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Abstract—It has been well recognized that identifying very
large flows (i.e., elephants) in a network traffic stream is
important for a variety of network applications ranging from
traffic engineering to anomaly detection. However, we found
that many of these applications have an increasing need to
monitor not only the few largest flows (say top 20), but also
all of the medium-sized flows (say top 20,000). Unfortunately,
existing techniques for identifying elephant flows at high link
speeds are not suitable and cannot be trivially extended for
identifying the medium-sized flows. In this work, we propose
a hybrid SRAM/DRAM algorithm for monitoring all elephant
and medium-sized flows with strong accuracy guarantees. We
employ a synopsis data structure (sketch) in SRAM to filter out
small flows and preferentially sample medium and large flows
to a flow table in DRAM. Our key contribution is to show how
to maximize the use of SRAM and DRAM available to us by
using a SRAM/DRAM hybrid data structure that can achieve
more than an order of magnitude higher SRAM efficiency than
previous methods. We design a quantization scheme that allows
our algorithm to “read just enough” from the sketch at SRAM
speed, without sacrificing much estimation accuracy. We provide
analytical guarantees on the accuracy of the estimation and
validate these by means of trace-driven evaluation using real-
world packet traces.

I. INTRODUCTION

Accurately measuring and monitoring network traffic is
essential for today’s network management needs. Identifying
the large flows, often referred to as elephants or heavy-hitters,
and tracking their size is recognized as one of the fundamental
problems in traffic monitoring [9]. The very large flows, such
as those carrying more than 1% of the total traffic, are clear
candidates for monitoring in applications such as threshold
accounting and real-time traffic monitoring, and significant
research effort has been devoted to the design of efficient
solutions to this problem [1], [9], [13].

However, there is no unambiguous definition of the bound-
ary that separates the large flows that should be tracked from
small flows that can be ignored. There are several applications
that require keeping track of some of the medium-sized
flows as well. Take for example the problem of provisioning
and enforcing bandwidth usage by Quality of Service (QoS)
sensitive applications. To enforce pre-negotiated sending rates,
a mechanism that can identify all flows that send faster than
the pre-negotiated rate is needed. Clearly such a mechanism
would need to be capable of tracking all flows with rate larger
than the minimum negotiable QoS guarantee. In other words,
to enable fine-grained QoS provisioning, we need mechanisms

that can track flow-sizes at the same fine granularity with
reasonable accuracy. A variety of applications such as usage
accounting and billing, traffic engineering, etc. would benefit
similarly with an expansion of the range of flow sizes for
which accurate identification and tracking is available.

The fundamental challenge in tracking a large number of
flows is the limited availability of fast memory (SRAM)
needed to support per-packet updates to a data structure
containing per-flow state. Due to the large and unpredictable
number of flows in real network traffic, existing solutions, such
as NetFlow [16], resort to packet sampling for reducing both
the number of flows being tracked and the frequency with
which the corresponding data structures are updated. While
sampling is effective in reducing the packet-processing load,
this is often achieved at the cost of a severe degradation in
accuracy. This inaccuracy comes from the inefficient allocation
of memory and bandwidth under random packet sampling, as
explained next.

In today’s Internet it is commonly observed that a few ele-
phant flows account for a large fraction of the traffic, but there
is also a very large number of very small flows (mice). With
random packet sampling, most of the samples are collected
from these elephant and mice flows, and proportionally less are
collected from medium size flows. As constant relative error
is desirable in many network monitoring applications, random
packet sampling leads to an over-allocation of resources to
these elephant flows because relative estimation error increases
when the flow size to be measured decreases. On the other
hand, among the large number of mice flows, a fair percentage
of them may be sampled into the flow table, wasting the
precious SRAM space used for storing the per-flow state.

