
Probabilistic Counting with Randomized Storage∗

Benjamin Van Durme
University of Rochester

Rochester, NY 14627, USA

Ashwin Lall
Georgia Institute of Technology

Atlanta, GA 30332, USA

Abstract
Previous work by Talbot and Osborne [2007a] ex-
plored the use of randomized storage mechanisms
in language modeling. These structures trade a
small amount of error for significant space savings,
enabling the use of larger language models on rela-
tively modest hardware.
Going beyond space efficient count storage, here
we present the Talbot Osborne Morris Bloom
(TOMB) Counter, an extended model for perform-
ing space efficient counting over streams of finite
length. Theoretical and experimental results are
given, showing the promise of approximate count-
ing over large vocabularies in the context of limited
space.

1 Introduction
The relative frequency of a given word, or word sequence, is
an important component of most empirical methods in com-
putational linguistics. Traditionally, these frequencies are de-
rived by naively counting occurrences of all interesting word
or word sequences that appear within some document collec-
tion; either by using something such as an in-memory table
mapping labels to positive integers, or by writing such ob-
served sequences to disk, to be later sorted and merged into a
final result.

As ever larger document collections become available,
such as archived snapshots of Wikipedia [Wikimedia Foun-
dation, 2004], or the results of running a spider bot over sig-
nificant portions of the internet, the space of interesting word
sequences (n-grams) becomes so massive as to overwhelm
reasonably available resources. Indeed, even just storing the
end result of collecting counts from such large collections has
become an active topic of interest (e.g., [Talbot and Osborne,
2007a; Talbot and Branst, 2008]).

As such collections are inherently variable in the empiri-
cal counts that they give rise to, we adopt the intuition be-
hind the seminal work of Talbot and Osborne [2007a]: since

∗This work was supported by a 2008 Provost’s Multidisciplinary
Award from the University of Rochester, and NSF grants IIS-
0328849, IIS-0535105, CNS-0519745, CNS-0626979, and CNS-
0716423.

a fixed corpus is only a sample from the underlying distribu-
tion we truly care about, it is not essential that counts stored
(or, in our case, collected) be perfectly maintained; trading a
small amount of precision for generous space savings can be
a worthwhile proposition.

Extending existing work in space efficient count storage,
where frequencies are known a priori, this paper is concerned
with the task of online, approximate, space efficient counting
over streams of fixed, finite length. In our experiments we
are concerned with streams over document collections, which
can be viewed as being generated by a roughly stationary pro-
cess: the combination of multiple human language models
(authors). However, the techniques described in what follows
are applicable in any case where the number of unique items
to be counted is great, and the size1of each identity is non-
trivial.

In what follows, we provide a brief background on the top-
ics of randomized storage and probabilistic counting, moving
on to propose a novel data structure for maintaining the fre-
quencies of n-grams either when the frequencies are known
in advance or when presented as updates. This data structure,
the Talbot Osborne Morris Bloom (TOMB) Counter, makes
use of both lossy storage, where n-gram identities are dis-
carded and their frequencies stored probabilistically, as well
as probabilistic updates in order to decrease the memory foot-
print of storing n-gram frequencies. These approximations
introduce false positives and estimation errors. We provide
initial experimental results that demonstrate how the param-
eters of our data structure can be tuned to trade off between
these sources of error.

2 Background
2.1 Randomized Storage of Counters
Cohen and Matias [2003] introduced the Spectral Bloom Fil-
ter, a data structure for lossily maintaining frequencies of
many different elements without explicitly storing their iden-
tities. For a set U = {u1, u2, u3, . . . , un} with associ-
ated frequencies f(u1), f(u2), . . . , f(un), a spectral Bloom
filter maintains these frequencies in an array of counters,
the length of which is proportional to n but independent of

1In the sense of space required for representation, e.g., the char-
acter string “global economic outlook” requires 23 bytes under
ASCII encoding.

the description lengths of the elements of U . For exam-
ple, the space required to store the identity/frequency tuple
〈“antidisestablishmentarianism”, 5 〉 precisely could be re-
placed by a few bytes’ worth of counters. The price that must
be paid for such savings is that, with small probability, a spec-
tral Bloom filter may over-estimate the frequency of an ele-
ment in such a way that it is impossible to detect.

