
Global Iceberg Detection

over Distributed Data Streams

Haiquan (Chuck) Zhao∗, Ashwin Lall∗, Mitsunori Ogihara†, Jun (Jim) Xu∗

∗ College of Computing, Georgia Institute of Technology
† Department of Computer Science, University of Miami

Abstract—In today’s Internet applications or sensor networks
we often encounter large amounts of data spread over many
physically distributed nodes. The sheer volume of the data and
bandwidth constraints make it impractical to send all the data
to one central node for query processing. Finding distributed
icebergs—elements that may have low frequency at individual
nodes but high aggregate frequency—is a problem that arises
commonly in practice. In this paper we present a novel algorithm
with two notable properties. First, its accuracy guarantee and
communication cost are independent of the way in which element
counts (for both icebergs and non-icebergs) are split amongst the
nodes. Second, it works even when each distributed data set is a
stream (i.e., one pass data access only).
Our algorithm builds upon sketches constructed for the

estimation of the second frequency moment (F2) of data streams.
The intuition of our idea is that when there are global icebergs
in the union of these data streams the F2 of the union becomes
very large. This quantity can be estimated due to the summable
nature of F2 sketches. Our key innovation here is to establish tight
theoretical guarantees of our algorithm, under certain reasonable
assumptions, using an interesting combination of convex ordering
theory and large deviation techniques.

I. INTRODUCTION

Today’s Internet applications often generate and collect a

massive amount of data at many distributed locations. For

example, an ISP (Internet Service Provider) security moni-

toring application may require that packet traces be collected

at hundreds (or even thousands) of ingress and egress routers,

and the amount of data collected at each router can be in the

order of several terabytes. From time to time, various types

of queries need to be performed over the union of these data

sets. For example, in this ISP security monitoring application,

we may need to query the union of packet trace data sets

at all ingress and egress points to look for globally frequent

signatures that may correspond to certain Internet worms.

Given the gigantic and evolving nature of these physically

distributed data sets, it is usually infeasible to ship all the data

to a single location for centralized query processing due to

the prohibitively high communication cost. Another scenario

is that, in a sensor network, constraints on power consumption

limit the amount of data that each sensor can transmit to

a central server. Therefore, how to execute various types

of (approximate) queries over the union of distributed data

sets without physically merging them together has received

considerable research attention recently.

One such distributed query problem that has been studied

extensively is to detect global heavy-hitters or icebergs, which

are data elements whose aggregate frequency across all these

data sets exceed a pre-specified threshold. The hardness of

this problem arises from the fact that a global iceberg may

be finely distributed across all the measurement points so that

it does not appear large at any one location. For example, in

security scenarios an adversary may conceal the presence of

the iceberg by spreading it thinly across many different nodes.

This precludes the possibility of using a naive algorithm that

simply reports locally frequent elements. On the other hand,

it would be prohibitively expensive for every node to send

records for every small fragment to the central server.

We propose a solution with the salient property that it is

unaffected by the manner in which the data is distributed

across the local nodes. To attain this property we use summable

sketches that can be computed locally and later summed at a

central location to answer queries on the aggregated data. Due

to the nature of these sketches, it does not matter how the data

was distributed among the nodes, or even in what order the

data is aggregated, making the performance of our solution

dependent solely on the aggregated data (and independent of

how it is split among nodes). Also, the performance guarantee

of these sketches is independent of the number of elements

inserted into them, making them ideal for this problem.

Now, one longstanding issue with the iceberg detection

problem is that it is notoriously difficult to handle elements

that are close to the iceberg threshold. If there are many non-

icebergs near the iceberg size, then it is virtually impossible for

any approximate algorithm to distinguish the iceberg from the

non-icebergs. A reasonable requirement for a data set to avoid

this issue is that there is a gap between the size of icebergs

and non-icebergs with only a few elements that fall within this

gap. We call this the sparsely populated gap assumption. The

analysis of our algorithm makes use of this assumption.

While requiring such a gap between icebergs and non-

icebergs sounds restrictive, this assumption is actually quite

practical in many real-world applications. This is because

many data sources follow a power-law distribution in which

the most frequent elements appear many times more often than

the average frequency. For example, network data is commonly

observed to follow such a heavy-tailed distribution, where

extremely large flows are few and far between. It is critical to

detect distributed icebergs in such data, e.g., when monitoring

for a distributed denial of service attack, no single link may

contain sufficient evidence of the attack to raise a flag.

We begin by studying the problem in which there are no ele-

ments in the gap. The analysis of our solution takes advantage

of this gap and uses an asymptotically near-optimal amount

of communication to solve this problem. This near-optimality

is proven rigorously by comparing the communication com-

plexity of our solution and the asymptotic communication

complexity lower bound we establish for this problem. We

then show how to reduce the size of the gap by using some

additional information about the data. Finally, we discuss the

effect of the elements in the sparsely populated gap.

We envision applications of our solution in which a central

server is monitoring a large number of distributed nodes for

large outliers. Since it is infeasible for all the data to be

shipped to the central server, each local node sends a compact

summary of its data to the central server in a single round. If

the central server detects that there is an iceberg, it may initiate

additional rounds of communication to confirm this fact.

Even though we describe our solution using this simple

one-tier topology (a server communicating with many client

nodes), we will later show how our solution can be very easily

generalized to arbitrary tree topologies with identical com-

munication costs and analytical guarantees. For example, this

solution naturally fits the framework of Google MapReduce [1]

and the Apache Hadoop architecture [2].

Very often, the data is not found aggregated on the nodes

but is presented as a stream of updates (e.g., network packet

data). In such cases, it is important to keep the processing

requirements of the local algorithm low. Our solution works

not only when the data is already locally aggregated (bag case)

but also when it appears as a stream.

A. The “sketch” idea of our solution

We approach this problem by making use of summable

sketches to succinctly encode the data at each local node. A

summable sketch is a sketch (i.e., a lossy, succinct representa-

tion of a data set or stream) that has the following additional

property: the sketch for the union of two data sets A∪B can

be easily computed from the sketches of A and B. In our

solution approach, each node computes the sketch of its local

data set and ships it to the central server. The server will then

in turn “sum up” these sketches to obtain the sketch for the

union of the data set, which will be able to detect the global

icebergs with high confidence.