In this work, we propose a hybrid SRAM/DRAM scheme
for accurately identifying large to medium sized flows and
tracking their size. Our solution is designed to provide sta-
tistical guarantees that limit possible errors in estimation. In
particular, we give an approximation scheme that takes as
user-defined parameters the tolerable relative error and the
desired success probability and estimates the size of each flow
above the threshold within the tolerable error with at least that
success probability. We also show that since each large flow
(of size s) only gets sampled about O(log (s)) times, we can
keep the flow records in relatively slow DRAM. Our algorithm
does not allow for any false negatives (i.e., we detect every
flow above the threshold) and we give a tight bounds on the
number of false positives.
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II. BACKGROUND AND RELATED WORK

The problem of maintaining the counts for a large number
of flows has been studied extensively in the literature [3], [4],
[10], [11]. Approximate counts for heavy-hitters have also
been studied [9], [13]. In network traffic, the large number
of flows and the small inter-arrival times between packets
make it infeasible to maintain per-flow state in an efficient
manner. This effect was first observed in the NSFNET T1
backbone, and in [2] uniform sampling was proposed as a
solution. We call this a first generation technique. Sampling
is commonly used by Cisco’s Netflow [16], which is the
primary tool used by network operators to monitor flow-
sizes. However, as pointed out in [8], NetFlow has several
shortcomings, including a lack of adaptability to anomalous
traffic (e.g., worm or DDoS attacks), difficulties in choosing
the sampling rate, and lack of time binning for applications
that require periodic summaries.

We refer to the techniques introduced by Estan and Varghese
in [9] as the second generation techniques. The common idea
in their algorithms is that the flow tables are kept in SRAM
so that per-packet updates are possible. Since these algorithms
were designed specifically for a small number of large flows,
they could fit all their flow records in a small amount of
SRAM. The challenge was then to identify the elephants cor-
rectly. To this end they introduced two techniques: Sample and
Hold and Multi-stage filter. The drawback of these methods
is that the number of elephants that they can effectively keep
track of is bounded by the size of the SRAM.

In [11] a scheme called ACCEL-RATE (a generalization of
a previous scheme called RATE [14]) is proposed to compute
flow rates. It differs from our work in that it does not explicitly
maintain flow counts. Also, it assumes that the distribution of
flows is stationary over time and attempts to compute their
rates as fast as possible whereas we make no assumption about
how the rate of any flow varies with time.

Duffield et al. addressed the problem of picking which
flows to keep given a limited size flow table [5], [6], [7].
The idea of using sketch-guided sampling to redistribute the
number of samples based on flow size in an online manner was
first proposed in [15]. More recently, Hu et al. [12] proposed
an adaptive non-linear sampling method (ANLS), though it
is not clear that their method gives any savings in memory
consumption since they create flow records for every sampled
flow.

III. OUR ALGORITHM

In this paper we propose a third generation hybrid technique
that maximally utilizes the SRAM and DRAM resources
available to us. In our proposed algorithm, we move the flow
table back into the DRAM so that we can fit all the medium-
sized flows in the flow table. Additionally, we use the SRAM
to perform the task of filtering out the smaller flows, by
making use of a sketch data structure. The sketch automatically
removes the burden of having to perform expensive updates
for tens of millions of small flows that are typically found
in network traffic. Having this sketch available also gives us
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Fig. 1. Architecture of the proposed solution.

the ability to leverage the additional information it provides to
make our sampling mechanism more intelligent, as described
next.

A. Algorithm
Our algorithm has two data structures—a sketch located in

SRAM and the flow table located in DRAM. We make use
of the sketch to sieve out the vast bulk of tiny flows that
are typical in network traffic. With most of these tiny flows
taken care of, our algorithm performs significantly better on
the large flows. Once we verify using the sketch that a given
flow is greater than our threshold, we create a record for it in
the flow table and sample it from that point on. The sampling
function that we use is a modification of the sketch-guided [15]
one:

f(i) =
1

1 + ε2δi
,

and we increment the flow’s count by (1 + ε2δi).
For the sketch, we use the spectral Bloom filter data

structure to maintain approximate counts of each flow, and
use this value to pick the probability with which we sample a
particular packet. The spectral Bloom filter can only have over-
counting error, which is exponentially small in the number of
bits allocated per item inserted. We shall denote this error by
δBloom.

B. Analysis
We fix the actual count of a given flow h to be s. Let ui

denote the event that the ith occurrence of the flow is sampled
in the above algorithm. First, note that the estimate returned
above is unbiased with high probability (the probability that
the Bloom filter is correct). The spectral filter can only fail
by over-counting, and so the only way that the algorithm can
start sampling a given flow at the wrong time is if the flow
is over-counted before it actually reaches the threshold. If this
does not happen, then the estimate is clearly unbiased since we
always increment by the reciprocal of the sampling probability.