Based on the Bloom Filter of Bloom [1970], the spectral
Bloom filter uses hash functions h1, . . . , hk to update an array
of counters. When an element is inserted into the filter, the
hash functions are used to index the element into the array
and increment the counters at those k locations. Querying
an array similarly looks up the k locations indexed by the
element and returns the minimum of these counts. Owing
to the possibility of hash collisions (which result in distinct
elements incrementing a counter at the same location), each
of the k counters serve as the upper bound on the true count.
This data structure hence never underestimates the frequency
of any element.

The overestimation probability of the spectral Bloom filter
is identical to the false positive probability of a Bloom filter:
(0.6185)m/n, where m is the number of counters in the array
(see Cohen and Matias [2003] for details). What is important
to note is that this is the probability with which an element has
collisions at every counter. In practice, with long-tailed data
sets, we expect these collisions to add only a small amount to
the estimate of the frequency of each element.

2.2 Probabilistic Counting of Large Values
Robert Morris once gave the following problem description:

“An n-bit register can ordinarily only be used to
count up to 2n − 1. I ran into a programming situa-
tion that required using a large number of counters
to keep track of the number of occurrences of many
different events. The counters were 8-bit bytes and
because of the limited amount of storage available
on the machine being used, it was not possible to
use 16-bit counters. [...] The resulting limitation
of the maximum count to 255 led to inaccuracies
in the results, since the most common events were
recorded as having occurred 255 times when in fact
some of them were much more frequent. [...] On
the other hand, precise counts of the events were
not necessary since the processing was statistical in
nature and a reasonable margin of error was tolera-
ble.” – Morris [1978]

The proposed solution was simple: by maintaining the
value of the logarithm of the frequency, rather than the fre-
quency itself, n bits allow us to count up to 22n

. Since this
necessitates lossy counting, the solution would have to endure
some amount of error. What Morris was able to show was
that by using a probabilistic counting process he could guar-
antee a constant relative error estimate for each count with
high probability.

Morris counting begins by setting the counter to zero. In
order to perform an update (i.e., “to count”), the current
stored frequency, f̂ , is read, and the counter is incremented
by 1 with probability 2−f̂ .

.

.

.

1
b
b2

1− b−1

1− b−2

1− b−3
b−3

b−2

b−1

Figure 1: A Morris Counter with base b.

It can be shown [Flajolet, 1985] that after n increments, if
the value of the counter is f̂ , then E[2f̂ −1] = n, which gives
us an unbiased estimate of the true frequency. Additionally,
the variance of this estimate is n(n + 1)/2, which results in
nearly constant expected relative error.

The disadvantage of keeping counts so succinctly is that
estimates of the true frequencies are inaccurate up to a bi-
nary order of magnitude. However, Morris gave a way of
ameliorating this effect by modifying the base of the prob-
abilistic process. Rather than using a base of 2, a smaller
base, b > 1, may be used in order to obtain similar savings
with smaller relative error. The algorithm is modified to up-
date counters with probability b−f̂ and estimate the frequency
using the unbiased estimate (bf̂ − 1)/(b − 1) with variance
(b − 1)n(n + 1)/2. Using a smaller base allows for obtain-
ing more accurate estimates at the cost of a smaller maximum
frequency, using the same number of bits.

