise.

• When we fix the total number of tuples k to be dis-
played, the above guarantee of UtilityApprox can be

converted to a regret ratio guarantee of O(d/s
k
sd ) and

the lower bound for the case of no interactions can be
converted to a regret ratio lower bound of Ω(1/k

2
d−1 ).

Using constant s, we again have that interactions help
make the regret ratio exponentially smaller.

Thus, in theory, interaction improves the efficiency expo-
nentially both in terms of the number of tuples displayed
and the regret ratio achieved. Our extensive experiments
also confirm these findings, i.e., although algorithms studied
in [19] work well in achieving reasonable regret ratios (e.g.,
10%), they are much inferior to UtilityApprox when we
target a more accurate solution. For example, to achieve a
regret ratio of 1% when there are ten criteria in the case of
anti-correlated data, the previous non-interactive algorithms
need to display more than a thousand tuples while Util-
ityApprox algorithm needs as few as 46 points (when we
use s = 2). In fact, even to find the most desired tuple in the
database, UtilityApprox still needs only 87 tuples! Thus,
interactions help improve the efficiency significantly in both
theory and practice.

As discussed earlier, although interactions help consider-
ably, they also demand some effort on the user’s part. In
particular, answering many questions might be tiresome. We
thus study how many questions UtilityApprox needs to
ask. We show that with slightly larger sized questions, the
total number of questions is reasonably small. From a the-
oretical perspective, we show that, to achieve a regret ratio
of ε, UtilityApprox needs to ask O(d logs(1/ε)) questions
to the user. While theory, for example, guarantees that we
need roughly twenty questions of ten tuples each to get 1%
regret ratio, our experiments show that the number of ques-
tions needed in practice is often much smaller.

Organization: In Section 2 we discuss the prior work most
relevant to this paper. We formally define the problem that
we solve and related properties in Section 3. We describe the
UtilityApprox algorithm in Section 4. We show the lower
bound for the previous approach (no interactions) as well as
the fact that UtilityApprox is almost optimal in Section 5.
We present experimental results in Section 6. Finally, we
discuss possible future work and conclude in Section 7.



2. RELATED WORK
Motivated by the deficiencies of top-k and skylines, many

variants have been proposed recently. The work that is most
relevant to us is [19] which proposed the notion of maxi-
mum regret ratio, as discussed earlier. This work combined
features from top-k and skylines, i.e., its output size can
be controlled, and it asks no questions. There have been
many prior attempts to achieve both features. Lin et al. [15]
and Tao et al. [21] consider an operation called representa-
tive skyline. Yiu and Mamoulis [20, 24] propose the top-k
dominating query which has been further explored in other
domains [11, 14, 25]. Goncalves and Vidal [7] propose two
operators called top-k skyline select and top-k skyline join.
Xia et al. [23] propose ε-skyline queries. It is argued in [19]
that these approaches lack some important properties such
as scale-invariance and stability. Other approaches try to
reduce the output size. Lee et al. [12] avoid asking users
for utility functions by requesting only partial ranking over
attributes. Chan et al. [2, 3] propose the concept of skyline
frequency and k-dominance. It is argued in [19] that, while
these approaches can reduce the output size, they do not
have a full control over it. For further discussion, see [19].

There are also papers that consider alternatives to directly
asking for the utility function from the user. Mindolin et
al. [18] propose the p-skyline query which is a framework
that assumes that different attributes have varying levels of
importance. This enables the system to rank the tuples and
control the output size. To avoid asking users directly for
weights, they offer an alternative approach to discover im-
portance from user feedback, i.e., the user has to partition
example tuples to desirable and undesirable groups. Our pa-
per requires users to pick one tuple, which is less demanding
than partitioning items. Moreover, assuming that tuples can
be ranked based on importance of attributes is a strong as-
sumption (e.g., it assumes that a car with 51 MPG and 80
HP is better than a car with 50 MPG and 200HP, if MPG
is more important to the user). The same user feedback ap-
proach has also been used in [10]. Lee et al. [12] also avoid
asking users for utility functions by requesting only partial
ranking over attributes.

The interactive regret minimization problem studied in
this paper, as well as problems studied in some previous
work (e.g. [10,12,18]), share some similarities with the learn-
ing to rank problem studied heavily in machine learning
and information retrieval (see, e.g., [13,16] for a recent sur-
vey). However, the settings of both problems are so differ-
ent that the techniques used for the ranking problem seem
to be inapplicable to our problem. Moreover, while rank-
ing is an extremely hard problem, our problem turns out to
have some special structures that lead to a stronger result.
The first important difficulty in applying the ranking tech-
niques is that learning to rank approaches typically require
much more information from the users (or human train-
ers). For example, the three most popular approaches [16],
namely the pointwise, pairwise and listwise approaches, es-
sentially ask the human trainers to rank the given list of
items. This makes it hard to adapt these techniques to the
regret minimization problem where the users are only re-
quired to pick the most interesting tuple. (This seems to
be the case even for previous problems that demand more
feedback from users [10, 12, 18].) Another difficulty is that
most ranking algorithms are developed in the supervised or
semi-supervised setting (we are aware of very few papers

in the active setting, e.g., [17]) while the minimum regret
problem is interactive and highly values the number of in-
teractions. Moreover, the usage in the database setting mo-
tivates properties such as truthfulness, informativeness, and
progressiveness. It is not clear how to modify the existing
ranking algorithms to guarantee these properties.

Fortunately, the interactive regret minimization problem
seems to have some features from the database setting which
do not exist in the ranking problem. In contrast to machine
learning settings where algorithms have to be able to deal
with unseen data, we can assume that all data is already
available in the database (this type of problem is sometimes
called dynamic search [12]). Moreover, the notion of regret
ratio is concerned with only the most interesting tuple in
the database while the ranking problem deals with ranking
everything (even some unseen data). We believe that these
differences lead to a more efficient algorithm with several
desired properties.