1) Quantitative Guarantee: Next, we will show that not
only is our estimator unbiased (with high probability) but that
it has provably small estimation error. Our guarantee is in the
form of a randomized approximation, i.e., we guarantee that
our estimate of the count of the flow has small relative error
with high probability.
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Theorem 1: For every flow larger than the threshold on
which the sketch data structure does not err, our algorithm
reports an (ε, δ)-approximation (for any pre-specified ε, δ > 0)
of the size of the flow.

Proof: The variance for a flow of size s > T can be
bounded as follows:

Var[count(h)] ≤ Var

[

s
∑

i=1

ui

]

=

s
∑

i=1

Var[ui]

=

s
∑

i=1

(1/f(i)− 1) ≤ s(1/f(s) − 1)

= s2ε2δ.

Now, we get by Chebyshev’s inequality,

Pr [|s − count(h)| ≥ εs] ≤
Var[count(h)]

ε2s2
= δ.

Hence, for each flow h (with count s ≥ T ), we get that
the estimate for it is within ε relative error with probability at
least 1−δ, assuming that the Bloom filter does not err. Taking
account the failure of the Bloom filter as well, our probability
of error goes up to δ + δBloom.

2) Qualitative Guarantee: Next, we analytically demon-
strate that our method closely captures the medium-sized flows
in the stream. First, note that as long as a flow is reported to be
above the threshold by the sketch data structure, our algorithm
produces a flow record for it. Hence, our algorithm only allows
false positives.

To study the false positive rate, we will bound the prob-
ability with which a flow that is half the threshold will be
reported as an elephant by our algorithm. The only way that
we would report a flow as an elephant is if the sketch data
structure seriously overcounts the flow. Recall that spectral
Bloom filter works by mapping each of the m packets to k
positions in an array (of size b) and increments the counters
at those locations. Hence, the expected number of packets that
get mapped to a given location in the array is mk/b. For a flow
of size T/2 to incorrectly be reported an elephant, an extra
T/2 packets would have to be mapped to all k of its positions
in the array. We can use Markov’s inequality to bound the
probability of this happening at one location:

Pr(X ≥ T/2) ≤
2E[X ]

T
≤

2mk

bT
,

where X is the number of additional packets that got mapped
to the same location in the array. Since the hash functions
are chosen independently, the probability that all k locations
have more than T/2 extra packets mapped to them is at
most (2mk/bT )k. By a similar analysis, we get the following
theorem:

Theorem 2: The probability that a flow of size T (1− 1/d)
has a record created for it by our algorithm (and is hence a
false positive) is bounded by (dmk/bT )k.

3) Number of samples: Next, we show that for each flow
above the threshold we only sample it a few times.

Theorem 3: For any flow of size s > T , the expected
number of times our algorithm samples it is at most ln (s/T )

δε2 .
Proof: The expected number of samples for a flow of size

s > T is bounded by

E

[

s
∑

i=T+1

ui

]

=
s

∑

i=T+1

E[ui] =
s

∑

i=T+1

f(i)

=

s
∑

i=T+1

1

1 + δε2i
≤

s
∑

i=T+1

1

δε2i

≤
ln (s/T )

δε2
.

Hence, a count of size s is, in expectation, sampled only
O(log (s/T )) times (taking ε and δ to be constants). What is
important to note here is that naive sampling will sample a
linear number of packets in the size of the flow, whereas our
method is logarithmic in the flow size.

IV. QUANTIZATION POINTS

In this section we discuss a modification to the sketch data
structure that significantly improves the SRAM-efficiency and
consequently the accuracy of our method. Note that while the
counters for the spectral Bloom filter require between 32 to
64 bits [17] of SRAM, the SBF can instead use a hybrid
SRAM/DRAM counter array scheme that can reduce each
counter to just 4 bits [17], [18], [19]. However, such a drastic
saving comes at a cost: in all these counter array schemes, the
read operations can be performed only at DRAM speed. This
is not acceptable to our scheme because we need to read the
sketch upon every packet arrival at SRAM speed.