2.3 Approximate Counts in Language Modeling
Talbot and Osborne [2007a] gave a scheme for storing fre-
quencies of n-grams in a succinct manner when all the
identity-frequency pairs are known a priori. Their method
involves first constructing a quantization codebook from the
frequencies provided. For each n-gram, it is the resultant
quantization point that is stored, rather than the original, true
count. To save the space of retaining identities, e.g., the bytes
required for storing “the dog ran”, Bloom filters were used
to record the set of items within each quantization point. In
order to minimize error, each n-gram identity was stored in
each quantization point up to and including that given by the
codebook for the given element. This guarantees that the re-
ported frequency of an item is never under-estimated, and
is over-estimated only with low probability. For example,
given a binary quantization, and the 〈identity, frequency〉 pair:
〈“the dog ran”, 32〉, then “the dog ran” would be hashed
into Bloom filters corresponding to 20, 21, 22, ..., 25. Later,
the value of this element can be retrieved by a linear sequence
of queries, starting with the filter corresponding to 20, up un-
til a result of false is reported. The last filter to report posi-
tive membership is taken as the true quantization point of the
original frequency for the given element. This structure is
illustrated in Figure 2.

Recently, Goyal et al. [2009] adapted the lossy counting al-
gorithm designed by Manku and Motwani [2002] to contruct
high-order approximate n-gram frequency counts. This data
structure has tight accuracy guarantees on all n-grams that

Figure 2: A small, three layer structure of Talbot and Osborne, with
widths eight, four and two (written as (8, 4, 2) when using the syntax
introduced in Section 3).

have sufficiently large frequencies. In comparison, the para-
metric structure described herein allows for the allocation of
space in order to prioritize the accuracy of estimates over the
long tail of low-frequency n-grams as well.

Finally, we note that simple sampling techniques may
also be employed for this task (with weaker guarantees than
in [Goyal et al., 2009]), but this has the same drawback that
we will miss many of the low-frequency events.

3 TOMB Counters
Building off of intuitions from previous work summarized in
the last section, as well as the thesis work of Talbot [2009],2
the following contains a description of this paper’s primary
contribution: the Talbot Osborne Morris Bloom (TOMB)
Counter. We first describe two simpler variants of this struc-
ture, which will then both be shown as limit cases within a
larger space of potential parametrizations.

3.1 Morris Bloom
We call the combination of a spectral Bloom filter that uses
Morris style counting a Morris Bloom Counter. This data
structure behaves precisely in the same manner as a Bloom
filter, with the exception that the counter within each cell of
the Bloom filter operates as according to Morris [1978]. For
a given Morris Bloom counter, M , we refer to the number
of individual counters as M ’s width, while the number of
bits per counter is M ’s height; together, these are written as
〈width, height 〉. An 〈8, 3〉 Morris Bloom counter is illus-
trated in Figure 3.

Figure 3: A Morris Bloom Counter of width eight and height three.

The benefit of Morris Bloom counters is that they give
randomized storage combined with lossy counting. We are
able to do away with the need to store the identity of the ele-
ments being inserted, while at the same time count up to, e.g.,
223

= 256 with a height of only 3 bits. However, when the
Bloom filter errs (with small probability) the amount of error

2Through personal communication.

that can be introduced in the frequency can be exceedingly
large.

3.2 Talbot Osborne Bloom
An alternative method for counting with Bloom filters is to
extend the structure of Talbot and Osborne [2007a]. Rather
than embedding multi-bit counters within each cell of a single
Bloom filter, we can employ multiple layers of traditional fil-
ters (i.e., they maintain sets rather than frequencies) and make
use of some counting mechanism to transition from layer to
layer. Such a counter with depth 3 and layer widths 8, 4, and
2 is illustrated in Figure 4.

Figure 4: An (8, 4, 2) Talbot Osborne Bloom Counter.