Despite these differences, we believe that insights from
machine learning might help to improve the algorithm per-
formance in practice. Moreover, studying the notion of re-
gret ratio in the machine learning setting is interesting in its
own right. We leave these as interesting open directions.

3. DEFINITIONS
Recall the following definition of the regret ratio defined

in [19]. (For readers who are not familiar with the notion
of regret ratio, we recommend reading through the detailed
explanation of this notion in Section 3.1 of [19].) We are
given a database D which is a set of d-dimensional points,
i.e., D ⊆ R

d
+ (where R+ denotes the set of positive reals).

For any set S ⊆ R
d
+ and a vector u ∈ R

d
+, the regret ratio of

u is defined to be

rrD(S, u) = max
p∈D

max
q∈S

〈u, p〉 − 〈u, q〉
〈u, p〉 = 1−max

p∈D
max
q∈S

〈u, q〉
〈u, p〉

where for any x, y ∈ R
d
+, 〈x, y〉 is the inner product between

x and y, i.e., 〈x, y〉 = ∑d
i=1 x[i]y[i]. WhenD is clear from the

context, we simply write rr(S,u) instead of rrD(S, u). We
think of u as a (linear) utility function of a user and p as her
most desired point in the database D. (We sometimes call u
the utility vector.) We think of S as the set of representative
points. Thus, for a user with utility function u and desired
point p, we try to show the best point q in S so that the
utility 〈u, q〉 is as close to 〈u, p〉 as possible, i.e., we want to

maximize 〈u,q〉
〈u,p〉 which we sometimes call the happiness ratio.

We will focus on minimizing the smaller quantity 〈u,p〉−〈u,q〉
〈u,p〉

which we call the regret ratio.
We consider the following problem of interactive regret

minimization with r questions of size s. In this problem,
the system can interact with the user with an unknown util-
ity vector for r rounds. In each round, the system displays
at most s points to the user and the user returns her fa-
vorite point among these s points to the system. After these
r rounds, the system can display any number of points to
the user. Then, the user picks her favorite point among all
points displayed to her. We note that the displayed points
might not be in D. However, we require that the algorithm
must be truthful in the sense that the point that the user
picks in the end must be in D. In other words, if S is
the set of points displayed to the user in the process and
p = argmaxp′∈S〈u, p′〉 is the favorite point of the user, then



the algorithm is truthful if p is in D. As we discussed in Sec-
tion 1, it is crucial in the database setting that the system is
truthful since it guarantees that the users will not select tu-
ples outside D (as our goal is to help the users select tuples
in D).

We say that any algorithm A guarantees ε regret ratio in
r rounds if, for any value of u, A always makes the regret
ratio at most ε within r rounds. Moreover, we say that A
guarantees ε regret ratio using k points if, for any value of u,
A always makes the regret ratio at most ε by displaying at
most k points (using any number of rounds). We say that
A is informative if it is able to compute the upper bound of
the user’s regret ratio in every round. For any 0 < ρ < 1, we
say that A is ρ-progressive if it guarantees O(ρr) regret ratio
in r rounds (for any r). We note that if A is ρ-progressive
for some ρ then it is informative since it can output O(ρr)
as an upper bound of the user’s regret ratio in every round
r.

Note that the problem considered in [19] is the special
case of interactive regret minimization with r questions of
size s where r = 0 and s = k.

In this paper, we are interested in three questions: (1)
Given ε, how many points do we need to guarantee ε regret
ratio (given that we can use any number of rounds of ques-
tions)? (2) Given k, how small a regret ratio (ε) can we
guarantee by displaying k points? (3) Given ε and s, how
many rounds do we need to guarantees ε regret ratio if we
can display s points in each round?

4. THE UtilityApprox ALGORITHM
In this section we present an algorithm called UtilityAp-

prox (cf. Algorithm 1). We prove a worst case performance
guarantee for this algorithm. Moreover we show that it is
truthful and progressive (and thus informative), as follows.

Theorem 1. UtilityApprox algorithm (cf. Algorithm 1)
terminates in O(d logs(d/ε)) rounds where in each round it
displays at most s points. It is truthful. Moreover, it is pro-
gressive (and thus informative) with a rate that is exponen-
tial in the number of rounds, i.e., in round t the maximum

regret ratio of the user is O(d/s�
t

d−1
−1�).

UtilityApprox is described in Algorithm 1. We now
explain the algorithm and intuition behind it along with
some lemmas used to prove the theorem above. Through-
out, we let u denote the user’s utility vector (which is un-
known to the algorithm). For simplicity in explaining the
algorithm and its intuition, let us assume that λi = 1 for all
i (see Line 1 of Algorithm 1). We will show that this can
be assumed even in the analysis (as stated in the following
lemma). Proofs for all lemmas in this section can be found
in Appendix A.

Lemma 2. We may assume without loss of generality that,
for any 1 ≤ i ≤ d, maxp∈D p[i] = 1.

The main idea of this algorithm is to approximate the
utility vector of the user. We use v to denote this approx-
imated utility vector. The goal of the algorithm is to min-
imize

∑d
i=1 |u[i] − v[i]|. We will show that if this quantity

is small, we can use v to find a point that makes the regret
ratio for u small.