The summable sketches we find most useful for our problem

are those that compute the second frequency moment (i.e., the

sum of the squares of the frequencies of all elements) or F2 of

the data aggregated across all the local nodes. The F2 value is

intuitively a good indicator of iceberg existence/nonexistence

because of its “squaring effect” that significantly magnifies the

skewness of the data (if any). For example, an iceberg item

that is 100 times larger than a non-iceberg item contributes

1002 = 10, 000 times more to the total F2 value! Conceivably,

we could have also used even higher frequency moments (say

F3, F4, F5, . . .) to further magnify such skewness. However, it
can be shown that estimating the kth frequency moment (k >
2) incurs a minimum communication cost of Ω(n1−2/k) [3],

where n is the total number of elements. In sharp contrast,

the second frequency moment can be approximated using a

sketch with size independent of n [4].

While techniques for estimating F2 have been well-studied,

our contribution lies in that (1) we successfully adapt them to

the detection of global icebergs in a split-independent manner

and (2) we are able to obtain very sharp accuracy bounds

using an interesting combination of convex ordering and large

deviation techniques.

Because we use summable F2 sketches (e.g., Alon, Matias,

and Szegedy’s tug-of-war sketch [4]), our proposed algorithm

has several desirable features that distinguishes it from prior

work. First, it has the split independence property, i.e., both

its performance guarantee and communication overhead are

independent of the way the total frequency of each and every

element is split across the nodes. We will show this is an

immediate consequence of F2 sketches being summable.

Second, since F2 sketches were designed for streaming

updates, our methodology works even when the local nodes

have their data streamed to them at very high rates. This makes

our algorithm more generally applicable than some previous

work (e.g., [5]) that assumes the data is already aggregated

without information loss at each local node (so-called “bag

case”).

Third, due to the summable nature of the sketch, we can

handle arbitrary connected topologies among the nodes and

the central server (e.g., flat topology in [5] and hierarchical

tree topology in [6]) with the same accuracy and communi-

cation overhead guarantees. In other words, our algorithm is

“oblivious” to the interconnection topology.

Furthermore, we show that once an iceberg is detected,

we can estimate its size approximately with absolutely no

additional communication overhead. In the “bag case” we

can ascertain the precise size with an additional round of

communication. But we show how to do away with this if we

only want an approximate answer, making ours a one-round

communication protocol.

The rest of this paper is laid out as follows. In Section II we

formally define our problem. We describe our algorithm and

the summable sketches upon which it is based in Section III.

We completely solve a simplified version of our problem,

with a gap assumption, in Section IV and show how the

iceberg size can also be estimated at no additional cost. In

Section V we use some additional information about the

data to reduce the required magnitude of the gap. We finally

discuss how our algorithm can be applied to real data in

Section VI and highlight some of its useful properties. Our

algorithms are evaluated experimentally using Internet flow

data in Section VII. We describe some related works in

Section VIII before concluding in Section IX.

II. PROBLEM DEFINITION

Consider a system or network that consists of m distributed

nodes (e.g., routers). The data set Sj at node j contains a

stream of tuples 〈element id, c〉, where element id is an

element identity from a set U = {u1, u2, u3, . . . , un} and c

non-icebergs

icebergs

λT

T

frequency

Fig. 1. The gap between icebergs and non-icebergs

is an incremental count. We denote by ci =
∑

j

∑
〈ui,c〉∈Sj

c
the frequency of the element ui when aggregated across all

the nodes. We want to detect the presence of elements whose

total frequency across all the nodes adds up to exceed a given

threshold T . In other words, we would like to find out if

there exists an element ui ∈ U such that ci ≥ T . We desire

our solution to be independent of how the elements are split

among the nodes, i.e., our final solution should be dependent

on c1, . . . , cn, but not on how each ci is split among the m
nodes.

In most iceberg detection scenarios, it is critical to discover

the iceberg every time. Hence, we will err on the side of

caution by having almost no false negative error even if this

means being more permissive to false positive error.

Now, the main issue that we face is that any element that

is slightly under the threshold will be nearly indistinguishable

from an iceberg. To get around this problem, we will make

some simplifying assumptions on the size of non-icebergs

and then later demonstrate how these assumptions can be

weakened.

The first simplifying assumption that we make is that it

is guaranteed that the iceberg is much larger than any non-

iceberg. More formally, we say that an element whose aggre-

gate frequency is at least T is an iceberg, and we assume that

no element has aggregate frequency in the interval (λT, T), for
some λ ∈ (0, 1) (illustrated in Figure 1). This gap parameter

λ is independent of n (number of elements) and m (number

of nodes).

The gap assumption may be reasonable in certain security

scenarios in which massive icebergs are hidden among the

many nodes by an adversary. For example, a DDoS attacker

may mount an attack that results in the victim receiving

hundreds of times more traffic than any other host while

spreading this traffic thinly across many different paths to

avoid detection. Similarly, a network worm may attempt to

avoid detection by spreading very slowly at any single point,

even though it has massive aggregate volume.

However, not in all scenarios can we make such a gap

assumption. Additionally, even if there is a gap, we may not

know how large it is a priori. To deal with this issue, we

will later weaken this assumption to allow some elements

(though not many) to enter this gap. This is reasonable because

frequency

probability

 of

occurrence

T

sparsely populated gap

Fig. 2. Illustration of the sparse gap for real data sets

it is commonly observed in real data that the occurrence of

high-frequency items rapidly tails off. We call this a sparsely

populated gap (see Figure 2). Our ultimate goal will be to solve

the problem of detecting icebergs in real data that exhibits the

sparsely populated gap property.

III. ALGORITHMIC OVERVIEW

To solve this problem, we use a summable sketch.

Summable sketches have the property that we can “sum”

the sketches from the individual nodes together to get an

aggregate sketch that is identical to the sketch of the aggregate

frequencies. This property allows us to guarantee that no

matter how the iceberg and non-icebergs are distributed among

the nodes, the result of our algorithm will always be the same.

For our solution, we use the sketch for the second frequency

moment of the data, defined below.