This data structure extends the one of Talbot and Osborne
in that, rather than simply storing quantized versions of stat-
ically provided frequencies, we now have access to an in-
sertion operation that allows updating in an online manner.
Various insertion mechanisms could be used dependent on
the context. For example, an exponential quantization simi-
lar to Talbot and Osborne’s static counter could be replicated
in the streaming case by choosing insertion probabilities that
decrease exponentially with each successive layer.3

There are two advantages to counting with this structure.
First, it limits the over-estimate of false positives: since it is
unlikely that there will be false positives in several consecu-
tive layers, over-estimates of frequency will often be at worst
a single order of magnitude (with respect to some base). Sec-
ond, since we are able to control the width of individual lay-
ers, less space may be allocated to higher layers if it is known
that there are relatively few high-frequency elements.

While this arrangement can promise small over-estimation
error, a significant drawback compared to the previously de-
scribed Morris Bloom counter is the limit to expressibility.
Since this counter counts in unary, even if a quantization
scheme is used to express frequencies succinctly, such a data
structure can only express d distinct frequencies when con-
structed with depth d. In contrast, a Morris Bloom counter
with height h can express 2h different frequencies since it
counts in binary.

3.3 Talbot Osborne Morris Bloom
Motivated by the advantages and disadvantages of the two
data structures described above, we designed a hybrid ar-
rangement that trades off the expressibility of the Morris

3We note that the recently released RandLM package
(http://sourceforge.net/projects/randlm) from Talbot and Osborne
supports an initial implementation of a structure similar to this.

Bloom counter with the low over-estimation error of the Tal-
bot Osborne Bloom counter. We call this data structure the
Talbot Osborne Morris Bloom (TOMB) Counter.

The TOMB counter has similar workings to the Talbot Os-
borne Bloom counter described above, except that we have
full spectral Bloom filters at each layer. When an item is in-
serted into this data structure, the item is iteratively searched
for in each layer, starting from the bottom layer. It is proba-
bilistically (Morris) inserted into the first layer in which the
spectral Bloom filter has not yet reached its maximum value.
Querying is done similarly by searching layers for the first
one in which the spectral Bloom filter is not at its maximum
value, with the true count then estimated as done by Morris.

Notationally, we denote a depth d TOMB counter as
(〈w1, h1〉, . . . , 〈wd, hd〉), where the wis are the widths of the
counter arrays and the his are the heights of the counter at
each layer. An (〈8, 2〉, 〈4, 2〉) TOMB counter is illustrated in
Figure 5.

Figure 5: An (〈8, 2〉, 〈4, 2〉) TOMB Counter.

It can be seen that this structure is a generalization of those
given earlier in this section. A TOMB counter of depth 1
(i.e., only a single layer) is identical in function to a Mor-
ris Bloom counter. On the other hand, a TOMB counter with
multiple layers, each of height one, is identical to a Talbot Os-
borne Bloom counter. Hence, the limiting cases for a TOMB
counter are the structures previously described, and by vary-
ing the depth and height parameters we are able to trade off
their respective advantages.

Finally, we add to our definition the optional ability for a
TOMB counter to self-loop, where in the case of counter over-
flow, transitions occur from cells within the final layer back
into this same address space using alternate hash functions.
Whether or not to allow self-loops in a transition counter
is a practical decision based on the nature of what is being
counted and how those counts are expected to be used. With-
out self-loops, the count for any particular element may over-
flow. On the other hand, overflow of a handful of elements
may be preferable to using the additional storage space that
self-loops may absorb.

Note that, in one extreme, a single layer structure of height
one, with self-loops, may be used as a TOMB counter.

3.4 Analysis
We give here an analysis of various properties of the transition
counter. Two simplifications are made: we assume uniform
height h per layer, and that space is allocated between layers
in such a manner that the false positive probability is the same
for all layers. In the context of text-based streams, this can

Figure 6: An (〈8, 1〉, 〈4, 3〉) TOMB Counter, with a self-loop on
the final layer.

in practice be approximated by caching some fixed number
of initial elements seen in order to know these frequencies
exactly and then using the best-fit power-law distribution to
decide how much space should be allocated to each layer.4
We also assume that the final layer has self-loops, but that its
false positive probability is still only p.