It is useful to imagine that there are two types of users,
the real user with utility vector u and an imaginary user

Algorithm 1 UtilityApprox (D, s)

1: For 1 ≤ i ≤ d, let λi = maxp∈D, p[i].
2: For any 1 ≤ i ≤ d, let ei be such that ei[i] = λi and

ei[j] = 0 for all j �= i. Let ei = ed for all i > d.
3: Let i∗ = 1 and i = 2.
4: while i ≤ d do
5: Display ei∗ and ei, ei+1, . . . , ei+s−2.
6: Let i′ be the point such that ei′ is the point returned

by the user. Let i∗ = i′.
7: Let i = i+ s− 1.
8: end while
9:
10: Let Ui∗ = Li∗ = 1. For any i �= i∗, let Ui = 1 and

Li = 0.
11: Let t = 1.
12: repeat
13: This is the tth round.
14: Let i = (t mod d)+1. If i = i∗ then, again, let i = (t

mod d) + 1.
15: Let v be a vector such that v[j] = (Uj +Lj)/2, for all

1 ≤ j ≤ d.
16: Let p1, p2, . . . , ps be points returned from Create-

Points algorithm (cf. Algorithm 2).
17: Display p1, p2, . . . , ps to the user.
18: if the user does not terminate then
19: Let pα be the point the the user picks.
20: Set Li = χα−1 and Ui = χα where χα−1 and χα

are defined in Algorithm 2.
21: Let t = t+ 1.
22: else
23: Terminate the loop
24: end if
25: until the user terminates
26: Let v be as defined in Line 15. Display p∗ =

argmaxp∈D〈v, p〉.

with utility vector v. We abuse notation slightly and denote
these users simply by u and v. The algorithm will display
points based on the point that v prefers the most and use
the answer of u to update the value of v so that the new
value of v is a better approximation of u. The process is as
follows.

The algorithm first finds the coordinate with the largest
value, i.e., it finds i∗ = argmaxi λiu[i]. As described from
Line 3 to Line 8, this is done by displaying (λ1, 0, 0, . . .),
(0, λ2, 0, . . .), . . ., (0, 0, . . . , λd). The algorithm then defines
Ui and Li, for every 1 ≤ i ≤ d. These Ui and Li are used
as upper and lower bounds of u[i] respectively. To set the
initial values of Ui and Li, we use the following lemma.

Lemma 3. We may assume without loss of generality that
max1≤i≤d u[i] = 1.

In other words, we can assume that u[i∗] = 1 and 0 ≤
u[i] ≤ 1. Thus we initially set the values of Ui and Li as
stated in Line 10.

In the next step, from Lines 12 to 25, we repeatedly reduce
the gap between Ui and Li, for all i �= i∗. We do this by
displaying s carefully chosen points, p1, . . . , ps, so that after
one of these points is chosen by the user, we can reduce the
gap between Ui and Li by a factor of s. (We will explain
shortly how to pick these points.) In particular, we show
the following lemma.



Algorithm 2 CreatePoints

1: Find q′ = argmaxq′∈D〈v, q′〉.
2: Define q as follows. For 1 ≤ i ≤ d, let q[i] = q′[i]/λi.
3: For any 0 ≤ α ≤ s, let χα = Li + α(Ui − Li)/s .
4: Let δ = min(10−5, 1

s
� t
d−1

� ∑s−1

α′=1
(χα′−Li)

). (Note that,

in practice, the smaller δ is, the better.)
5: Let γ = q[i∗]/q[i].
6: Define q1, . . . , qs as follows. Let qs = q. For α = 1, ..., s−

1, let qα be such that qα[j] = qα+1[j] for all j /∈ {i, i∗},
qα[i

∗] = qα+1[i
∗] + χαδγqα+1[i], and qα[i] = qα+1[i] −

δγqα+1[i] .
7: Let β = 1

1+δ
∑s−1

α′=1
(χα′−Li)

.

8: Define p1, . . . , ps as follows. For 1 ≤ α ≤ s, and 1 ≤ i ≤
d let pα[i] = βλiqα[i].

Lemma 4. At the (�(d− 1)/(s− 1)	+ t)th round, for any

1 ≤ i ≤ d, |Ui − Li| = O(1/s
t

d−1 ).

We note that the number (�(d − 1)/(s − 1)	 + t) comes
from the fact that we need this many rounds to find i∗ (cf.
Lines 3 to 8).

Finally, when the user terminates the process, the algo-
rithm computes a vector v which approximates the user’s
utility vector u. It then outputs a point in the database D
that v prefers the most (cf. Line 26). We will show later
that this point also makes u have small regret ratio. In par-
ticular, if v approximates u well, giving q to u will not make
the regret ratio of u too high, as formalized in the following
lemma.

Lemma 5. If q = argmaxq′∈D〈v, q′〉 then rrD(q, u) ≤
2
∑d

i=1 |u[i]− v[i]| .

Picking points to display. We now explain how to pick
the points p1, . . . , ps to maintain some desired properties.
We use CreatePoints algorithm (cf. Algorithm 2) to do
this. First, we pick a point q using an approximated vector v,
as in Lines 1-2. In the case where λi = 1 for all i, q is simply
the favorite point of v inD. As v will be an approximation of
u, we will be able to guarantee that q makes the regret ratio
of the real user (with utility vector u) small, as in Lemma 5.

Then, we construct s points from point q, denoted by
q1, . . . , qs (cf. Line 6). These points are constructed by
slightly changing the values in the ith and (i∗)th coordinate
of q, where i is the current coordinate where we are trying to
reduce the gap between Ui and Li (as in Algorithm 1). How
“slightly”we change these values is controlled by a parameter
δ (cf. Line 4). The amount that these values change is
different when we define different qα. The parameter that
controls this amount is χα (cf. Line 3).

The value of χα is picked in such a way that, for any α,
χα − χα−1 = (Ui − Li)/s . Now suppose that we display
points q1, . . . , qd to the user. We show the following.

Lemma 6. If the user picks point qα among q1, . . . , qs
then χα−1 ≤ u[i] ≤ χα.

