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ABSTRACT
The explosive increase in cellular network traffic, users, and
applications, as well as the corresponding shifts in user ex-
pectations, has created heavy needs and demands on cellular
data providers. In this paper we address one such need: min-
ing the logs of cellular voice and data traffic to rapidly detect
network performance anomalies and other events of interest.
The core challenge in solving this problem is the issue that
it is impossible to predict beforehand where in the traffic the
event may appear, requiring us to be able to query arbitrary
subsets of the network traffic (e.g., longer than usual round-
trip times for users in a specific urban area to connect to
FunContent.com using a particular model of phone). Since
it is infeasible to store all combinations of such data, espe-
cially when it is collected in real-time, we need to be able to
summarize the traffic data using succinct sketch data struc-
tures to answer these queries.

The major contribution of this paper is the introduction
of a scheme, called Crossroads, that can be used to compute
the intersection of the measurements between two overlap-
ping streams. For instance, in the above example, it is pos-
sible to compute the intersection of all the data going be-
tween the downtown area and FunContent.com with all the
data generated by the model of phone to detect anomalous
RTT behavior. In effect, this gives us a way to essentially
“square root” the number of sketches that we need to main-
tain, transforming a prohibitively expensive problem to one
that is tractable in practice. We provide rigorous analysis of
our sketch and the trade-offs between memory footprint and
accuracy. We also demonstrate the efficacy of our solution
via simulation on data collected at a major cellular service
carrier in the US.
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1. INTRODUCTION
The past several years have seen an explosive growth of

mobile network technologies and services in all conceivable
dimensions. The amount of cellular network traffic has dra-
matically increased year over year. Today a large percentage
of the population on this planet – especially young people –
spend a large chunk of their daily lives on mobile devices such
as smartphones and tablets. More and more mobile services
are provided through smartphone apps, allowing people to
send/receive emails and text messages, watch videos, or play
online games using their smartphones.

However, this growth also poses a significant challenge to
cellular network providers in that it makes the performance
anomalies in cellular networks and services hard to measure,
detect, and diagnose. Cellular service providers do have so-
phisticated monitoring of network elements for faults and
performance. However, services have gotten dramatically
more complicated over recent years, with a plethora of so-
phisticated devices (phones, tablets) and a tremendous vari-
ety of apps and online services. Knowing when a single type
of device app or device/app combination is having perfor-
mance problems requires comprehensive service monitoring
and sophisticated problem detection and trouble isolation,
and yet is critical to being able to rapidly resolve such is-
sues. Given the complexity of this network ecosystem, issues
may be introduced by the device (e.g., software), network,
application server, or by some complex interaction between
different combinations of these. So simply monitoring the
network or overall service performance will not detect all
possible issues.



1.1 Problem Statement
In this work, we identify a challenging data mining prob-

lem that is critical for automatically detecting anomalies and
degradation of performance, and propose a data sketching
solution for it. The type of event we are looking for in this
network environment is a set of cellular calls or data ses-
sions whose performance is negatively impacted by a com-
mon cause. An example event could be that more than 100
sessions/calls (say during a five-minute measurement inter-
val) from customers in a“Metropolis” (a fictitious city name)
downtown location to FunContent server using“Magic Phone
7” (a fictitious device name) that run on “Magic OS 88.8” (a
fictitious OS name) have longer-than-usual round-trip times
(RTT) during a 5-minute time window τ . In this case,
network operators will be asked to look into possible root
cause(s) of the event which could include Magic Phone 7
operating systems software issues (e.g., the “Magic OS” ver-
sion is too recent for the old model phone), routing prob-
lems along the path from that Metropolis location to San
Francisco bay area (where Facebook servers are located), or
software problems with the FunContent app or at the server
side (e.g., incompatibility with an old version of the app used
by many Metropolis-area customers).

If we were able to record every cellular packet and store
it in a traditional static database, identifying such perfor-
mance anomaly events becomes a variant of the association-
rule mining problem. For example, our task would be look-
ing for the following association rule in the abovementioned
scenario:

“Device = Magic Phone 7” &
“OS = Magic OS 88.8” &
“Application = FunContent.app” &
“Source = Metropolis downtown location” &
“Destination = FunContent.com” &
“Time = τ”
⇒ “unusually long RTT”.

Our problem here is much more challenging because in a
major cellular network the raw traffic comes in too fast to
be saved into a database and is too large to be stored for
an extended period of time. In other words, we need to
identify such association rules on the fly while the packets
stream in. For the “streaming version” of the abovemen-
tioned problem, a naive solution is to maintain, for every
possible value combination of the attributes “Device”, “OS”,
“Application”, “Source”, “Destination”, and “Time”, a few
statistics counters for tracking the average RTT of the set
of packets that matches the value combination. While this
solution may barely work today, when the total number of
possible value combinations of these attributes is still in the
tens or hundreds of millions, it will not work in the near fu-
ture, as the explosive growth in the number of applications,
devices, and content providers (destinations) will soon drive
the total number of such value combinations to billions or
even trillions, making it impossible to fit all these counters in
main memory (DRAM). While disks (or solid state drives)
are still large enough to store complete summaries, they are
too slow to allow for per-packet updates (to the counters) in
such a high-speed cellular network.

In this work, we propose a general memory-efficient tech-
nique for performing association-rule mining over high-speed
data streams, of which the abovementioned scenario is a spe-
cific case. Data streaming is concerned with processing a
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Figure 1: Two different partition scenarios of the
same set. We partition the identical set S as subsets
A1, A2... Am and as subsets B1, B2... Bn

long stream of data items in one pass using a small working
memory in order to approximately answer a query regard-
ing the stream. The key challenge is to “remember,” in this
small memory, as much information pertinent to the query
as possible. Such information is often organized as a synop-
sis data structure referred to as a sketch and different sketch
data structures are usually needed to answer different types
of queries over the data stream. These sketches are inher-
ently lossy, greatly reducing the storage cost of the data at
the cost of some accuracy – there are well-understood ana-
lytical tradeoffs between the space savings and accuracy of
such sketches. Our solution reduces the amount of work-
ing space needed to (approximately) track all possible at-
tribute value combinations (say there are N of them) from

O(N) to O(
√
N), without significantly degrading the mon-

itoring accuracy for major performance anomalies. This al-
lows the working space to reside entirely in the main memory
(DRAM), and thereby allows for the processing of each and
every data item (in this case a packet) in the stream – and
the updating of the corresponding sketches – on the fly.