We propose a quantization scheme to solve this problem of
“reading being too slow,” which allows our scheme to use the
counter architecture proposed in [19]. We use a few additional
(say 4) SRAM bits per bit to indicate the approximate value
range of the actual counter. Upon each packet arrival, we will
read just these additional bits and make the decision whether
to sample this packet. Our key insight here is that, while we
increment counters in the sketch at each packet arrival, we
use these counters only to check if the corresponding flow is
above the threshold. In other words, while the sketch tracks
flow size in a fairly precise manner, we only need coarse-
grained indications about the flow size.

We now show how to choose the quantization points while
still maintaining the accuracy guarantees of our sampling
process. Let the quantization points be denoted by q0, q1,
q2, q3, . . ., qR−1, assuming that we allocate lg R bits for
quantization. Since we have no interest in knowing the counts
of items below the threshold T , we have q0 = 0 and q1 = T .

For each quantization point qi, we pick the sampling rate,
pi, in such a way that the variance in the interval between
qi and qi+1 is no more than that of the smooth sampling
function from [15]. To do this, we always take the sampling
rate to be 1

1+ε2δqi

, i.e., the highest rate in the interval. Next,
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we show how to choose the remaining quantization points,
q2, q3, q4, . . . , qR−1. Note that we require q1 < q2 < q3 <
. . . < qR−1 = max, where max is an upper bound on the
largest flow observed.

For the quantized sampling function, the variance is:

V =

R−2
∑

i=1

(qi+1 − qi)(1/f(qi) − 1)

=
R−2
∑

i=1

(qi+1 − qi)(ε
2δqi).

We would like to choose our quantization points to minimize
this variance. Setting each ∂V

∂qi

to zero, we get the critical point
for which V is extremized (it is easy to show that none of the
points on the boundary work for us). We get that for each
i ≥ 2,

∂V

∂qi
= ε2δ(qi+1 − 2qi + qi−1).

Setting each of these to zero and rearranging, we get that
for each i ≥ 2, qi+1 − qi = qi − qi−1. Hence, we should
choose the quantization points such that they are equidistant
from each other.
A. Analysis

We first observe that even with this quantization scheme,
our estimator is still unbiased. Since the threshold T is always
a quantization point, we always start sampling at the correct
value. Furthermore, the estimate for each count is unbiased
because, as earlier, for each sampled packet we increment
the count by the inverse of the probability with which it was
sampled. We now provide a sufficient condition under which
our algorithm gives the same accuracy guarantee.

Theorem 4: If we pick the quantization points such that for
each 1 ≤ i < R − 1, qi+1 − qi ≤ T holds, then the variance
of the estimator for each flow of size s is at most ε2δs2, as
before.

Proof: The proof is a modification of that of Theorem 1
and is omitted here in the interest of space.

Hence, we can choose the quantization points in any way
such that no two consecutive points are more than T apart. One
way we can do this is to let the quantization points simply be
qi = i ∗ T , for each 0 ≤ i ≤ R − 1.
B. Number of Samples

We will now show that the number of samples under this
quantization scheme for an elephant flow still only requires
very few samples.

Theorem 5: Under this quantization scheme the expected
number of times a flow of size s is sampled is bounded by
log (s/T )+1

ε2δ .
Proof: The proof of this theorem is similar to that of

Theorem 3 and is omitted here in the interest of space.
Hence, we see that quantizing the counters of the sketch

data structure allows us to have more counters (and hence
less false positives), but at the same time allows us to have
similar bounds on both accuracy and the number of samples
of our algorithm.

TABLE I
COMPARISON FOR DESTINATION ADDRESSES IN TRACE 1
Algorithm Recall Avg. Rel. Err. False pos.
Sampling 1.0000 0.1159 165