Thus, our goal of reducing Ui − Li by a factor of s can
be achieved by setting Ui = χα and Li = χα−1. Moreover,
since qs = q is claimed to make the regret ratio of the user
small, the regret ratio of the user (for the displayed points)

will be small. In other words, the algorithm is progressive
when we display q1, . . . , qs.

However, displaying q1, . . . , qs makes the algorithm un-
truthful. This is because the user might prefer one of q1, . . . , qs
(which are fake points) more than any point from the database.
A simple way to resolve this problem is to scale down q1, . . . , qs
by a large factor so that the user’s utility on them decreases
dramatically and thus the user prefers some point inD more.
However, the displayed points will not make the regret ratio
of the user small and thus the algorithm will not be progres-
sive anymore. Therefore, we have to scale these points down
only slightly so that the user’s regret ratio is still small. For-
tunately, this delicate balancing can be done using the fact
that the user’s utility on q1, . . . , qs is not much larger than
her favorite point in the database. This is formalized below.

Lemma 7. Let q and q1, . . . , qs be as in Algorithm 2. For
any α,

〈u, qα〉 ≤ (1 + δ

s−1∑

α′=α

(χα′ − u[i]))〈u, q〉

≤ (1 + δ
s−1∑

α′=α

(χα′ − u[i]))max
p∈D

〈u, p〉 .

We use a parameter β (cf. Line 7) to control how much
we scale the displayed points down. Its value depends on
the quantity in Lemma 7. The points resulting from scaling
q1, . . . , qs down are p1, . . . , ps (cf. Line 8).

We are ready to prove the main theorem of this section,
using the lemmas stated above.

Proof of Theorem 1. Truthfulness: Let p be the point
that the user prefers the most among points displayed to
her. We claim that p = p∗ where p∗ is as in Line 26 of Algo-
rithm 1. To see this, let St be the the set of displayed points
in round t. First observe that among points in

⋃
t St, the

favorite point of the user is in St∗ where t∗ is the last round
of the algorithm before the user terminates. This is because
this is the first time that the user’s regret ratio is below ε.
Now, let pα be this point in St∗ . Let q∗ be the point q de-
fined in the last round. By Lemma 7 and the definition of
pα,

〈u, pα〉 = β〈u, qα〉

≤ β(1 + δ

s−1∑

α′=α

(χα′ − u[i]))〈u, q∗〉

≤ 〈u, q∗〉
where β is as in Line 7 of Algorithm 2 and the last inequality
follows from

β =
1

1 + δ
∑s−1

α′=1(χα′ − Li)
≤ 1

1 + δ
∑s−1

α′=α(χα′ − u[i])
.

Thus, the user’s favorite point, among q1, . . . qs is q
∗. There-

fore her favorite point is p∗.

Progressiveness: We prove here that for any t, rrD(St, u) =

O(d/s�
t

d−1
�). Since we need �(d− 1)/(s− 1)	 rounds to find

i∗, it follows that after t = �(d− 1)/(s− 1)	+ t′ rounds, the
regret ratio of the user is

O(d/s�
t′

d−1
�) = O(d/s�

t−�(d−1)/(s−1)�
d−1

�) = O(d/s�
t

d−1
−1�)



as claimed. It is thus left to show that rrD(St, u) = O(d/s�
t

d−1
�).

Observe that in the tth round (as defined in Line 13 of Al-
gorithm 1), the value of Ui − Li is decreased to χα − χα−1,
for some 1 ≤ α ≤ s. By definition, for any 1 ≤ α ≤ s,
χα − χα−1 = (Ui − Li)/s. Thus, we conclude that after the
tth round,

d∑

i=1

(Ui−Li) =
d− 
t/(d− 1)�

s�
t

d−1
� +


t/(d− 1)�
s�

t
d−1

�+1
= O(d/s�

t
d−1

�) .

Now using Lemma 5, for the value of v and q defined in
round t, we have rrD(q, u) ≤ 2

∑d
i=1 |u[i] − v[i]|. In other

words,

〈u, q〉 ≥ (1− 2
d∑

i=1

|u[i] − v[i]|) max
p∈D

〈u, p〉 .

By Lemma 6, Li ≤ u[i] ≤ Ui. Since v[i] = ((Ui + Li)/2)ei,
|u[i] − v[i]| ≤ (Ui − Li)/2, for all i ≤ i∗. It follows that

〈u, q〉 ≥ (1−O(d/s�
t

d−1
�))max

p∈D
〈u, p〉 .

Observe further that

〈u, ps〉 = β〈u, q〉

≥ (1−O(d/s�
t

d−1
�))maxp∈D〈u, p〉

1 + δ
∑s−1

α′=1(χα′ − Li)

≥ (1− δ
s−1∑

α′=1

(χα′ − Li)−O(d/s�
t

d−1
�))max

p∈D
〈u, p〉

≥ (1−O(d/s�
t

d−1
�))max

p∈D
〈u, p〉

where we use 1/(1 + c) ≥ 1 − c for any 0 ≤ c < 1 and

δ
∑s−1

α′=1(χα′−Li) ≤ d/s�
t

d−1
�. In other words, rrD(pk, u) =

O(d/s�
t

d−1
�) . It follows that

rrD(St, u) ≤ rrD(ps, u) = O(d/s�
t

d−1
�)

as desired.

Termination time guarantee: Since, for any t, rrD(St, u) =

O(d/s�
t

d−1
�), the user’s regret ratio in round t = d logs(d/ε)

is O(ε). By showing points for constant additional rounds,
the user’s regret ratio will be below ε. Thus, the total
number of rounds we need before the user terminates is
O(d logs(d/ε)), as claimed.