1.2 The “Crossroads" Approach
Our solution consists of three steps. The first step is to

partition the set of attributes that needs to be mined for
associations into two subsets so that the number of value
combinations of attributes in each subset is much smaller
than – and ideally close to the square root of – that of all
attributes. As shown in Fig. 1, each subset of attributes
can be viewed as a dimension along which the data set S
(in our case consisting of all packets in a cellular network) is
partitioned. For example, in the abovementioned scenario,
one dimension could include all possible “Source” and “Des-
tination” combinations, and the other “Device type”, “OS”,
and “Application” (including its version number) combina-
tions; while the number of joint value combinations of all
these attributes in the future could be in trillions (∼ 1012),
that of each subset may only be in millions (∼ 106). In this
way, the data set S can be partitioned into (data) subsets Ai
for i = 1, 2, ...,m along one dimension, each of which corre-
sponds to the subset of data that takes a certain value com-
bination along that dimension, and similarly into (data) sub-
sets Bj for j = 1, 2, ..., n along the other. In the abovemen-
tioned application scenario, the set of packets that match
(“Source = the Metropolis downtown location” & “Destina-
tion = FunContent.com”) could be one such Ai, and the set
of packets that match (“Device = Magic Phone 7” & “OS =
Magic OS 88.8”&“Application = FunContent.app”&“Time
= τ”) could be one such Bj . Then the set of packets that
match the filter (“Device = Magic Phone 7” & “OS = Magic
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Figure 2: We can compute functions on the inter-
section of arbitrary sets Ai and Bj

OS 88.8” & “Application = FunContent.app” & “Source =
the Metropolis downtown location” & “Destination = Fun-
Content.com” & “Time = τ”) – of which we would like to
measure and monitor the performance metrics (e.g., aver-
age RTT) – is precisely the intersection of Ai and Bj , as
illustrated in Fig. 2. As will become clear shortly, we will
estimate these performance metrics by taking such intersec-
tions, and hence the name “Crossroads.”

In the second step, for each set Ai, a sketch is constructed
to succinctly summarize the performance metrics (e.g., aver-
age RTT) of all data items in it. The same is done for each
Bj . We will talk about the sketch data structures suitable
for this purpose later in Section 3. The novelty of this ap-
proach lies mainly in the third step, which is to derive the
performance metrics of the data inside each Ai∩Bj by inter-
secting the sketches constructed for Ai and that constructed
for Bj .

The potential further loss of accuracy in this intersection
process aside, one may be tempted to take intersection on
three or more such sketches. This is however provably im-
possible, if the Tug-of-War sketch is used as the underlying
sketch data structure [1]. The Tug-of-War sketch is in gen-
eral preferred over other types of sketches due to its lower
space and computational complexities, and the much bet-
ter numerical stability of the Gaussian distribution used by
it. Slightly disappointing as this impossibility result might
be, it serves as a somber reminder that we should count
our blessings that we are able to perform even the two-way
intersection after all.

It is assumed, in the above example, that the full data
set is available to the association-rule mining (ARM) algo-
rithm – that is, all attribute value combinations are stored.
The contribution of this work is to significantly reduce the
amount of data stored so that it can be performed over a
high-speed data stream. We do not propose any new ARM
algorithms, but give a way to reduce the amount of data that
such an algorithm would need to use. Although we believe
our technique could be used to reduce the space-complexity
of many ARM algorithms, that is outside the scope of this
paper.

2. PRELIMINARIES
In this section, we give a formal description of the problem

and illustrate it with some examples.
For the problem of detecting anomalies and other events

in a cellular network, we would like to estimate some useful
quantities such as the moments of some important metrics
(e.g., RTT) of the data stream. The kth moment of a packet
stream is defined as: Mk =

∑
i v
k
i , where vi is the value

(e.g., RTT) of the ith packet in a stream. In particular,
the moments M0 =

∑
i v

0
i =

∑
i 1 and M1(v) =

∑
i vi give

the number of packets and the sum of such values in all
the packets in the stream, respectively. These quantities
together allow us to estimate the mean of such values in
the stream. The second moment (M2 =

∑
i v

2
i ) is even more

interesting, since, normalized by the total number of packets
M0 in the stream, it can be decomposed into the sum of two
quantities: (1) the square of the empirical mean v value,
and (2) the empirical variance of the v values, across all

packets in the stream (i.e., M2(v)
M0(v)

= E(v)2 + V ar(v)). Any

significant increase in either the mean or the variance, both
constituting a performance anomaly, will be reflected in the
second moment.

Here is a simple example of a stream containing 3 different
packets. Let the RTT values of the 3 packets be 50, 100,
100. For this stream, the number of distinct elements will
be M0(RTT ) = 3, the sum of RTT values in the stream
will be M1(RTT ) = 50 + 100 + 100 = 250, and the second
moment will be M2(RTT ) = 502 + 1002 + 1002 = 22, 500.

Note that in the data streaming literature, we are usu-
ally concerned with the frequency moments of the stream,
that is, moments based on the frequency with which each
unique identifier appears. In the networking context, this
identifier is usually that of a transport-layer (TCP or UDP)
flow, i.e., the five-tuple consisting of source and destination
IP addresses and port numbers, and the protocol. In our
case, however, we consider every packet to have a unique
identifier, or to be a singleton “flow” itself. In other words,
we are interested in the much easier-to-compute moments of
the (RTT) values of individual singleton flows. For a single
stream this can trivially be computed using a single counter
that is incremented with each new (RTT) value. The reason
why our problem is challenging, and deserves this effort, is
that we are interested in efficiently computing the moments
of the intersection of two massive data streams. More pre-
cisely, we would like to compute the moments of the (RTT)
values associated with the set of data items that appear in
both data streams (i.e., their “intersection”).