Definition 1: The second frequency moment (F2) of a data

set is the sum of the squares of the frequencies of each item

in the set. That is, F2(X) =
∑

x∈X freq(x)2.
There is typically a gap separating icebergs from non-

icebergs in real data. By focusing on the second moment, we

magnify this gap to make the difference even easier to detect.

We use F2 sketches for estimating the second frequency

moment for the following reasons:

1) The second moment makes extremal values (i.e., ice-

bergs) stand out distinctly. Intuitively, if we could com-

pute the higher moments (e.g., the tenth frequency mo-

ment), then we could further exaggerate this effect. As

discussed earlier, however, computing higher frequency

moments is much more expensive.

2) We found that some of the existing F2 sketches for

estimating the second moment have the aforementioned

summable property. We show in this paper how this

property can be exploited for the purpose of iceberg

detection.

3) Additionally, the error analysis for these sketches is

independent of the number of elements inserted into it,

which allows us to fix error parameters without a need

to account for n, the total number of elements.
4) Finally, the F2 sketches were designed to be extremely

cheap to update. Our solution is viable even if the local

nodes process elements as streams of updates.

Algorithm 1 LOCAL SKETCHING ALGORITHM

PRE-PROCESSING:

Initialize g F2 sketches S1, . . . , Sg.

Initialize hash function h : U → {1, . . . , g}.
ALGORITHM:

for each element/frequency pair 〈id, count〉 do
Insert id with frequency count into the sketch Sh(id).

end for

The F2 sketches we consider enable computation of the

second moment with arbitrary precision and confidence. For

all ǫ, δ < 1, these sketches can guarantee an ǫ relative error

approximation with probability at least 1 − δ using at most

O(log (1/δ)/ǫ2) counters, which is the asymptotically optimal
number [4]. Note that the number of counters necessary is

independent of the number of elements that are inserted into

the sketch, which is a key property that we need.

A. Our Algorithm

Our algorithm works by randomly partitioning all the el-

ements, uniformly at random, into groups and estimating F2

for each of these groups. Any group with an iceberg in it will

stand out from the rest because of its large F2. On the other

hand, there will be few false positives because non-icebergs are

usually much smaller. For example, if the iceberg is ten times

larger than most other elements, then one hundred separate

non-icebergs would have to fall into a group to make it appear

to have an iceberg. We give a more formal description of the

algorithm next.

We partition the elements in U into g groups using a hash

function, h : U → {1, 2, 3, . . . , g}, which is shared by all

the nodes. Each node creates a separate F2 sketch for the

elements of each of these groups and updates them over the

stream. At the conclusion of the stream (or at regular intervals

for infinite streams), each node sends all of its sketches to the

central server. See Algorithm 1.

The central server sums the sketches for each of the g groups
and obtains an approximation of the second moment for each

of these groups. If any group has estimated F2 over (1−ǫ)T 2,

the algorithm signals that there is an iceberg present. (See

Algorithm 2.) For each such group, the central server can poll

the nodes for the exact counts for that group. Alternatively, this

procedure can be repeated recursively on the suspect group

until the iceberg is identified.

Our algorithm has a low false negative rate. The estimate of

F2 for any group with an iceberg in it will be at least (1−ǫ)T 2

assuming that the F2 sketch for that group did not err with

greater than ǫ relative error—this happens with probability at

least (1 − δ). As a result, we can keep the false negative rate

as low as we desire simply by ensuring that the sketches have

a suitable small failure rate δ.

In the following section we briefly describe the F2 sketch

of Alon, Matias, and Szegedy [4] and describe how it has all

the desirable properties that we require.

Algorithm 2 CENTRAL AGGREGATION ALGORITHM

PRE-PROCESSING:

Receive sketches Si
1, . . . , S

i
g from each local node i.

ALGORITHM:

Sum sketches from each node to create aggregate sketches

S∗
1 , . . . , S∗

g

for i := 1 to g do
Estimate F2(S

∗
i).

if F2(S
∗
i) ≥ T 2(1 − ǫ) then

Output “There is an iceberg present (at least one of

h−1(i) is an iceberg).”

end if

end for

B. The Tug-of-War Sketch

As part of our solution, we make use of the Tug-of-

War Sketch Algorithm, introduced by Alon, Matias, and

Szegedy [4]. The tug-of-war sketch is a means of summarizing

frequency data in a stream so that the second moment of

the frequencies can be computed efficiently from it. This

sketch allows for arbitrary updates (i.e., we may increment

the frequency of an element by an arbitrary integer) and is

very fast to update.

The tug-of-war sketch enables computation of the second

moment with arbitrary precision and confidence, i.e., for

all ǫ, δ < 1, the sketch can guarantee an ǫ relative error

approximation with probability at least 1 − δ using at most

O(log (1/δ)/ǫ2) counters. Below, we will briefly describe how
it works.

The tug-of-war sketch computes z = 32 log (1/δ)/ǫ2 un-

biased estimates for the second moment as follows. Each

estimate is the linear projection of the frequencies multiplied

by coefficients ±1, which are computed from hash functions

of the form h : U → {−1, 1}. It can be shown that, by

choosing h to be 4-wise independent, the square of this sum is

an unbiased estimate of the second moment. These estimators

are then divided into groups and the median of the averages

of the groups can be shown to be an extremely robust estimate

of the second moment.

The tug-of-war sketch uses just O(log (1/δ)/ǫ2)
estimators—the asymptotically optimal number [4]—

which bounds both the number of counters needed by it and

the number of operations needed to update it. This makes it

very efficient to update in a stream. Note that the number of

counters necessary is independent of the number of elements

that have been inserted into the sketch, which allows us to

use the same sketch size for each distributed node and group.

Each estimator of the tug-of-war sketch is a linear projection

of the form ~c · ~v = c1v1 + . . . + cnvn, where ~c is the vector

of frequencies and ~v is a vector in {−1, 1}n. This permits

arbitrary updates to the sketch (i.e., updates with both positive

and negative integers) since updating the frequency of the

ith element by u can be done by simply adding uvi to the

estimator. Additionally, if two sketches use the same hash

functions (i.e., the same vector ~v), they can be directly summed
to give the sketch that would have resulted from taking the

union of the original inputs. This extremely powerful summable

property is what allows us to aggregate the result of the nodes

in a split-independent fashion.