For a fixed base b, we first study how large a frequency can
be stored in a transition counter with heights h and depth d.
Since each layer has h bits for each counter, it can count up to
2h − 1. As there are d such layers, the largest count that can
be stored is d(2h − 1). This count corresponds to a Morris
estimate of:

bd(2h−1) − 1
b − 1

.

In particular, for the Morris Bloom counter (which has d =

1), this works out to b2
h−1−1
b−1 . On the other hand, the transi-

tion Bloom counter (which has h = 1) can only count up to
bd−1
b−1 .

Let us denote the false positive probability of the counting
Bloom filters by p. The probability that an element that has
not been inserted into this data structure will erroneously be
reported is hence the Bloom error of the lowest layer of the
counter, which is bounded by p. This suggests that we might
wish to allocate a large amount of space to the lowest layer to
prevent false positives.

As the probabilistic counting process of Morris is unbi-
ased, we study the bias introduced by hash collisions from
the Bloom counters. We leave the problem of analyzing the
interaction of the Morris counting process with the transition-
ing process for future work and here focus specifically on the
bias from Bloom error.

Since the height of each counting Bloom filter is h, the

first i layers allow us to count up to bi(2h−1)−1
b−1 . Hence, the

expected bias due to Bloom error can be bounded as:

4This assumes the remainder of the observed stream is roughly
stationary with respect to the exact values collected; dynamic adjust-
ment of counter structure in the face of streams generated by highly
non-stationary distributions is a topic for future work.

E[bias] ≤ p(1 − p)
b2h−1 − 1

b − 1
+ p2(1 − p)

b2(2h−1) − 1
b − 1

+ p3(1 − p)
b3(2h−1) − 1

b − 1
+ . . .

≤ p(1 − p)
b2h−1

b − 1
+ p2(1 − p)

b2(2h−1)

b − 1
+ . . .

=
(

1 − p

b − 1

)
pb2h−1

1 − pb2h−1
,

where we assume that pb2h−1 < 1 for the series to converge.
We can similarly estimate the expected relative bias for for

an arbitrary item. Let us assume that the item we are inter-
ested in is supposed to be in layer l. Then, similar to above,
the expected overestimate of its frequency O due to Bloom
error can be bounded as

O ≤ (1 − p)pbl(2h−1)

b − 1
+

(1 − p)p2b(l+1)(2h−1)

b − 1
+ . . .

=
(

1 − p

b − 1

)
pbl(2h−1)

1 − pb2h−1
.

On the other hand, since by assumption the item of interest
is supposed to be in the lth level, its frequency must be at least
b(l−1)(2h−1)

(b−1) . Hence, the expected relative bias is bounded by

(1 − p)
pb2h−1

1 − pb2h−1
.

4 Experiments
4.1 Counting Trigrams in Text
Counters of various size, measured in megabytes (MB), were
used to count trigram frequencies in the Gigaword Corpus
[Graff, 2003], a large collection of newswire text from a va-
riety of reporting agencies. Trigrams were counted over each
sentence in isolation, with the standard inclusion of begin and
end sentence tokens, and numeral characters mapped to a sin-
gle representative digit. The relevant (approximate) statistics
for this collection, computed offline, are: 130 million sen-
tences, 3 billion tokens, a vocabulary of 2.4 million distinct
elements, 400 million unique trigrams (the set over which
we are counting), and a maximum individual trigram count
of 9 million. A text file containing just the strings for each
such unique Gigaword trigram requires approximately 7GB
of memory.

All counters used were of depth 12, with three layers of
height 1, followed by 9 layers of height 3. Amongst these
layers, half of memory was allocated for the first three layers,
half for the later nine. An important point of future work
is to develop methods for determining (near) optimal values
for these parameters automatically, given at most a constant
initial portion of the incoming stream (a technique we refer
to as buffered inspection).