5. LOWER BOUNDS
In this section, we study the lower bounds of both the

cases of whether or not there are interactions. Proofs of
theorems in this section can be found in Appendix A. First,
we show that when there are no interactions, we need to
display a large number of points in order to achieve a small
regret ratio.

Theorem 8. For any d and 0 < ε ≤ 1, there is a database
of d-dimensional points such that any single-round algorithm

needs to display at least 1
2
( 1
8ε
)
d−1
2 points in order to guar-

antee that the regret ratio is at most ε.

Second, we show that the algorithm we propose is almost
optimal. The theorem below generalizes the above theorem.
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Figure 1: Number of points needed by UtilityAp-
prox to achieve target regret ratio (1% and 5%) us-
ing s = 2 and s = 10 points per page with varying
database size

Theorem 9. For any d, s ≥ 2, and t, the regret ratio
after asking t rounds of questions of s points is at least

1

8(4st)
2

d−1
. In other words, for any ε, to get to a regret ra-

tio of ε, any algorithm needs to ask at least Ω(d logs(1/ε))
questions.

Note that the above theorem holds even for algorithms
that do not guarantee the properties defined in this paper
(such as truthfulness).

6. EXPERIMENTAL EVALUATION
In this section we experimentally demonstrate the large

gains that interactivity adds to this problem, both in terms
of giving smaller regret for the same number of points, and
requiring smaller number of points for the same regret guar-
antee. We evaluated UtilityApprox (Algorithm 1) against
the best known single-round algorithms [19], varying many
different parameters to understand when it is significantly
beneficial to query the user over multiple rounds. All the
algorithms were implemented in C and run on an Intel Core
2 Duo running Ubuntu 10.04.1.

We performed experiments on both synthetic and real
data sets. For the synthetic data we used anti-correlated
data using the data set generator of [1]. As observed in [19],
the anti-correlated case is most interesting for this prob-
lem (as compared with, say, correlated or independent data)
since this is when the skyline is large and cannot be shown
to the user in its entirety. In all these experiments, unless
otherwise specified, we used default values of ten thousand
points (n = 10000), six dimensions (d = 6), and regret ra-
tio guarantees of 1% and 5%. We also used real data sets
available from Dr. Yufei Tao’s homepage 1.

1http://www.cse.cuhk.edu.hk/∼taoyf/
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Figure 4: Number of points needed to achieve a target regret ratio (5%, 1%, and 0%) for n = 10000 points
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Figure 2: Number of points needed by UtilityAp-
prox to achieve target regret ratio (1% and 5%) for
varying number of points per page (n = 10000 points)
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Figure 3: Number of rounds needed by UtilityAp-
prox to achieve target regret ratio (1% and 5%) for
varying number of points per page (n = 10000 points)

We compare the UtilityApprox algorithm against the fol-
lowing single-round algorithms that were shown to give the
smallest regret ratio in [19]:

• the Greedy algorithm proposed in [19] that was de-
signed to give a small regret ratio for the single-round
case, and

• the Max-Dom-Greedy [15, Algorithm 1] algorithm that
was also found to often give small regret even though
it was not designed for this purpose.

While we realize that this is an unfair comparison in that
our algorithm has the advantage of interactivity, the purpose
of these results is to show the benefit of allowing multiple
rounds. Another inequity in this comparison is that, while
we are able to compute the precise regret guarantee for the

single-round algorithms (using techniques described in [19]),
we are only able to give an approximation of the maximum
regret of UtilityApprox by taking the maximum over many
different random preference functions. We found in our ex-
periments that using ten thousand independent preference
functions gave a stable estimate for the maximum regret.

We found that the UtilityApprox algorithm runs very fast
since it only performs a single pass over all the points in
the database per round; even for one million points and six
dimensions it took less than 50 milliseconds to process each
round, so we do not show any timing results in this paper.

We began our experiments by varying the size of the database.
Our expectation was that the number of points in the database
should have little effect on the performance of our algorithm
since the database size is not a significant factor in the anal-
yses. This was confirmed in our experiments, as seen in
Figure 1. We tried both s = 2 and s = 10 points per round,
and let UtilityApprox run until it went under both 1% and
5% regret. In all cases, the total number of points did not
vary significantly with the number of points in the database,
n. Hence, for the remainder of the experiments we used a
fixed value of n = 10000.

Next, we varied the only free parameter for the UtilityAp-
prox algorithm: the number of points that are shown per
round (s). The result of this experiment is shown in Fig-
ure 2, for the synthetic data set with ten thousand points
and with target regret ratios of 1% and 5%. From both
graphs we see an increasing trend in which the total number
of points needed (i.e., the number of rounds times the num-
ber of points per round) grows with the number of points
shown in each round. This seems to indicate that using fewer
points per round (all the way down to the extreme of s = 2)
is more beneficial to this algorithm. However, in practice
it is sometimes the case that we may need to show more
points in each round. Hence, for the remaining experiments
we show results for both s = 2 and s = 10.

Figure 3 shows the number of rounds needed by UtilityAp-
prox when the number of points per round is varied. We see
that, in most cases, increasing the number of points shown
per page decreases the number of rounds of the algorithm.

In Figure 4, we compare the aforementioned algorithms for
various number of dimensions. We made the single-round al-
gorithms comparable to UtilityApprox by showing the total
number of points shown by UtilityApprox, as before. We
used n = 10000 points and ran all the algorithms until they
achieved a regret ratio of 5%, 1%, and 0%. For the two
single-round algorithms, we picked a ceiling of one thousand
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Figure 5: Regret of UtilityApprox when the number
of rounds was fixed beforehand (with s = 2 and 10),
compared with other single-round algorithms (n =
10000 points, d = 6 dimensions)

Target Regret Ratio UtilityApprox Single-round
5% 42 47
1% 78 190
0% 140 3460

Table 1: Number of points needed to guarantee dif-
ferent regret ratios for Color data set (UtilityApprox
had s = 2)

points (i.e., 10% of the total number of points) and didn’t
run them for larger s. This is why the curves for these two
algorithms end prematurely: they very rapidly need more
than one thousand points to achieve these regret ratio guar-
antees. In contrast, UtilityApprox grows only linearly in
the number of dimensions and has a small slope. Hence, for
higher dimensions there is a very large benefit in having user
interactivity. Also, in Figure 4(c) we see that UtilityApprox
eventually gets the optimal point for any user (for s = 2 and
10), which the single-round algorithms cannot do.