We note that Indyk’s stable distribution sketch [7] also

has the same desirable properties as the tug-of-war sketch.

Namely, it is summable, is efficient to update, and has the

same asymptotic space bound. However, in practice the stable

distribution sketch needs considerably more space than the

tug-of-war sketch because of its requirement of independent,

stably-distributed values [7].

IV. THE GAP ASSUMPTION

One issue that our algorithm, and indeed any approximate

algorithm for this problem, must overcome is that it is virtually

impossible to distinguish an iceberg from any non-icebergs

close to its size. To assist with this issue, we introduce the

concept of the gap assumption.

The gap assumption is an assumption that we make about

the measured data to assist in correctly detecting icebergs.

According to this assumption, there will never be any non-

icebergs in the range (λT, T), where T is the threshold for

icebergs and λ ∈ (0, 1) is a known gap parameter. In this

section we will assume this assumption to be strictly true, and

later we will discuss the effect of having a few non-icebergs

in the gap.

We will show that our summable sketch-based methodology

for iceberg detection results in an asymptotically near-optimal

algorithm for the gap assumption problem. We do so by

first demonstrating a lower bound for this problem and then

demonstrate how our algorithm nearly matches this lower

bound.

A. Lower Bound for the Gap Assumption Problem

Consider the following game played among s players:

Suppose that each of the s players has a set of t elements from
the universe {1, . . . , n}, where n = (2t − 1)s. Call these sets
A1, . . . , As. We are guaranteed that either one of the following

two situations are true:

• For all i, j ∈ {1, . . . , s} with i 6= j, Ai ∩ Aj = ∅.
• For all i, j ∈ {1, . . . , s} with i 6= j, Ai ∩ Aj = {x}, for
some x ∈ {1, . . . , n}.

That is, it is either the case that all the sets are pairwise

disjoint, or it is the case that all the sets have precisely one

element in common. The problem is then for these s players

to determine which of the above two situations is true (their

behavior when neither case holds can be arbitrary).

This problem was originally studied by Alon, Matias, and

Szegedy [4] in the context of proving lower bounds for

the estimation of the frequency moments, and they gave an

Ω(n/s4) bound. This bound was subsequently improved to

Ω(n/s2) by Bar-Yossef et al. [8] and finally to Ω(n/(s log s))
by Chakrabarti, Khot, and Sun [3]. We make use of this final

result.

Theorem 1: Any algorithm for detecting an iceberg that is

at least 1/λ times the size of the next largest element will

require each node to communicate Ω(nλ2/ log (1/λ)) bits on
average.

Proof: Consider the special case where we are guaranteed

that it is either the case that all the s nodes have pairwise dis-
joint sets of identities or all of them have precisely one iceberg

in common. By the result of Chakrabarti, Khot, and Sun [3],

we know that such an algorithm must communicate at least

Ω(n/(s log s)) bits of information. Hence, on average, each

node communicates Ω(n/(s2 log s)) bits (and, in particular,

some node must communicate at least so much information).

For this problem, the λ guarantee we are provided is 1/s
since the iceberg has size s (i.e., the number of nodes) and

every other element has size at most 1. Hence, for this class
of problem instances, s = 1/λ. Substituting this into the

lower bound from above, we get that on average each node

communicates at least Ω(nλ2/ log (1/λ)) bits.
Note that this lower bound shows a result stronger than

what we had set out to achieve: this bound applies even in

the case where each element appears at each location with

frequency either 0 or 1, and any protocol for point-to-point

communication between the nodes is used.

B. Algorithm for the Gap Assumption Problem

We now show that our algorithm is able to achieve a

communication cost of O(nλ2). Since we showed in the

previous section that the lower bound for this problem is

Ω(nλ2/ log (1/λ)), this solution is near-optimal. In fact, we

believe O(nλ2) to be a tight bound and conjecture that the

lower bound can be strengthened to remove the log (1/λ)
factor.

Our solution for this problem is to simply use Algorithm 1

with g = 6nλ2 as the number of groups. In the following

sections we prove the communication cost bounds for this

algorithm and give analysis showing its accuracy in correctly

detecting the presence of icebergs.

1) Communication Cost: Since each sketch has cost

O(log (1/δ)/ǫ2), our algorithm requires each local node to

communicate a total of O(g log (1/δ)/ǫ2) counters to the

central server. Taking constant ǫ and δ, we have that the

communication cost of our algorithm is O(g) = O(nλ2).
In comparison, while the naive algorithm has each local

node send a counter for each element (for a total of (1 +
Ω(1))n counters), our algorithm requires 192nλ2 log (1/δ)/ǫ2

counters, which gives us large savings when λ is small (e.g.,

1/1000).

The tug-of-war sketch can be modified to use 2/(δǫ2)
counters by just averaging the estimates, rather than taking the

median of averages. This is less than 32 log (1/δ)/ǫ2 when δ
is not too small. For example, if we take ǫ = 1/2, δ = 0.05,
then our algorithms requires 960nλ2 counters, which gives us

considerable savings when λ is as large as 1/100.
Note that since our algorithm does not need to send the

identities of elements along with their counts, we are not

burdened with this additional overhead. A naive method, on

the other hand, necessarily must transmit element identities to

aggregate the counts of all the elements. Hence, our algorithm

will especially shine when element identities are large (e.g.,

IP flow labels).

Numerical Example: Consider a situation each distributed

node has m = 1000000 (one million) search queries that they

need to communicate to the central server. Let us assume that

each element has an identity of size 12 bytes and a counter of

size 8 bytes. Further, let us assume that we are guaranteed a

gap of λ = 1/100 in the data. Then, a naive solution would

require about 20 × n = 20MB of communication to identify

any icebergs in the data. In contrast, our algorithm would need

only 8 × 960nλ2 = 768KB of communication to solve the

problem. This gives us over an order of magnitude savings in

the communication cost.

2) Analysis: We showed in the previous section that the

false negative rate of our algorithm is determined solely by

the failure rate of the sketches. By keeping this rate δ small,

we will almost never miss a true iceberg. Hence, all that is

left for us to show is that it is unlikely for a group without

any icebergs in it to be a false positive.