3. INTERSECTION ALGORITHM
In this section, we first describe the algorithm for sketching

the data. We then explain how our intersection algorithm
can be used for estimating the second frequency moment
of a traffic feature. We use RTT as a concrete example,
though we emphasize that any numeric feature can be used.
Next, we formalize our M2 intersection algorithm and pro-
vide theoretical guarantees and rigorous statistical analysis
for it. Finally, we describe the design of our M0 and M1 al-
gorithms and explain how they work. Once again, the sketch
data structures are not novel, but the way in which they are
used for computing intersections is the main contribution of
our work.

3.1 Sketching Algorithm
As explained before and shown in Fig. 2, we would like

to be able to estimate certain metrics (e.g., RTT) associated
with data items that belong to the intersection of any Ai,
i = 1, 2, ...,m with any Bj , j = 1, 2, ..., n. We do so by main-
taining a total of m+n sketches, namely, one for each set Ai,
i = 1, 2, ...,m and one for each set Bj , j = 1, 2, ..., n. In our
application scenario, the data are simply a massive stream
of cellular network packets. We identify four important at-



tributes I, J , V , and ID in each packet. The abovemen-
tioned partitioning of the whole stream into A′is and B′js
is based on the value a packet takes on attribute I and J
respectively. The V attribute is the metric (say RTT) that
is of interest to us. The ID attribute is essentially the set
of bits in a packet that uniquely identifies the packet. We
emphasize this ID attribute is not the flow identifier (the
abovementioned five tuple) although the latter could be a
part of the former, since we consider each packet a “single-
ton flow” for the purpose of the second moment estimation,
as we explained earlier.

Let us denote the sketches for Ai and Bj as S(Ai) and
S(Bj), respectively, and let M(v) be a function that com-
putes the moments for a certain value v (e.g., M(v) = v2

for M2). Then our goal is to estimate
∑

pkt∈Ai∩Bj

M(pkt.V ),

which denotes the moment of the values of all packets in the
intersection of the sets Ai and Bj , from the sketches S(Ai)
and S(Bj). Therefore, as shown in Algorithm 1, with the
arrival of each packet pkt, we need to update both sketches
S(Apkt.I) and S(Bpkt.J) with its contribution pkt.V . We
will explain in the next section how this contribution to both
sketches are “linked” by the identifier of the packet pkt.ID
so that it can be accounted for and later retrieved from their
intersection.

Algorithm 1 Processing algorithm

UPDATE:
1: Upon the arrival of a packet pkt
2: v:=pkt.V
3: i:=pkt.I
4: j:=pkt.J
5: Update(S(Ai), v, pkt.ID)
6: Update(S(Bj), v, pkt.ID)

As conventional data sketches weren’t designed to handle
such intersection operations, our work is focused on how to
do that. We choose the Tug-of-War sketch as the underly-
ing sketch data structure and build the intersection capa-
bility on top of it. Alon et al. [2] proposed this remarkable
sketch, later named the “tug-of-war” sketch in [1], for esti-
mating the second moment of a data stream using only log-
arithmic space. For all ε, λ > 0, the tug-of-war sketch uses

only O( log (1/ε)

λ2 ) counters to sketch the second moment of a
stream with the guarantee that the probability with which
the relative error is larger than λ is at most ε. The sketch
allows arbitrary and efficient updates for the values. Let −→s
= {s1, s2, ...sn} be a vector of length n, where each entry
si takes on value +1 or −1 with equal probability 1

2
, and

−→v = {v1, v2, ...vn} where {v1, v2, ...vn} are the respective V
values of the n packets in the stream. Then the value of a
counter in the sketch is −→v ·−→s = v1s1 + v2s2 + . . .+ vnsn [2].
It was shown in [2] that the square of this counter value is an
unbiased estimator for the second moment of the vi values,
and a small number of such estimators (i.e., squares of the
values in multiple counters) can be combined to provide an
accurate estimation of the second moment, as characterized
by the abovementioned space-accuracy tradeoff.

One key property of the tug-of-war sketch is that if two
sketches have the same size and use the same vector −→s , then
we can add up the two sketches to get the direct sum which
is equivalent to taking the union of the original streams.
This feature of allowing the computation of the union of two

sketches is a vital property that we will later leverage in our
algorithm design.

Algorithm 2 The Tug-of-War algorithm

PRE-PROCESSING:
1: Fix K independent hash functions hk : U → {+1,−1},
k = 1, 2, ...,K, each of which is four-wise independent

2: Initialize Z[k] := 0 for k = 1, 2, ...,K

ALGORITHM:
1: Upon the arrival of a packet pkt
2: For k := 1 to K
3: Z[k] := Z[k] + pkt.V ∗ hk(pkt.ID)

4: Return
(∑K

k=1 Z[k]2
)
/K

3.2 Intersection algorithm for estimating M2

Recall that our data are a long stream of packets, and for
each packet pkt, we identify four important attributes I, J ,
V , and ID. In this section, we explain how we compute the
M2 of the V values (RTTs in this case) for the intersection
of a certain pair of sub-streams Ai and Bj . The sub-stream
Ai consists of all packets whose I attribute value is equal
to i, and the sub-stream Bj consists of all packets whose J
attribute value is equal to j. To simplify the notation, we
drop the subscripts in Ai and Bj in the sequel, referring to
them as A and B respectively. With the streaming context
of A and B being clear, we will call them sets rather than
sub-streams in the sequel.