In practice, it may be the case that we cannot have an un-
limited number of rounds in which to get information from
the user. Figure 5 shows the performance of UtilityApprox
when the number of rounds of interaction is fixed before-
hand. We measured the total number of points (instead of
number of rounds) to make UtilityApprox comparable once
again to the single-round algorithms. In both these graphs
we see a rapid drop in the regret ratio when the number of
rounds allowed goes above some small number. The reason
for this lies in the way that UtilityApprox works: it sequen-
tially improves its estimate of each of the user’s attribute
weights and only begins to give a good estimate once it has
some approximation to some (or all) these weights. As a
result, UtilityApprox works best when it is allowed at least
some minimum number of rounds in which to operate.

Finally, we ran the UtilityApprox algorithm along with
the two single-round algorithms on four real data sets com-
monly used in the skyline literature: House, NBA, Island,
and Color. Many papers in the literature use these data
sets. [19] studied all these data sets and showed that the
single-round algorithms perform very well on House, NBA
and Island (the best algorithm achieves the regret ratio of
almost 0% by showing just 10 points) while the results are
only acceptable for the case of Color data set (the best al-
gorithm achieves the regret ratio of roughly 20% when they
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Figure 6: Regret of UtilityApprox when the num-
ber of rounds was fixed beforehand (with s = 2),
compared with other single-round algorithms on the
Color data set (n = 68040, d = 9)

Dataset n d UtilityApprox Single-round
House 127931 6 96 49
NBA 17264 5 68 253
Island 63383 2 14 206

Table 2: Number of points needed to guarantee zero
regret for real data sets (UtilityApprox had s = 2)

show 10 points). This is because Color has highest dimen-
sion (thus suffers most from the curse of dimensionality).

In the case of this Color data set, we found that UtilityAp-
prox performs better than single-round algorithms even when
the target regret ratio is 5%, as shown in Table 1. Moreover,
for smaller target regret ratios, UtilityApprox clearly outper-
forms the single-round algorithms. The same phenomenon
occurs when we increase the number of points shown to the
users, as shown in Figure 6. This confirms that interactions
are crucial in making the regret ratio small.

We also study other data sets where previous algorithms
already perform well. As expected, we found that the Util-
ityApprox algorithm did not perform as well as the single-
round algorithms for small number of points. This is to be
expected since the single round algorithms are optimized to
give very small regret ratio for very few points displayed
in a single round while the UtilityApprox algorithm is de-
signed to sacrifice some points in order to decrease the regret
ratio rapidly in the long run. For this reason, when we in-
creased the number of points and the number of rounds of
our algorithm, UtilityApprox found the optimal point in the
database rapidly, while the single round algorithms usually
had positive regret for many more points. (We note an ex-
ception for the case of House data set where the number of
relevant points are very small.) Table 2 shows how many
points the UtilityApprox algorithms had to display to guar-
antee zero regret as compared with the lower bound for any
single-round algorithm. The lower bound for single-round
algorithms was computed by using a linear program to de-
termine which points were the optimal for some utility func-
tion; the number of these points was used as the presented
lower bound. We conclude that, besides being crucial in
making the regret ratio small, interactions can also be used
to quickly find users’ best tuples in databases, even when the



regret ratios achieved by single-round algorithms are already
small.

7. CONCLUSIONS
We study the problem of minimizing the regret ratio for a

user seeking her favorite point from a database after rounds
of interaction. We only assume that the user is able to pick
her favorite tuple when presented with a set of tuples. This
model generalizes previous work in the domains of top-k and
skyline queries. Our paper focuses on the limits of represent-
ing databases when no interaction is allowed, and presents
significantly improved results in our model of interaction.
Theoretical and experimental results show significant im-
provement over previous work, suggesting that user inter-
action might be an integral part of multi-criteria decision-
making in database systems.

While the experiment results confirm the efficiency of in-
teractions, they also reveal some weaknesses of our algo-
rithm. First, the improvement is not as dramatic when the
data are more correlated (e.g., in some real data sets with
small number of attributes). More importantly, our algo-
rithm requires a few rounds of interaction in order to beat
the single-round algorithms. We believe that improving our
algorithm on these aspects is an interesting open question.

Several other directions also remain open for future work.
One interesting unexplored direction is adapting machine
learning techniques to our problems. As we mentioned in
Section 2, this seems to be a non-trivial task. Another di-
rection is dealing with ambiguities and noise which could
occur in reality. For example, a user might not always pick
the best tuple if there are two tuples whose qualities are
not very different or she might sometimes mistakenly pick a
tuple that she is not interested in at all.

Moreover, as we noted in Section 1, one desirable prop-
erty lacking in our algorithm is displaying only tuples in the
database. This property is crucial in some settings (e.g.,
when some attributes such as “look of the car” cannot be
generated by the algorithm), and it would be interesting to
develop an algorithm that satisfies this property while guar-
anteeing an upper bound similar to the one in this paper, or
showing that this is impossible. Also, it would be interest-
ing to extend some of these techniques and results to hold
for non-linear utility functions of users. Finally, we measure
the cost/effort on the user’s front mainly in terms of num-
ber of points displayed, or number of rounds of interaction;
perhaps more elaborate models can be considered in terms
of the user’s cost for answering various types of interactive
questions.
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APPENDIX

A. OMITTED PROOFS
For the sake of the simplicity of the rest analysis, let us

first prove the following lemma. It states that if the al-
gorithm is correct and can guarantee its performance on a
database with a certain property (i.e., database D such that
for any 1 ≤ i ≤ d, maxp∈D p[i] = 1), then it is also cor-
rect and can guarantee its performance on other types of
database.