Figure 7 gives results for querying values from two of the
counters constructed. This figure shows that as we move from

0 2 4 6 8 10

0
2

4
6

8
10

True

R
ep

or
te

d

0 200 400 600 800 1000

0
2

4
6

8

Rank

R
ep

or
te

d

(a) 100 MB

0 2 4 6 8 10

0
2

4
6

8
10

True

R
ep

or
te

d

0 200 400 600 800 1000

0
2

4
6

Rank

R
ep

or
te

d

(b) 500 MB

Figure 7: Results based on querying different size counters built
over trigrams in Gigaword. On the left, log-log plots of frequency
for elements equally sampled from each range (log(i − 1).. log(i)
for i from 1 to dlog(max count)e) with the x-axis being True values,
y-axis being Reported. On the right, values for elements sampled
uniformly at random from the collection, presented as Rank versus
Reported frequency (log-scale). Solid line refers to true frequency.

100 to 500 megabytes, the resulting counting structure is sig-
nificantly less saturated, and is thus able to report more reli-
able estimates.

4.2 False Positive Rate

The false positive rate, p, of a TOMB counter can be empiri-
cally estimated by querying values for a large number of ele-
ments known to have been unseen. Let Y be such a set (i.e.,
Y ∩U is empty).5 With indicator function I>0(z) equaling 1
when z > 0 and 0 otherwise, an estimate for p is then:

p̂ =
1
|Y |

∑
y ∈Y

I>0(f̂(y)).

Table 1 contains estimated false positive rates for three
counters, showing that as more memory is used, the expected
reported frequency of an unseen item approaches the true
value of 0. Note that these rates could be lowered by allocat-
ing a larger percentage of the available memory to the bottom
most layers. This would come at the cost of greater satura-
tion in the higher layers, leading to increased relative error
for items more frequently seen.

5We generate Y by enumerating the strings “1” through “1000”.

SIZE (MB) I>0 I>1 I>2 I>3

100 86.5% 74.2% 66.1% 43.5%
500 26.9% 6.7% 1.8% 0.3%

2,000 10.9% 0.9% 0.1% 0.0%

Table 1: False positive rates when using indicator functions
I>0, ..., I>3. A perfect counter has a rate of 0.0% using I>0.

TRUE 260MB 100MB 50MB 25MB NO LM
22.75 22.93 22.27 21.59 19.06 17.35

- 22.88 21.92 20.52 18.91 -
- 22.34 21.82 20.37 18.69 -

Table 2: BLEU scores using language models based on true counts,
compared to approximations using various size TOMB counters.
Three trials for each counter are reported (recall Morris counting
is probabilistic, and thus results may vary between similar trials).

4.3 Language Models for Machine Translation
As an example of approximate counts in practice, we fol-
low Talbot and Osborne [2007a] in constructing a n-gram
language models for Machine Translation (MT). Experi-
ments compared the use of unigram, bigram and trigram
counts stored explicitly in hashtables, to those collected using
TOMB counters allowed varying amounts of space. Counters
had five layers of height one, followed by five layers of height
three, with 75% of available space allocated to the first five
layers. Smoothing was performed using Absolute Discount-
ing [Ney et al., 1994] with an ad hoc value of α = 0.75.

The resultant language models were substituted for
the trigram model used in the experiments of Post and
Gildea [2008], with counts collected over the same approx-
imately 833 thousand sentences described therein. Explicit,
non-compressed storage of these counts required 260 MB.
Case-insensitive BLEU-4 scores were computed for those au-
thors’ DEV/10 development set, a collection of 371 Chinese
sentences comprised of twenty words or less. While more
advanced language modeling methods exist (see, e.g., [Yuret,
2008]), our concern here is specifically on the impact of ap-
proximate counting with respect to a given framework, rela-
tive to the use of actual values.6

As shown in Table 2, performance declines as a function
of counter size, verifying that the tradeoff between space and
accuracy in applications explored by Talbot and Osborne ex-
tends to approximate counts collected online.