3.2.1 Algorithm Overview
We use the tug-of-war technique to sketch both A and B.

Each sketch – S(A) or S(B) – is made up of K counters
{Z[k]}, k = 1, 2, ...,K. For convenience of notation, we will
write S(A) or S(B) as SA or SB in the sequel. Each counter
Z[k] is paired with a hash function hk that generates the
above-mentioned random vector −→s (now called −→sk to distin-
guish them from one another) with which the V values of the
packets in the stream, viewed as a vector, will take an inner
product. The“Update(S(*), v, pkt.ID)”procedure inside Al-
gorithm 1, when the underlying sketch is the tug-of-war, is
shown in Algorithm 2. Upon the arrival of a packet pkt that
belongs to the sub-stream, the update to to the kth counter
is simply Z[k] := Z[k] + pkt.V ∗ hk(pkt.ID), where each hk
is a hash function that deterministically outputs +1 or −1
with equal probability given any input value. As mentioned
earlier, there is a tradeoff between the accuracy of the esti-
mation and the number of counters K used. When we refer
to the size of the sketch, we mean the number of counters
K.

The tug-of-war technique has a useful property that, when
two tug-of-war sketches S(A) and S(B) employ the same
number of counters and set of hash functions, SA⋃

B , the
sketch for the union of two sets, is simply the component-
wise addition of SA and SB (i.e., their corresponding coun-
ters added up). Making use of this property by doing ex-
actly so, we define SA⊕B as the component-wise sum of
SA and SB . Our estimation of the M2 of A

⋂
B is simply

M̂2(SA⋂
B) = 1

2
· {M2(SA⊕B)−M2(SA)−M2(SB)}, where

M2(SA⊕B), M2(SA), and M2(SB) can be obtained using the
standard estimation procedures for the tug-of-war sketch.



3.2.2 Theoretical Guarantees
In this section, we derive the variance of the estimator

M̂2(SA⋂
B) when only one (instead of K) hash function

and counter is used in sketching. We define two parame-
ters γA, γB ≤ 1 as

∑
A∩B v

2
i = γA

∑
A v

2
i and

∑
A∩B v

2
i =

γB
∑
B v

2
i . In other words, γA and γB represent the pro-

portion of the intersection part respectively in set A and set
B. Intuitively, this is the amount of overlap the intersection
has with either set and we will need it to be large enough
because otherwise the “signal” (M2 of the intersection) will
be drowned out by the noise (errors in estimating M ′2s of A
and B from their respective sketches). The following the-
orem demonstrates that such an estimator is unbiased and
has reasonably low variance. Note this variance can be fur-
ther reduced by about a factor of K, when K counters (and
hash functions) are used.

Theorem 1 The M2 Intersection Algorithm produces an
unbiased estimator for M2(SA

⋂
B), and the variance of the

estimator is (
∑
A∩B v

2
i )2( 1

γAγB
− 1)

Proof Let Ŷ denote the estimator for M2(SA⋂
B) and

recall that vi denotes the value for the element with ID i.
The estimator for the sketch SA is M̂2(SA) = (

∑
A visi)

2

and that for sketch SB is M̂2(SB) = (
∑
B visi)

2. In both
sketches, every choice of si ∈ {+1,−1} is identical as both
use the same hash function h : U → {+1,−1}. The estima-

tor M̂2(SA⊕B) for the second frequency moment of SA⊕B is

then M̂2(SA⊕B) = (
∑
A visi +

∑
B visi)

2.
Now we prove that our algorithm can produce an unbiased

estimator for M2(SA∩B). From the above algorithm, our
estimator is:

Ŷ =
1

2
· {M̂2(SA⊕B)− M̂2(SA)− M̂2(SB)}

=
1

2
· {(
∑
A

visi +
∑
B

visi)
2

−(
∑
A

visi)
2 − (

∑
B

visi)
2}

= (
∑
A

visi)(
∑
B

visi).

Then, the expected value of this estimator is

E[Ŷ ] = E[(
∑
A

visi)(
∑
B

visi)]

= E[
∑
A∩B

v2i s
2
i +

∑
i∈A−B,j∈B−A

visivjsj +

∑
i∈A∩B,j∈B−A

visivjsj +
∑

i∈A−B,j∈A∩B

visivjsj ]

=
∑
A∩B

v2i = M2(SA
⋂
B).

In the second equality, for all i 6= j we know that si and
sj are independent, so E[sisj ] = E[si] · E[sj ] = 0 and all
but the first term disappear. Also note that s2i = 1 as each
si ∈ {1,−1}, leading to the simplification of the first term.

Thus, Ŷ is an unbiased estimator for M2(SA∩B).

Now we will analyze the variance of our estimator in the
algorithm. First, we compute

E[Ŷ 2] = E[(
∑
A

visi)
2 · (
∑
B

visi)
2]

= E[(
∑
A∩B

visi +
∑
A−B

visi)
2

·(
∑
A∩B

visi +
∑
B−A

visi)
2]

=
∑
A∩B

v4i + 2
∑

A∩B,i<j

v2i v
2
j + (

∑
A∩B

v2i )(
∑
B−A

v2i )

+(
∑
A∩B

v2i )(
∑
A−B

v2i ) + (
∑
A−B

v2i )(
∑
B−A

v2i ).

In the last equality we once again drop terms that include
sisj where i 6= j as their expectation is equal to 0.

From the derivation of the expectation, we know that:

(E[Ŷ ])2 =
∑
A∩B v

4
i + 2

∑
A∩B,i<j v

2
i v

2
j .

so the variance of the estimator is

V ar[Ŷ ] = E[Ŷ 2]− (E[Ŷ ])2

= (
∑
A∩B

v2i )(
∑
B−A

v2i ) + (
∑
A∩B

v2i )(
∑
A−B

v2i )

+(
∑
A−B

v2i )(
∑
B−A

v2i )

= (
∑
A∩B

v2i )2(
1

γB
− 1) + (

∑
A∩B

v2i )2(
1

γA
− 1)

+(
∑
A∩B

v2i )2(
1

γA
− 1)(

1

γB
− 1)

= (
∑
A∩B

v2i )2(
1

γAγB
− 1).

Numerical Illustration: For instance, assume that the in-
tersection of the two streams only has 1% of the value of both
A and B (i.e., γA = γB = 0.01). Then, if we use just 100,000
counters per sketch, the variance-to-mean-square ratio is 0.1
– small enough to get under 10% error with high probability.