Sample and Hold 0.9486 0.1230 2246
Multi-stage Filter 0.2553 0.0005 1

Bloom-guided 1.0000 0.0385 244
Quantized 1.0000 0.0330 5

V. PERFORMANCE EVALUATION

We evaluated our two algorithms, comparing them to the
current art, both qualitatively and quantitatively. In particular,
we wish to measure not just what fraction of the actual
elephants were detected (and how many false positives were
reported), but also how accurate the estimated counts for the
elephants were.
Datasets: We use two packet-header traces, binned into 10-
minute epochs, for evaluating the accuracy of our algorithm.
Our first packet trace (Trace 1) is an hour-long packet trace
collected from USC’s Los Nettos collecting facility on Feb
2, 2004 with roughly 10 million TCP packets per epoch. The
second trace is an hour-long trace collected at UNC on Apr
24, 2003 with roughly 20 million packets per epoch.
Distributions of Interest: We focus on two distributions for
our evaluation: the source and destination addresses of the
observed network traffic. When monitoring flows to determine
whether they are exceeding their quota, we would be interested
in monitoring for individual IP addresses. Similarly, when
trying to detect the proliferation of a worm over a network, we
would like statistics on each IP address to identify the infected
nodes.
Comparative Algorithms: We first evaluate the accuracy of
estimation of our algorithm by comparing it against (i) a
simple sampling solution, (ii) Sample and Hold [9], and (iii)
Multi-stage filters [9].

In our experiments, we kept the amount of SRAM available
and the maximum sampling rate to DRAM the same and
compared the results of these algorithms. As in [9], we assume
that a single flow table entry is equivalent to 10 counters in
SRAM. In [9] there is analysis showing how to choose the
sampling rate for Sample and Hold and how to distribute
the SRAM into the flow table and sketch for Multi-stage
Filter, but we found that these parameters did not always give
optimal results. Hence, we ran these algorithms with varying
parameters, using the results from the optimal ones. By doing
so we show that we can outperform these two algorithms
irrespective of the parameters used by them.

We focus on three metrics to evaluate the algorithms: recall,
average relative error, and false positives. Recall is defined
as the number of target flows correctly found above the
threshold divided by the actual number above the threshold.
We define relative error as the absolute error divided by the
actual count. Finally, false positives is the count of flows that
appear to be above the threshold when they really are not.
All experiments were done over five independent runs and the
standard deviations were very small, so we do not report them
for clarity of presentation.
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Fig. 2. Estimated flow size vs. real flow size for medium-size flows

We present the results of our simulations on the destination
IP addresses of Trace 1 in Table I. All the algorithms are
reasonably good at identifying all the flows above the thresh-
old, except for the Multi-stage Filter. The Multi-stage Filter
misses most of the flows of interest because the flow table in
SRAM is smaller since it must share its space with the filter. In
comparison, the other algorithms identify almost all the flows
above the threshold, with our Bloom-guided and quantized
algorithms finding every single one.

Our algorithms outperform Sample and Hold with respect
to average relative error specifically because of the accuracy
with which we identify the medium-sized flows. The error in
Sample and Hold comes entirely from how many packets are
missed before the flow is sampled, and in the case of medium-
sized flows this can be quite large relative to the flow size.

In Figure 2 we give the plots of the real counts versus
the estimate counts of medium-sized flows for both our
algorithms. They have all their estimates clustered in a band
along the y = x line. What is important to observe here is
that our algorithms consistently give the same relative error,
irrespective of the flow size.

Lastly, we take a look at the number of false positives for
each algorithm (see Table I). Observe that since Sample and
Hold has a high sampling rate to be sure to capture as many
flows as it can, it allows in many false positives. In contrast,
the Multi-stage Filter allows few to no false positives due to
its sketch data structure. Our basic Bloom-guided algorithm
allows in quite a few false positives, but with the quantization
optimization this number is severely reduced. The reason for
this is that with the quantization scheme we increase the
number of counters in the spectral Bloom filter, which in turn
causes far fewer collisions and hence fewer false positives.

We see an improvement of upto an order of magnitude in the
number of false positives because of the quantization scheme.

VI. CONCLUSION

In this paper we introduce and motivate the need to monitor
not just the very largest flows in network traffic, but also the
medium-sized ones. We show why current methods for track-
ing large flows are either inaccurate in estimating the flow sizes
correctly or are incapable of maintaining records for all the
flows of interest. Our algorithm, which is carefully designed
with the constraints on the size of SRAM and speed of DRAM
in mind, overcomes both these obstacles and efficiently solves
the problem. We demonstrate how our algorithm needs to be
adapted so as to satisfy arbitrary resource constraints placed
by the hardware available.
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