5 Conclusions
Building on existing work in randomized count storage, we
have presented a general model for probabilistic counting
over large numbers of elements in the context of limited
space. We have defined a parametrizable structure, the Tal-
bot Osborne Morris Bloom (TOMB) counter, and presented
analysis along with experimental results displaying its ability
to trade space for loss in reported count accuracy.

Future work includes looking at optimal classes of coun-
ters for particular tasks and element distributions. While mo-

6Post and Gildea report a trigram-based BLEU score of 26.18,
using more sophisticated smoothing and backoff techniques.

tivated by needs within the Computational Linguistics com-
munity, there are a variety of fields that could benefit from
methods for space efficient counting. For example, we’ve re-
cently begun experimenting with visual n-grams using vo-
cabularies built from SIFT features, based on images from
the Caltech-256 Object Category Dataset [?].

Finally, developing clever methods for buffered inspection
will allow for online parameter estimation, a required ability
if TOMB counters are to be best used successfully with no
knowledge of the target stream distribution a priori.

Acknowledgements The first author benefited from conversa-
tions with David Talbot concerning the work of Morris and Bloom,
as well as with Miles Osborne on the emerging need for randomized
storage. Daniel Gildea and Matt Post provided general feedback and
assistance in experimentation.

References
[Bloom, 1970] Burton H. Bloom. Space/time trade-offs in hash

coding with allowable errors. Communications of the ACM,
13:422–426, 1970.

[Cohen and Matias, 2003] Saar Cohen and Yossi Matias. Spectral
Bloom Filters. In Proceedings of SIGMOD, 2003.

[Flajolet, 1985] Philippe Flajolet. Approximate counting: a de-
tailed analysis. BIT, 25(1):113–134, 1985.

[Goyal et al., 2009] Amit Goyal, Hal Daume III, and Suresh
Venkatasubramanian. Streaming for large scale NLP: Language
Modeling. In Proceedings of NAACL, 2009.

[Graff, 2003] David Graff. English Gigaword. Linguistic Data
Consortium, Philadelphia, 2003.

[Manku and Motwani, 2002] Gurmeet Singh Manku and Rajeev
Motwani. Approximate frequency counts over data streams. In
Proceedings of VLDB, 2002.

[Morris, 1978] Robert Morris. Counting large numbers of events in
small registers. Communications of the ACM, 21(10):840–842,
1978.

[Ney et al., 1994] Hermann Ney, Ute Essen, and Reinhard Kneser.
On structuring probabilistic dependences in stochastic language
modeling. Computer, Speech, and Language, 8:1–38, 1994.

[Post and Gildea, 2008] Matt Post and Daniel Gildea. Parsers as
language models for statistical machine translation. In Proceed-
ings of AMTA, 2008.

[Talbot and Branst, 2008] David Talbot and Thorsten Branst. Ran-
domized language models via perfect hash functions. In Proceed-
ings of ACL, 2008.

[Talbot and Osborne, 2007a] David Talbot and Miles Osborne.
Randomised Language Modelling for Statistical Machine Trans-
lation. In Proceedings of ACL, Prague, Czech Republic, 2007.

[Talbot and Osborne, 2007b] David Talbot and Miles Osborne.
Smoothed Bloom filter language models: Tera-Scale LMs on the
Cheap. In Proceedings of EMNLP, 2007.

[Talbot, 2009] David Talbot. Bloom Maps for Big Data. PhD thesis,
University of Edinburgh, 2009.

[Wikimedia Foundation, 2004] Wikimedia Foundation. Wikipedia:
The free encyclopedia. http://en.wikipedia.org, 2004.

[Yuret, 2008] Deniz Yuret. Smoothing a tera-word language model.
In Proceedings of ACL, 2008.