3.3 Intersection Algorithms for estimating M0

and M1

The zero-th moment M0 indicates the number of distinct
elements in a stream. Ordinarily, this quantity can be triv-
ially tracked using just one counter for a single stream, but
this trivial solution does not allow for the estimation of M0

of the intersection of two streams. However, the above-
mentioned intersection technique for estimating M2 can be
modified slightly to estimate M0 of the intersection of two
streams. We simply replace the term “pkt.V” in line 3 of
the second routine in Algorithm 2 by the value 1. The

M0 estimator for the intersection is simply M̂0(SA⋂
B) =

1
2
·{M0(SA⊕B)−M0(SA)−M0(SB)}. Note this simple mod-

ification works for M0 estimation only in this special case,
where every packet is a “singleton” flow.

To estimate the average RTT, we need also to estimate
the first moment M1, which is the sum of all the RTT val-
ues of the packets in a stream. It turns out that the M2

intersection technique can again be slightly modified to suit
our need. We simply replace the term “pkt.V” by its square
root and the estimator remains the same as in the M2 case.



Figure 3: Two scenarios for intersection of 3
sketches.

Again, this simple modification works only in this special
case, where every packet is a “singleton” flow. Otherwise, we
would have to resort to much more expensive techniques such
as the Cauchy distribution sketch proposed by Indyk [10].
The algorithms and analysis are very similar to the case for
M2 and are omitted here for brevity.

4. AN IMPOSSIBILITY RESULT ON 3-WAY
INTERSECTION

In this section, we prove a claim stated earlier that, with
Tug-of-War algorithm, it is impossible to generalize this 2-
way intersection scheme to a 3-way (or higher) scheme. Note
that in the Tug-of-War sketch, the final value of each counter
is the result of a long random walk, which is known to be
very close to Gaussian. This property will be used in the
proof. Recall that our scheme uses Tug-of-War for estimat-
ing all three quantities (M0, M1, M2) of interest, and is
therefore governed by this impossibility result. Although it
is possible to circumvent this impossibility using other types
of sketches (e.g., the stable distribution sketches [10] other
than the Gaussian one), they are in general much more ex-
pensive than the Tug-of-War sketch.

Intriguing as our claim is, its proof is in fact quite straight-
forward. Suppose three Tug-of-War sketches SA, SB , and SC
– each of which consists of the same number of counters –
are used to summarize three data sets A, B, and C respec-
tively. Since counter values in each sketch is i.i.d., without
loss of generality it suffices to prove the case in which there
is only one counter in each sketch (i.e., one random vari-
able in each random vector). In the following, we will create
two sets (of data sets) {A1, B1, C1} and {A2, B2, C2} so
that the random vectors 〈SA1 , SB1 , SC1〉 and 〈SA2 , SB2 , SC2〉
have identical joint (approximately Gaussian) distributions,
but |A1 ∩ B1 ∩ C1| and |A2 ∩ B2 ∩ C2| are very different
in value. However, since any estimator of the 3-way inter-
section is necessarily a function of the joint distribution of
these three sketches, this estimator cannot estimate both
3-way intersections accurately.

First consider scenario 1 in Figure 3. All three sets, A,
B, and C, contain 10q packets each. Note that though their
sizes are the same, A, B and C are distinct sets of packets.
Let us assume that all the values for all packets have the
same value T . In this scenario, the sketches produced from
the three sets are three random variables (there is only one
counter in each sketch as explained earlier) SA, SB , SC . As
explained before, when q is large, the marginal distribution
of each random variable is Gaussian, and they have a joint
Gaussian distribution. The variance of the three sketches

are all 10T 2, and their pairwise covariances Cov[SA, SB ],
Cov[SB , SC ], Cov[SA, SC ] are all equal to 4qT 2. Note that
4q is exactly the size of pairwise intersections |A∩C|, |A∩B|
and |B∩C|. Thus these 3 random variables SA, SB , SC have
a joint Gaussian distribution with the covariance matrix:

Σ =

 10T 2 4qT 2 4qT 2

4qT 2 10T 2 4qT 2

4qT 2 4qT 2 10T 2

 . (1)

It can be easily verified that in scenario 2 these 3 random
variables also have a joint Gaussian distribution, and have
the same covariance matrix. Since the covariance matrix
uniquely determines a joint Gaussian distribution, these two
random vectors have the same joint probability distribution
in both scenarios. However, the size of 3-way intersection
in these two scenarios are 3qT 2 and 2qT 2 respectively. This
means that there is at least 33% relative error in estimating
one of these values.

5. IMPLEMENTATION ISSUES
In this section, we describe several important implemen-

tation issues with the data sketches and their cost and per-
formance ramifications if applicable.

1. Intersection Ratio. We define the intersection ratio
(IR) of the sets A and B as follows:

IRA =
size(A ∩B)

size(A)
, IRB =

size(A ∩B)

size(B)
, (2)

where size() denotes the number of packets contained
in a set. IRA and IRB are equivalent respectively to
γA and γB defined earlier, if the V values of all the
packets are identical.

This IR has a great influence on the relative errors of
our estimations, for M0, M1, and M2, over the intersec-
tion A∩B. For example, if IRA = IRB = 0.01, which
means the intersection constitutes only 1% of the size of
A or B, then these relative errors will be approximately
100 times larger than the relative errors of our estima-
tions over A or B alone. When IRA and IRB are both
very small (e.g., 10−4), A ∩B is so small compared to
A and B that our approach will not produce accurate
estimations over the intersection without consuming
an excessive amount of counter memory. In our imple-
mentations, we dimension just enough counter memory
for the cases in which IRA and IRB are both around
or above 0.005.

2. The ID attribute. It has been shown that the first
invariant (i.e., not including fields that are modified
hop by hop by routers such as TTL) 28 bytes in an IP
packet header suffice to uniquely identify a packet [21].
In the spirit of that, a similar set of bytes is used as the
aforementioned ID attribute for the cellular network
packets (different from IP). Our approach can also be
extended to flow-level by using the unique identifier of
each flow instead of each individual packet.