Theorem 2: For every group with no iceberg in it, the

iceberg detection algorithm erroneously signals that it has an

iceberg in it with false positive probability at most δ+δ′, where
δ is the failure probability bound of the tug-of-war sketch,

δ′ = (e
4)1/(6λ2), and λ is the gap parameter.

Proof: To simplify our analysis, we consider the worst

case input for our algorithm: when all n elements have count

λT . It is not hard to see that if the non-icebergs are smaller

than λT this will only decrease the probability of a false

positive.

Since the sketches may err with ǫ relative error, a non-

iceberg may appear to contribute as much as T 2λ2(1+ǫ) to the
measured F2. As the threshold of detection is set to T 2(1−ǫ),

a false positive could only occur when at least
T 2(1−ǫ)

T 2λ2(1+ǫ) ≥
1/(3λ2) non-icebergs get put in the same group, where we

assume that ǫ ≤ 1/2. Let us denote by X the random variable

indicating how many non-icebergs get put in one particular

group and bound the probability of the event that X exceeds

1/(3λ2).
Let us denote by Xi the event that element ui is in our

group, for i ∈ {1, . . . , n}, so that X =
∑n

i=1 Xi. Clearly,

Xi’s are i.i.d. Bernoulli random variables with probability 1/g,
since an element may go into any group with equal likelihood.

This permits us to use the Chernoff bound:

Theorem 3 (Chernoff Bound): Let Xi, 1 ≤ i ≤ n be i.i.d.

Bernoulli random variables with probability p, X =
∑n

i=1 Xi.

For β > 1,

Pr[X ≥ βpn] <

(
eβ−1

ββ

)pn

.

Applying the above Chernoff bound, we get the following

Pr[X > 1/(3λ2)] = Pr[X > 2(n/g)]

≤
(

e2−1

22

)n/g

=
(e

4

)1/(6λ2)

.

Since the error in the estimate occurs with probability at most

δ, the false positive probability in question is at most δ + δ′,
as desired.

Since we expect our algorithm to work only when λ ≪ 1,
we expect the δ term to dominate this failure probability. Not

only does the above algorithm detect the presence of one or

more icebergs, it narrows down the iceberg to a subgroup of

the universe. Each group that is above the threshold can be

polled to identify the iceberg. Since there are only an expected

1/(6λ2) elements in each group, this cost is far lesser than that
of sending frequencies of all n elements.

Numerical example: When λ = 0.1, the false positive

probability for a group is at most 0.16%. For λ = 0.05,
this probability drops to less than one in hundred billion

(10−11). Clearly, this probability is much smaller than the

failure probability of the sketch, δ, which we take to be around
1% in practice. At worst, we expect 1% of the groups (and

hence about 1% of the elements) to signal a false positive,

which takes very little additional communication to drill down.

C. Estimating Iceberg Size

Besides detecting the presence of an iceberg, it would be

useful to get an estimate on its size. Size information is useful

in diagnosing the extent of the anomaly and could help in

determining what action should be performed next. In this

section we show how our solution allows us to obtain an

approximate estimate of the actual size of the iceberg in this

setting without any additional communication overhead. If

this estimate indicates a severe problem, a more accurate (but

expensive) estimate of the size of an iceberg can be computed

using an additional round of communication.

1) Biased Estimator: The first algorithm for estimating the

size of the detected iceberg is simple. We take the estimate of

F2 for the group the iceberg was found in and use the square

root of this value as an estimate of the iceberg size. There are

two sources of error for this estimate: the approximation of

the F2 estimation as well as the collision of non-icebergs in

the same group. (We assume that the number of icebergs is

small enough that no two icebergs get mapped to the same

group with high probability.)

Suppose that we detect an iceberg of size S ≥ T in a

group that has estimated F2 above the T 2(1 − ǫ) threshold.

We first estimate by how much we may under-estimate its true

frequency: this is bounded by the error of the F2 estimation.

Hence, with probability at least 1 − δ, this algorithm returns

an estimate Ŝ such that

Ŝ ≥ S
√

1 − ǫ.

Assuming that ǫ ≤ 1/2 (as earlier) we get the guarantee that

Ŝ ≥ S/
√

2.
The analysis for the bound on over-estimating the size of

the iceberg is slightly more involved since we now have to

account for the collisions of non-icebergs in the same group.

We start by bounding the probability that the collisions exceed

the threshold T 2/3. As in the earlier detection analysis, this

would require more than
T 2/3
T 2λ2 ≥ 1

3λ2 non-icebergs to be

in the same group as the iceberg. As earlier, we bound this

probability:

Pr[X > 1/(3λ2)] <
(e

4

)1/(6λ2)

= δ′.

Since S ≥ T , the total overestimation error for the F2

estimation is at most (T 2/3 + S2)(1 + ǫ) − S2 ≤ S2 (again,

where we assume ǫ ≤ 1/2).

Hence, we finally have the following theorem:

Theorem 4: With probability at least 1 − δ − δ′ we can

estimate the true size of an iceberg of size S by Ŝ with the

guarantee that S/
√

2 ≤ Ŝ ≤ S
√

2.

Obtaining a more accurate estimate of the iceberg size

comes at a higher cost. We may obtain much more accurate

estimates for the size of the iceberg using smaller ǫ. However,
recall that the dependence of the communication cost on ǫ
is 1/ǫ2, which grows very rapidly. For example, halving the

relative error results in quadrupling the communication cost.

Still, there is a natural tradeoff here.

2) Unbiased Estimator: The above estimator has the dis-

advantage of being biased by the collision of non-icebergs

with the iceberg. A more accurate way to approximate the

size of the iceberg is to estimate the mass of non-icebergs

that collide with it and remove this from our estimate. We

can use the average of the F2 estimates of the other groups

for this purpose. Here we show that this estimator is unbiased

when there is only one iceberg in the whole dataset and the

F2 sketch used is unbiased (e.g., the tug-of-war sketch).