Lemma 2 (Restated). We may assume without loss
of generality that, for any 1 ≤ i ≤ d, maxp∈D p[i] = 1.

Proof. Let D be the original database and u ∈ R
d
+ be

the user’s original utility vector. For any 1 ≤ i ≤ d, let
λi = maxp∈D p[i]. For any point p ∈ D, let f(p) be the point
(p[1]/λ1, p[2]/λ2, . . . , p[d]/λd). Let D′ = {f(p) | p ∈ D}.
Let u′ be such that u′[i] = λiu[i].

Observation 10. For any p ∈ D, 〈u, p〉 = 〈u′, f(p)〉.
To see this, observe that 〈u, p〉 = ∑d

i=1 p[i]u[i] = 〈u′, f(p)〉.
Thus, we can assume that the database is D′ and the

utility vector of the user is u′ instead since the user’s utility
on every point remains the same.

Thus, from now on, we assume that the input database D
is such that, for any 1 ≤ i ≤ d, maxp∈D p[i] = 1.

We now prove Lemma 3.

Lemma 3 (Restated). We may assume without loss
of generality that max1≤i≤d u[i] = 1

Proof. LetD be the original database satisfying Lemma 2
and u ∈ R

d
+ be the user’s original utility vector. Let α =

maxi∈[1,d] u[i]. Let u′ be such that u′[i] = u[i]/α, for all i.

Observation 11. For any points p, q ∈ D, 〈u′, p〉 > 〈u′, q〉
if and only if 〈u′, p〉 > 〈u′, q〉 and 〈u, p〉 = 〈u, q〉 if and only
if 〈u′, p〉 = 〈u′, q〉. Moreover, for any S ⊆ D, rrD(S, u) =
rrD(S, u′).

Proof. The first observation is obvious. The second ob-
servation can be proved as follows.

rrD(S, u) =
maxp∈D〈u, p〉 −maxq∈S〈u, q〉

maxp∈D〈u, p〉
=

αmaxp∈D〈u′, p〉 − αmaxq∈S〈u′, q〉
αmaxp∈D〈u′, p〉

= rrD(S, u′)

Thus, we can assume that the user’s utility vector is u′ since
for any set S ⊆ D, p is the favorite point of u in S if and
only if it is the favorite point of u′ in S, and rrD(S, u) =
rrD(S, u′).

We note the following lemma which follows from the above
lemmas. It will be useful in proving some lemmas below.

Lemma 12. We may assume that maxp∈D〈u, p〉 ≥ 1.

Proof. Let i∗ be such that u[i∗] = 1. (i∗ exists by
Lemma 3). Note that by Lemma 2, there exists p ∈ D
such that p[i∗] = 1. Thus, maxp∈D〈u, p〉 ≥ 〈u, p∗〉 ≥ 1.

We now prove Lemma 4 stated in Section 4.

Lemma 4 (Restated). At the (�(d− 1)/(s− 1)	+ t)th

round, for any 1 ≤ i ≤ d, |Ui − Li| = O(1/s
t

d−1 ).

Proof. Observe that the user picks pα among p1, . . . , ps
if and only if she picks qα among q1, . . . , qs. Thus, if the user
picks qα then, by Lemma 6, χα−1 ≤ u[i] ≤ χα which means
that |Ui −Li| decreases by a factor of s. After t rounds, the
value of Ui−Li is decreased by a factor of s for 
 t

d−1
� times

and thus |Ui − Li| = O(1/s
t

d−1 ) as claimed.

Lemma 5 (Restated). If q = argmaxq′∈D〈v, q′〉 then

rrD(q, u) ≤ 2
∑d

i=1 |u[i]− v[i]| .
Proof. First, we note the following claim which com-

pares happiness when two users look at the same point.

Claim 13. For any vector u and v in R+, and any point
z ∈ D, |〈v, z〉 − 〈u, z〉| ≤ ∑d

i=1 |v[i] − u[i]| .

Proof. Using the fact that z[i] ≤ 1 for all i (by Theo-
rem 2), we have

|〈v, z〉 − 〈u, z〉| =
d∑

i=1

(v[i]− u[i])z[i] ≤
d∑

i=1

|v[i]− u[i]| .

Let p = argmaxp′∈D〈u, p′〉. Applying the above claim, we
have the following two inequalities.

〈v, q〉 − 〈u, q〉 ≤
d∑

i=1

|v[i]− u[i]| (1)

〈u, p〉 − 〈v, p〉 ≤
d∑

i=1

|v[i]− u[i]| (2)

Moreover, by the definition of q, i.e. q = argmaxp′∈D〈v, p′〉,
we have that 〈v, p〉 ≤ 〈v, q〉; in other words,

〈v, p〉 − 〈v, q〉 ≤ 0 . (3)

Adding Equations (1), (2), (3) together, the lemma fol-
lows.

Next, we prove Lemma 6.

Lemma 6 (Restated). If the user picks point qα among
q1, . . . , qs then χα−1 ≤ u[i] ≤ χα.

Proof. Let u ∈ R
d be the user’s utility vector. If qα is

picked then

〈u, qα〉 ≥ 〈u, qα+1〉.
Note that

〈u, qα〉 = 〈u, qα+1〉+ χαδγqα+1[i]u[i
∗]− δγqα+1[i]u[i].