3. Sketch resource allocation. In this work, we are in-
terested in estimating the average RTT, or equivalently
M1(RTT )
M0(RTT )

, from the underlying Tug-of-War sketches.

However, since M0(RTT ) is the denominator, its esti-
mation accuracy affects the overall accuracy more than



the numerator M1(RTT ). Therefore, we allocate more
sketch memory, in terms of the number of counters and
hash functions, for measuring M0 than for measuring
M1.

4. No median and all averaging. The original Tug-of-
War sketch used a median of mean of the counters [1]
mainly for proving accuracy bounds rigorously. The
number of different counters used is usually s = s1 · s2,
where s1 represents the number of counters we average
to improve the accuracy and s2 represents the number
of such averages we take the median of to improve the
confidence. In this work, we decided to simply average
all s counters together to arrive at our estimator, in-
stead of also taking median, because our experiments
show no improvement in empirical accuracy by doing
so. Note that upon the arrival of each packet, all s
counters must be updated no matter how s splits into
s1 and s2, so unlike the bucketing issue described be-
low, this decision does not affect the computational
complexity of the per-packet update procedure.

5. Tug-of-War bucketing. Since the computational
complexity of the update procedure of the original Tug-
of-War algorithm can be quite high, especially when a
large number of counters and hash functions are used,
a bucketing technique first introduced in [26] is used in
our implementations to reduce this complexity. Buck-
eting works by partitioning the available memory into
several disjoint buckets of counters and introducing a
new hash function. For every arriving packet, we map
it to a bucket by hashing its packet ID using this new
hash function. Counters in this bucket will then be
updated in the same way as in the original Tug-of-War
sketch. The second moment of the stream can be es-
timated by first obtaining the second moments of the
sub-streams encoded by the buckets, and then adding
them up. The computational complexity of each up-
date can thus be reduced by a factor of the number of
buckets. The accuracy loss due to bucketing is negligi-
ble, as shown in [26].

6. Intersection overhead. While the update of the
sketches are optimized to be possible online, the in-
tersection of pairs of sketches can be done offline as
needed. There is a small computational overhead of
O(K) operations, where K is the sketch size used (a
few thousand counters in the following experimental
section). This overhead is small enough to be negligi-
ble, and well worth the savings in storage cost.

6. EVALUATION
In this section, we evaluate the accuracy and efficiency

of our estimation algorithms using two types of data: real-
world cellular network data from a major cellular service
carrier in the US and synthetic traffic data. The cellular net-
work data was collected during a one month period across
the entire United States and was anonymized and aggre-
gated. No personally identifiable information was gathered
or used in conducting this study. We also generated syn-
thetic data statistically similar to the real data so that we
had more control over various parameters such as the sizes
of the sets A and B to be intersected and the amount of
overlap between them. Our results on real data show that
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Figure 4: Synthetic results for M2 intersection rela-
tive errors when the total memory is fixed to 4096
counters while the sketch size and the number of
buckets are varied

our approach uses a memory space about 170 times smaller
than the naive full-table approach (i.e., devoting one or a
few statistics counters to each Ai

⋂
Bj) while suffering only

about 10% loss in estimation accuracy.

6.1 Results for Synthetic Data
In our synthetic data, all RTTs were randomly generated

values between 0 and 100 milliseconds, similar to the values
we found in the real data set. For each experiment, we gen-
erated data according to whether we would like to vary the
full data size (number of packets or unique combinations)
or the size of the intersection compared with the size of the
individual sets (i.e., intersection ratio).

We first evaluate the effect of bucketing on estimation ac-
curacy by comparing estimation outcomes without bucket-
ing (viewed as having one bucket containing all counters)
with those with bucketing. In all cases, an identical number
(4096) of counters are used. For this experiment, we fix the
sizes (number of packets) of the intersecting sets A and B to
be 0.1M and both intersection ratios to be 0.05. As we can
see from Fig. 4, when the total number of counters we use
in each sketch is set, and we vary the bucket size, defined
as the number of counters in each bucket, and the number
of buckets while keeping the total number of counters per
sketch constant, the results do not vary substantially. This
means that bucketing does not negatively impact the esti-
mation accuracy while reducing computational complexities
of the update procedure. We got similar results with various
other total counter counts (not shown here in the interest of
space). As there seems to be no marked performance bene-
fit to avoid bucketing, we fixed the number of counters per
bucket 16 in subsequent experiments. This means that each
packet only triggers 16 counter updates, which is affordable
computationally even for processing high-speed cellular net-
work traffic.

Next, we vary the number of buckets, while fixing the
bucket size to 16 (counters per bucket), to see how it affects
the relative mean intersection estimation error and the rel-
ative mean sketch error in Fig. 5. Again the sizes (packets
number) of both intersecting sets A and B are set to 0.1M
and both intersection ratios 0.05. We found that the results
for M2, M1 and M0 were comparable. The reason for this is
that the 3 frequency moment estimation processes all use the
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Figure 5: Synthetic results for mean intersection rel-
ative errors and sketch relative errors when varying
(the number of) buckets. Bucket size set to 16 coun-
ters and the total memory usage is bucket size ×
buckets

same Tug-of-War sketch. In both figures, as the number of
buckets gets larger, both relative sketch estimation error and
intersection estimation error decrease, but with diminishing
returns.

Next, we study the situation in which the intersection ra-
tios IRA and IRB are varied simultaneously. The results
are shown in Fig. 6. As IR increases, mean relative error
decreases very quickly. The effect of increasing IR is quite
notable for decreasing relative error. When IR is quite small
(e.g., 10−5), getting an accurate estimation for the inter-
section part is very difficult. As the intersection ratio gets
larger, we get increasingly accurate estimates of the inter-
section. Note that the intersection ratio will not affect our
sketch estimating errors; it affects only the intersection esti-
mation error.