We will use Y0 for the F2 of the non-icebergs in the group

with the iceberg, and Y1, ..., Yg−1 for the F2 of all the other

groups. We know that E[Y0] = E[Y1] = ... = E[Yg−1]. Let Π
be the (non-real-valued) random variable denoting how the n
elements are placed into g groups. Assume the iceberg size is

S. So the estimator for iceberg size is Ŝ + Y0− 1
g−1

∑g−1
j=1 Ŷi,

where the hat reflects the F2 sketch estimator. So we have

E[Ŝ + Y0 −
1

g − 1

g−1∑

j=1

Ŷi]

= EΠ

E[Ŝ + Y0 −
1

g − 1

g−1∑

j=1

Ŷi | Π]

= EΠ

S + Y0 −
1

g − 1

g−1∑

j=1

Yi

= S + EΠ[Y0] −
1

g − 1

g−1∑

j=1

EΠ[Yi] = S.

The first equality is due to the law of total expectation. The

second equality is because we are using an unbiased F2 sketch.

The third equality is due to the linearity of expectations.

Hence, the estimate using this method is an unbiased estimate

of the actual iceberg size.

V. USING F1 INFORMATION

In the previous section, we show that in the case of a strong

gap assumption (e.g., λ values as small as 1/100), the tug-of-

war sketch allows us to identify icebergs with high probability

in one round. We also prove a lower bound communication

complexity under these conditions, which show that our de-

tection algorithm is indeed asymptotically optimal, although

the result is not practically satisfying.

Fortunately, this is not the end of story. We are able to

significantly improve our result, in terms of the required λ,
by asking for one additional piece of information that can

be obtained with very little cost. This additional piece of

information is the sum of the counts (F1) of all the elements

across all the nodes. It can be obtained by asking every node

to send in the sum of the counts of all its items. Adding them

up at the central server results in the F1 of the union of the

dataset. The additional communication cost is simply a few

more bytes per node. However, strictly speaking, this adds one

more round to the protocol as follows. In the first round, the

total local counts are sent to the central server and summed to

get F1. Then the optimal number of groups is computed based

on this count, and this is broadcast to all the nodes. Finally,

the nodes send grouped tug-of-war sketches to the server.

In reality, however, this additional round can be avoided in

continuous monitoring applications when the change from one

time window to the next is not gigantic. We can simply use

the average F1 of the past windows as the estimate of the

F1 of the next window, for the purpose of determining the

optimal number of groups. Then the total count for the next

window can come in together with the tug-of-war sketches in

one round. This scheme will work because the accuracy of our

detection is not sensitive to the number of groups as computed

from F1.

Readers may now wonder why this total count alone makes

such a huge difference. This is because earlier we only knew

that all the items had frequencies between 0 and B = λT .
Our false positive bound has to assume the worst case from

this very large family. However, once we know F1, there is

a constraint on the item counts, resulting in a much smaller

family of counts. The worst case of the smaller family is much

better than the worst case of the larger family. However, the

worst case of the larger family is mathematically trivial, i.e.,

every element has count B, which is what we considered in the

previous section. Obtaining or even approximating the worst

case for the smaller family, however, turns out to be extremely

challenging mathematically.

One contribution of this work is to bound the worst case of

this smaller family using a combination of convex ordering

theory and large deviation theory. For bounding the false

positive rate, we are interested in the second moment F2 of any

group without an iceberg. Each element has an independent

and identical probability to fall into this group. The element

counts vector {ci} is only subject to two constraints: ci ≤
B,∀i, and

∑
i ci = L, where L is the aggregate F1. Since

our scheme has to work with all possible element counts

vectors, our bound clearly has to be the worst case (i.e., the

maximum) bound over all of them. However, the space of all

such vectors is so large that enumeration over all of them is

computationally prohibitive and low complexity optimization

procedures in finding the worst case do not seem to exist.

Fortunately, we discover that the element counts vectors are

dominated by a particular (i.e., worst-case) element counts

vector, in the increasing convex order (not in the stochastic

order). Since the moment generating function (MGF) of any

random variable is an increasing convex function, we are able

to dominate the MGFs of the F2 of the group under all element

count vectors by that under the worst-case vector. The final tail

bound is obtained by simply applying the Chernoff bound to

this worst-case MGF.

Let us denote by Xi the event that element ui is in the

chosen group. Xi’s are i.i.d. Bernoulli random variables with

probability 1/g. Let Xc be the F2 of the elements in this

group, i.e. Xc =
∑n

i=1 c2
i Xi. We denote it Xc to emphasize

that its distribution depends on the vector c. We want to bound

the probability that Xc > T 2(1−ǫ)
1+ǫ ≡ A.

In the following, we first describe the standard Chernoff

method of obtaining sharp tail bounds from the MGF of a

random variable (in this case Xc):

Pr[Xc > A] = Pr[eθXc > eθA]

≤ E[eθXc]

eθA
,

where θ > 0 is any constant, and the last step is due to the

Markov inequality.

Since this is true for all θ, we have

Pr[Xc > A] ≤ min
θ>0

E[eθXc]

eθA
. (1)

Then, we aim to bound the moment generating function

E[eθXc] by finding the worst-case element count vector.

Since convex ordering techniques and related concepts are

needed to establish the bound, we first present a few definitions

here:

Definition 2 (Majorization [9, 1.A.1]): For any n-
dimensional vectors a and b, let a[1] ≥ . . . ≥ a[n] denote the

components of a in decreasing order, and b[1] ≥ . . . ≥ b[n]

denote the components of b in decreasing order. We say a is

majorized by b, denoted a ≤M b, if
{∑k

i=1 a[i] ≤
∑k

i=1 b[i], for k = 1, . . . , n − 1
∑n

i=1 a[i] =
∑n

i=1 b[i]

(2)

Definition 3 (Schur-convex [9, 3.A.1]): A function f :
Rn → R is called Schur-convex, if x ≤M y implies f(x) ≤
f(y).
Definition 4 (Exchangeable random variables): A

sequence of random variables X1, . . . , Xn is called

exchangeable, if for any permutation σ : [1, . . . , n] →
[1, . . . , n], the joint probability distribution of the permuted

sequence Xσ(1), . . . , Xσ(n) is the same as the joint probability

distribution of the original sequence.

For example, a sequence of independent and identically

distributed random variables are exchangeable.