Thus, we have χαδγqα+1[i]u[i
∗] − δγqα+1[i]u[i] ≥ 0. Using

u[i∗] = 1, we have u[i] ≤ χα.
By a similar argument on the fact that 〈u, qα〉 ≥ 〈u, qα−1〉,

we have u[i] ≥ χα−1 as desired.



We now prove Lemma 7 stated in Section 4.

Lemma 7 (Restated). Let q and q1, . . . , qs be as in Al-
gorithm 2. For any α,

〈u, qα〉 ≤ (1 + δ

s−1∑

α′=α

(χα′ − u[i]))〈u, q〉

≤ (1 + δ
s−1∑

α′=α

(χα′ − u[i])) max
p∈D

〈u, p〉 .

Proof. Note that

〈u, qα〉 = u[i∗](qα+1[i
∗] + χαδγqα+1[i])

+ u[i](qα+1[i]− δγqα+1[i]) +
∑

j 
=i,i∗
u[j]q[j]

= 〈u, qα+1〉+ (χαu[i
∗]− u[i])δγqα+1[i]

= 〈u, qα+1〉+ (χα − u[i])δγqα+1[i]

where the last equality is because u[i∗] = 1. Thus,

〈u, qα〉 = 〈u, q〉+
s−1∑

α′=α

(χα′ − u[i])δγqα′+1[i]

≤ 〈u, q〉+
s−1∑

α′=α

(χα′ − u[i])δγq[i]

≤ (1 + δ

s−1∑

α′=α

(χα′ − u[i]))〈u, q〉

where the second inequality is because qα[i] ≤ q[i] for all i,
and the last inequality uses the fact that γq[i] = q[i∗] ≤
〈u, q〉. The first inequality in the statement follows.
The second inequality follows from the fact that 〈u, q〉 ≤
maxp∈D〈u, p〉.

Theorem 8. For any d and 0 < ε ≤ 1, there is a database
of d-dimensional points such that any algorithm needs to

display at least 1
2
( 1
8ε
)
d−1
2 points in order to guarantee that

the regret ratio is at most ε.

Proof. For any point p in Rd, let ||p|| = √〈p, p〉. For

any r ≥ 0 and r ∈ R, we let Bd
r (p) denote a d-dimensional

ball of radius r centered at p, i.e.,

Bd
r (p) = {x ∈ R | ||x − p|| ≤ r}

and Sd
r (p) denote the surface of Bd

r (p), i.e.,

Sd
r (p) = {x ∈ R | ||x− p|| = r} .

Let D be a set of all points on the surface of a d-sphere
of radius one with values in all coordinates positive, i.e.,
D = R

d
+ ∩Sd

1 [0̄] where 0̄ = (0, 0, . . . , 0). Let S be any subset
of D such that rrD(S) ≤ ε.

Claim 14. For any point p ∈ D, there is a point q ∈ S
such that its distance from p is ||p− q|| ≤ √

2ε.

Proof. Let q be any point such that ||p − q|| >
√
2ε.

Consider a user with utility vector u = p. Note that

〈u, q〉 = 〈p, q〉
=

1

2
(||p||2 + ||q||2 − ||p − q||2)

<
1

2
(2− 2ε)

= 1− ε

Thus, if, for every point q in S, ||p− q|| > √
2ε then

rrD(S, u) = 1− max
p′∈D

max
q∈S

〈u, q〉
〈u, p′〉

≥ 1−max
q∈S

〈u, q〉
〈u, p〉

> 1− (1− ε)

= ε .

This contradicts the fact that rrD(S) ≤ ε.

This claim implies that
⋃

p∈S B√
2ε(p) must contain all points

in D since otherwise some point in D will have distance more
than

√
2ε from all points in S.

Note the fact that the area (i.e., (d− 1)-dimensional mea-
sure) of Sd

r (p) is dCdr
d−1, for some constant Cd which de-

pends on d. Thus, D has area dCd

2d
and, for any p ∈ D, the

area of B√
2ε(p) ∩D is at most the area of S√

2ε(p) which is

dCd(2ε)
(d−1)/2. Thus,

|S| ≥ dCd/2
d

dCd(2ε)(d−1)/2
=

1

2
(
1

8ε
)(d−1)/2 .

The theorem follows.

Theorem 9. For any d, s ≥ 2, and t, the regret ratio
after asking t rounds of questions of s points is at least

1

8(4st)
2

d−1
. In other words, for any ε, to get to regret ra-

tio ε, every algorithm needs to ask at least Ω(d logs(1/ε))
questions.

Proof. Consider an s-ary tree of depth t generated by
t questions, each of s tuples. In this tree, each node has
s children (each children corresponds to each of s points
picked by the user) and the tree has depth t (corresponds
to t questions). Every node, except the leaf nodes, shows
at most s points to the user. (Leaf nodes correspond to the
terminating state so nothing is shown.)

There are 1 + s + s2 + ... + st−1 ≤ st−1
s−1

non-leaf nodes.

Thus, there are s · st−1
s−1

≤ 2st points shown in total by
all non-leaf nodes. Let A be a set of points shown by any
node in this tree. We note that

⋃
p∈A Bd√

2ε
(p) must contain

D; otherwise, by Claim 14, a user with utility vector u ∈
D \⋃p∈A Bd√

2ε
(p) will not see any point with regret ratio at

most ε, regardless of which leaf node this user is led to. This

implies that this tree has to show at least 1
2
( 1
8ε
)
d−1
2 points,

by the same calculation as in the proof of Theorem 8. This

means that 2st ≥ 1
2
( 1
8ε
)
d−1
2 which implies that ε ≥ 1

8(4st)
2

d−1

as claimed.
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