We also varied the size of A and B (with size(A) =
size(B)) while keeping their IR constant. The results are
shown in Fig. 7. We found that the mean relative error
increases only slightly with the size of both sets. This sug-
gests that the sizes of both sets do not significantly affect
the relative intersection error as long as the intersection ra-
tio remains constant. Hence, our method can be used for
even larger data sets (i.e., larger packet streams) with little
degradation in estimation accuracy.

0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

intersection ratio

re
la

ti
v
e

 e
rr

o
r

 

 

M
2
 intersection error

M
1
 intersection error

M
0
 intersection error

Figure 6: Synthetic results for mean intersection rel-
ative errors when varying intersection ratio. Bucket
size set to 16 counters and the number of buckets to
1024
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Figure 7: Synthetic results for mean intersection rel-
ative errors when varying the number of packets in
the set. Bucket size set to 16 and buckets to 1024

6.2 Data Sets for Real Data
Our real-world data was collected from a major cellular

service carrier in the US over the month of January 2014. It
consists of anonymized TCP flow level data collected from
the core network for the 3G data service provided by the
cellular service carrier.

Figure 8 illustrates the architectural overview of the core
network, which consists of two main types of nodes: the
Serving GPRS Support Node (SGSN) and the Gateway GPRS
Support Node (GGSN). The GGSN is the root node in the
hierarchy of the cellular data network and responsible for
sending and receiving Internet traffic to and from the cel-
lular network. SGSN is an intermediate node that connects
the lower level nodes to the GGSN through the Gn interface.
Typically, a single SGSN is connected to multiple Radio Net-
work Controllers (RNCs) and each RNC serves a geograph-
ical region through cell towers.

The raw data is collected at the Gn interface which con-
nects the SGSNs to the GGSNs. Specifically, for each TCP
flow, we first measure its end-to-end round trip time (RTT)
by comparing the timestamps of IP packets during the TCP



Figure 8: Data Collection Architecture

handshake and then associate the RTT value with various
flow attributes such as standard coordinated universal time
(UTC), the serving RNC that describes the user access point,
the handheld device type, the application type, the content
provider being accessed, etc. Due to the sheer amount of
traffic volume, instead of storing the raw data for all individ-
ual flows, we only store the hourly total number of RTT mea-
surements, the hourly summation of the RTT measurements
and the hourly average RTT (computed as the sum divided
by the total number) over eight different flow attributes:
serving RNC, handheld device manufacturer/model, hand-
held device speed category, service category, content provider,
day of week, hour and access point network (APN). No per-
sonally identifiable information is retained in the aggregate
statistics. Being able to query these statistics for an arbi-
trary cross-section of the eight different flow attributes is
critical for service providers to manage their service perfor-
mance. In order to be able to perform a query for any arbi-
trary 8-tuple of these quantities, we divided these attributes
into two groups. The results of some preliminary measure-
ments showed that making serving RNC, service category,
handheld device speed category and day of week as a group,
and handheld device manufacturer/model, content provider,
access point network and hour as another group, would min-
imize the total number of sketches that we would need to
perform a query for an arbitrary slice of the data.

There are about 1.4 million distinct combinations for the
former group described above and about 1.5 million for the
latter. Thus, the cost of maintaining the value of each and
every combination (a table with one counter per combina-
tion) would result in a space usage of 1.4M × 1.5M × 4
bytes, or more than 7.5 TB of storage capacity. In contrast,
if we use 4096 counters in each sketch, our method needs
only (1.4M + 1.5M) × 4096 × 4 bytes, or less than 45 GB.
This is a savings of over two orders of magnitude that is paid
for with a small loss in estimation error. Note that working
with even larger data sets (for instance, monitoring a year’s
worth of data) will give even greater savings.

Since the data we get is already aggregated by hour, we
were unable to perform per-packet processing. Instead, we
updated our sketch data structures using the measurement
count and measurement values for each tuple aggregated at
each hour across 36 sub-regions that span the United States.
A limitation of this aggregated data was that we were un-
able to compute the second moment values for the RTTs
since we did not have these individual values available to
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Figure 9: Results of mean intersection relative er-
rors with fixed memory to 4096 counters and varying
bucket size and the number of buckets
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Figure 11: Results of mean intersection relative er-
rors when varying buckets for real data. Bucket size
set to 16

us. In the future, when our algorithm is deployed directly at
each RNC, we will be able to measure the second moment as
well to estimate the variance of the RTT (or other) values.
Since it was infeasible to measure estimates for all possi-
ble combinations of tuples, we instead sampled one hundred
tuples at random and computed the average relative error
for these combinations. The variance of these measurements
was found to be small.

6.3 Results for Real Data
We tested our algorithms on the cellular traffic data de-

scribed above. For anomaly detection and other change de-
tection problems, it suffices to have a relative estimation
error that is within 15% since we are only interested in de-
tecting significant changes from the normal values. For in-
stance, we may not want to sound an alarm until the RTT
has nearly doubled from its usual value. Of course, in other
applications we may want to bound the error to under a few
percent; our evaluation extends to this range as well.

Unlike the experiments on synthetic data, we did not have
the ability to change all parameters (e.g., relative set size
or intersection ratio). Also note that it was infeasible to
compute M2 for the real data because they had already been
aggregated into flow records. Therefore, we focused on M0

and M1, which can be computed from the aggregated data,
and the average (Avg = M1/M0).

We first investigated what parameters work well for our
sketch on the real data. In Figure 9 we show the result when
the number of buckets and the bucket size are simultaneously
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(a) 0.01 i.r.
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(c) 0.05 i.r.
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Figure 10: Results of mean intersection relative errors when varying memory (buckets) for real data. Bucket
size set to 16
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Figure 12: Results of mean intersection relative er-
rors when varying intersection ratio for real data.
Bucket size set to 16 and buckets to 32

varied, keeping the total number of counters fixed to 4096.
As before, while keeping total memory usage fixed there is no
significant change when varying the number of buckets and
the bucket size, though we found that the results are slightly
better if we make the bucket size smaller and number of
buckets bigger. Hence, just as in the synthetic simulations,
we chose to make the number of buckets as large as possible.
For the remaining experiments we set the bucket size to 16.