Definition 5 (Convex function): A real function f is called

convex, if f(αx + (1−α)y) ≤ αf(x) + (1−α)f(y) for all x
and y and all 0 < α < 1.
Definition 6 (Convex order [10, 1.5.1]): Let X and Y be

random variables with finite means. Then we say that X is

less than Y in (increasing) convex order, written X ≤cx Y
(X ≤icx Y), if E[f(X)] ≤ E[f(Y)] holds for all real

(increasing) convex functions f such that the expectations

exist.

Since the MGF (E[eXθ]) is expectation of an increasing

convex function (exθ) of X , establishing increasing convex

order will help to bound the MGF.

The following theorem from Marshall [9] about convex

functions and exchangeable random variables has many useful

corollaries.

Theorem 5 ([9, 11.B.1]): Let X1, . . . , Xn be exchange-

able random variables. Let Φ : R2n → R be a function of

two vector arguments. Suppose that Φ satisfies

(i) Φ(x; a) is convex in a for each fixed x,
(ii) Φ(xΠ; aΠ) = Φ(x; a) for all permutation matrices Π,
(iii) Φ(x; a) is Borel measurable in x for each fixed a.

Then Ψ(a) = E[Φ(X ; a)] is symmetric and convex.

Now we can prove the following theorem:

Theorem 6: Let g be a convex function. Let X1, . . . , Xn

be exchangeable random variables that take only non-

negative values. Then a ≤M b implies
∑n

i=1 g(ai)Xi ≤icx∑n
i=1 g(bi)Xi.

Proof: Let f be any increasing convex function. Let

Φ(x; a) = f(
∑n

i=1 g(ai)|xi|). We will verify that Φ(x; a)
satisfies the conditions in Theorem 5. When x is fixed,

g(ai)|xi| is convex because |xi| ≥ 0 and g is convex. So∑n
i=1 g(ai)|xi| is a sum of convex functions, thus convex [11,

Theorem 5.2]. So Φ(x; a) is a composition of an increasing

convex function with a convex function, thus convex [11,

Theorem 5.1], therefore (i) holds. (ii) obviously holds. When

a is fixed, Φ(x; a) is continuous because f is necessarily

continuous, so (iii) holds.

Therefore Theorem 5 tells us that E[Φ(X ; a)] is symmetric
and convex, thus Schur-convex [9, 3.C.2]. E[Φ(X ; a)] =
E[f(

∑n
i=1 g(ai)|Xi|)] = E[f(

∑n
i=1 g(ai)Xi)], due to the

assumption Xi ≥ 0. By definition of Schur-convexity, a ≤M b
implies E[f(

∑n
i=1 g(ai)Xi)] ≤ E[f(

∑n
i=1 g(bi)Xi)]. Since

this is true for any increasing convex function f , by definition
of increasing convex order we have

∑n
i=1 g(ai)Xi ≤icx∑n

i=1 g(bi)Xi.

Remark: Note that stochastic order does not hold here in

general. Suppose a1 = a2 = 1, b1 = 0, b2 = 2, g(x) = x2, and

X1, X2 are i.i.d Bernoulli with success probability 0 < p < 1.
Then

Pr[X1 + X2 ≤ 0] = (1 − p)2 < 1 − p = Pr[4X2 ≤ 0]

Pr[X1 + X2 ≤ 1] = 1 − p2 > 1 − p = Pr[4X2 ≤ 1]

For a stochastic order relation to hold, the two inequalities

must be in the same direction.

Now we are ready to specify the worst-case element count

vector in terms of increasing convex ordering. The pattern of

worst-case item counts is that some item counts take maximum

value B while other are 0. 1 Let c∗ be the vector where ci =
B, 1 ≤ i ≤ L/B and ci = 0 otherwise.

Corollary 7: Xc ≤icx Xc∗ , and consequently

Pr[Xc > A] ≤ min
θ>0

E[eθXc∗/B2

]

eθA/B2 .

Proof: It is easy to see that c ≤M c∗. Applying

Theorem 6 to the i.i.d Bernoulli random variables {Xi}, the
convex function g(x) = x2, we get Xc ≤icx Xc∗ .

2 Since

f(x) = exθ is an increasing convex function of x, by definition
we get E[eθXc] ≤ E[eθXc∗]. From our earlier discussion on

the Chernoff method we get

Pr[Xc > A] ≤ min
θ>0

E[eθXc]

eθA
≤ min

θ>0

E[eθXc∗]

eθA

= min
θ>0

E[eθXc∗/B2

]

eθA/B2 .

For the last step we replaced θ with θ/B2.

Note that Xc∗/B2 is a sum of i.i.d Bernoulli random

variables, so the bound in the above corollary is exactly the

Chernoff bound for the sum of L/B i.i.d. Bernoulli random

variables with probability 1/g exceeding A/B2. If we pick

g = β B2

A
L
B = λ2β 1+ǫ

1−ǫ
L
B , where β > 1 is a constant we can

choose, then from Theorem 3 the above bound can be relaxed

to:

δ′ ≡
(

e(1−1/β)

β

) (1−ǫ)

(1+ǫ)λ2

. (3)

We note that δ′ can be decreased by either increasing β, or
decreasing ǫ, or both. If λ is small we can pick ǫ = 1/2 and

β = 2, and the number of groups simplifies to g = 6λ2L/B.

If L = nB, then g is the same as in the previous section.

However for real data we usually have L ≪ nB, so we get

a much smaller g, thus much less communication cost than if
we didn’t know L.

If λ is close to 1, we need to pick larger β and smaller ǫ
to keep the bound small, which translates to larger communi-

cation cost. We want to have λ2 1+ǫ
1−ǫ < 1, i.e., ǫ < 1−λ2

1+λ2 , so

that a single element of size λT will not become false positive

with probability at least 1 − δ.

Numerical example: If λ = 0.1, we can pick ǫ = 1/2 and

β = 2 in Equation 3, so that the false positive rate δ′ = 0.0016.
If, say, L/B = 0.001n then g = 6n/100000, giving a 1000-
fold improvement from the analysis in Section IV. If λ = 1/3,
we can pick ǫ = 1/2 and β = 9, so that δ′ = 0.0197. Again
taking L/B = 0.001n, we get g = 3n/1000. Note that the

analysis in Section IV breaks down for λ = 1/3, since it

gives δ′ = 0.56 and g = 2n/3. We need g ≪ n to achieve

communication cost savings.