In Fig. 11 we plotted the effect of varying the number of
buckets on the relative error of the estimate when fixing the
bucket size to 16. In this case there was a clear trend in the
relative error of the measurement. From the plot, we can
see that using memory of just 1024 × 16 = 16384 (buckets

number × bucket size) is sufficient to retain high fidelity
in the sketched data—under 5-10% relative error. We also
found that using 256×16 = 4096 counters is sufficient to keep
the error small enough for anomaly detection. Note that
these results will only get better as the data sets available to
us grow in size since the size of the data will not greatly affect
the accuracy of the sketch. In particular, we foresee being
able to maintain sketches of similar size even for packet-level
data traces of several terabytes.

The results in Fig. 11, while satisfying, did not quite match
up to those in our synthetic data. On closer examination,
it turned out that there were several pairs for which the in-
tersection ratio was considerably smaller than the 0.01-0.1
regime that we have been studying and are interested in
studying. Recall that if the intersection ratio is very small
(e.g., 0.001 or less), then it is not of significant interest in our
application since it indicates a negligible-sized pairing. To
focus our attention on the more interesting pairs, we re-ran
the experiments sampling pairs from ones that had inter-
section ratio in the desired range. The corresponding plots
for intersection ratios of at least 0.01, 0.02, 0.05 and 0.10
are shown in Fig. 10. For these data, we see that there is a
considerable drop in the average relative error. In fact, for
intersection ratio of 0.10 we see that even with 16 * 16 = 256
counters we are able to reduce the relative error to well un-
der 10%. As expected, the performance of the algorithm is
considerably improved when the intersection ratio is higher.

Finally, to visualize the effect of intersection ratio on the
accuracy of the sketch, we fixed the bucket size to 16 and
measured the average relative error when sampling pairs that
have at least some minimum intersection ratio. This is shown
in Fig. 12. Once again, we see a substantial drop in the rel-
ative error within the 0.01 to 0.05 intersection ratio range



that we are aiming for. This indicates that we can use con-
siderably smaller sketch sizes (e.g., in the 10-100 KB range)
if we are interested only in the pairs that have significant
intersection ratio.

In summary, we were able to run our algorithm on data
collected by a major cellular carrier over a one-month period
and shrink the memory footprint by more than two orders
of magnitude while introducing under ten percent error on
the estimate of the average RTT value. We found that if the
intersection ratio is high, as is expected in most of the target
applications, we can use even smaller sketches or achieve
smaller error, or both.

7. RELATED WORK
Our work falls at the intersection of data streaming algo-

rithms, cellular network performance, and association rule
mining.

Data streaming algorithms. The seminal work of Alon
et al. [2] for estimating the frequency moments of a stream
opened up the research field of data streaming algorithms.
In particular, the Tug-of-War sketch, which originated in [2]
and was given that name in [1], is a simple but elegant tool
for estimating M2 of a stream that we take advantage of in
this paper. Other work on mining data streams used a va-
riety of techniques. For instance, Lakhina et al. [14, 12, 13]
studied the diagnosis and characterization of feature distri-
butions of network-wide anomalies in streams. Liu et al. [15]
proposed PCA- and sketch-based streaming algorithms for
network traffic anomaly detection. Yang et al. [25] studied
the computational partitioning method between mobile de-
vices and the cloud to achieve optimal speeds for processing
streaming data.

Cellular network performance. Various techniques
have been studied in recent years for measuring and analyz-
ing cellular network metrics and performance. Shafiq et al.
proposed characterizing M2M traffic patterns in cellular net-
works and studied that RTT measurements for TCP flows in
[19]. They also analyzed Internet traffic dynamics of cellular
network devices in [20]. Wang et al. implemented a tool that
can unveil carriers’ NAT and firewall policies by conducting
intelligent measurement and thus help inform developers op-
timizing mobile applications and network configurations [23].
They also characterized the geospatial dynamics of applica-
tion usage in 3G cellular networks in [18] and studied cellular
network issues in [17] by quantifying aggregate network load
and characterizing user-level traffic sessions. Falaki et al. [7]
studied the detailed components of smartphone traffic and
packet loss. Trestian et al. [22] showed how the relation-
ship of mobile network users to their locations can benefit
cellular network providers and location-based services. Bal-
asubramanian et al. [3] provided a measurement study of
the three types of mobile network technologies: 3G, GSM,
and WiFi. Xu et al. [24] focused on identifying diverse us-
age patterns of smartphone apps in spatial, temporal, user,
and device dimensions in cellular networks. Erman et al. [6]
studied caching techniques for video stream traffic generated
by smartphones in cellular network. Gember et al. [8] stud-
ied in-context network performance when users interact with
their mobile devices.

Association Rule Mining. There is much literature
on the topic of association rule mining; for example, see [5,
9] and references therein. Jin and Agrawal [11] in partic-
ular study ARM in the context of streaming data. ARM

techniques have also been used for network troubleshooting.
For example, Qiu et al. [16] used standard ARM techniques
to mine router syslogs for network performance anomalies.
Brauckhoff et al. [4] used ARM for detecting anomalies in
backbone networks. As noted earlier, rather than proposing
new ARM algorithms, this work reduces the amount of stor-
age needed by an existing ARM algorithm for processing a
massive data stream.

8. CONCLUSIONS
Change and anomaly detection are tasks essential for all

cellular network providers these days. In this paper, we
tackle this problem by proposing a novel scheme, which we
call Crossroads, to find the anomalous events such as longer-
than-usual RTT in cellular network data. To do this, we in-
troduced the technique of intersecting pairs of network data
stream digests of overlapping streams. In particular, we pro-
vide intersection algorithms for estimating the M2,M1, and
M0 of values in a data stream, which allow us to reduce the
storage cost of this diagnostic data drastically, from O(n) to
O(
√
n). Our evaluations on synthetic and real-world data

from a major cellular service carrier in the US generate very
accurate and rapid estimates for detecting anomalies or other
changes, demonstrating that our algorithms are quite reli-
able in practice.
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