1For simplicity of computation we round L up to multiples of B. It is
simple to prove that the increasing convex ordering still holds.

2If we were to consider other frequency moments Fp, p > 1, the same
convex ordering results apply.

A. Estimating Iceberg Size

We can have the same size estimator as in Section IV-C. We

omit the proof for the the following theorem as it is similar

to the one for Theorem 4.

Theorem 8: With probability at least 1 − δ − δ′ we can

estimate the true size of an iceberg of size S by Ŝ with the

guarantee that S/
√

2 ≤ Ŝ ≤ S
√

2.
We also can use the same unbiased estimator as in Sec-

tion IV-C.

VI. PROPERTIES

In this section we discuss why we expect our algorithm to

perform well on real-world data, as well as several desirable

properties that it has.

A. Discussion of the Gap

All our analyses thus far have assumed that there is a gap

in the data. However, our algorithm still works even when

there is no such large gap, and the gap is necessary only for

the purposes of providing guarantees on the performance. In

practice, our algorithm performs well even when there is a

small gap in the data and when the magnitude of the gap is

not known.

We may also loosen the gap assumption by permitting a

few elements to appear within the gap. For real problems, this

is very often the case—the data usually has a long, thin tail

and there are very few elements that come close to the desired

threshold. Note that the false negative rate of our scheme is

unaffected by such elements. Larger non-icebergs will only

increase the F2 of a group and never allow an iceberg to be

missed since we keep the detection threshold fixed. Hence, the

only penalty that we pay is a higher false positive rate, which

only results in a slightly higher communication cost to drill

down a group. This additional cost is, at worst, proportional

to the number of elements in the gap. In the case of real data,

this is an exceedingly small number (e.g., one or two), and

hence barely affects our performance.

B. Streamed Data

When aggregating large volumes of data (e.g., Internet IP

packet data), it is necessary to employ streaming algorithms to

summarize the data succinctly in a single pass. Our algorithm

is capable of doing this since it is already based on very light-

weight sketches. In particular, each update performed locally

at a node can be performed using only O(log (1/δ)/ǫ2) hash
operations and additions since only the sketch of a single group

has to be modified for each update in the stream. Since ǫ and δ
are small constants, this is essentially a constant-time update,

independent of the size of the stream. We find in practice that

as few as 5 to 10 estimators may suffice for each sketch.

The memory cost of our approach can be quantified by

the product of the number of groups times the number of

estimators for each group. In the previous section we gave

some tight bounds on how many groups may be required.

However, in practice, the number of groups necessary may

be much smaller since our bounds assume adversarial (i.e.,

root

Fig. 3. The sketches can be aggregated on any connected topology. The
edges indicate communication links and the heavy edges are the spanning
tree along which the sketches are aggregated.

worst-case) data. Please refer to Section VII for more of these

details.

C. Application to Arbitrary Topologies

Our solution can be implemented on any arbitrary connected

topology due to the summable property of the sketches.

Consider any communication graph G. It is possible to choose

a spanning tree that is rooted at the node at which we would

like to perform the iceberg detection. The protocol is then for

every node in the tree to send its sketches to its parents. The

parents can then sum these sketches (since all of them use

the same hash functions) and pass them along to their parents.

Finally the root of the tree can perform the iceberg detection

as described in Section III. See Figure 3.

The communication cost for each non-root node is identical:

they all have to send the same number of sketches to their

parents. This means that this solution is completely unaffected

by the volume of data at each node. Since the sketch sizes are

independent of the number of elements inserted into them,

every node has the same, succinct set of sketches. Lastly, it

should be clear that it does not matter in which order the

sketches are summed since the sum operation, which is simply

vector addition, is commutative and associative.

VII. EMPIRICAL EVALUATION

In this section we evaluate our methodology of using F2

sketches for detecting icebergs in distributed data. We start by

fine-tuning the tug-of-war sketch for our purposes. We then

evaluate the performance of our algorithm on real network

data by varying various parameters. We show that using our

proven guarantees we can use as little as 7.5% of the space

of the naive algorithm and that using 1% suffices in practice.

A. A Few Words About Sketch Size

For the tug-of-war F2 sketch, we have an (ǫ, δ) guarantee
with 32 log(1/δ)/ǫ2 or 2/(δǫ2) counters. For ǫ = 0.5, δ =
0.02 this translates to 400 counters. However, this theoretical

bound is quite loose. We experimented with the tug-of-war

sketch on a variety of data, artificial and real, and found in all

cases that a sketch of only 50 counters satisfies the (0.5, 0.02)
bound, i.e. it gives estimation with less than 50% relative error

for more than 98% of the time.

In the experiments with our iceberg detection algorithm,

we need much fewer counters. We found that 10 counter

per sketch performed very well. This is due to the following

reasons.

For false negative rate: We are only concerned with groups

that happen to contain an iceberg. The group size has been

chosen in such a way that with high probability one element

(the iceberg) dominates the F2 of the rest of the elements. We

found that the tug-of-war sketch performs extremely well for

such datasets, so we only need a small number of counters.

(In the case that there are two icebergs in the group, the sketch

will need to have at least 75% negative error to cause a false

negative, which turned out to be also very unlikely.)

For false positive rate: Two factors could contribute to a

false positive—the F2 of the element counts in the group

could be large and the sketch could have a large positive error.

For most of the time the F2 of the element counts is very

small compared to the iceberg, and the sketch error with very

high probability is not large enough to cause false positive. In

other words, the deviation of F2 plays a bigger role than the

deviation of the sketch in causing false positives. Therefore a

small sketch with large error still works in practice.

B. Experiments with Network Data

We tested our proposed algorithms on data collected from

the Abilene network [12]. We used the destination IP addresses

as the element labels. Our trace aggregated packets across

several sites over a one day period. In order to simulate a

large number of nodes, we distributed the packets to 100

nodes by hashing the source IP addresses uniformly at random

to 100 bins. The total raw data size over the 100 nodes is

11.87M (with 4 bytes for label and 4 bytes for flow size).

There are in total 140,275 unique destination addresses in

this dataset. We set the bound B = 500, 000 and the iceberg

threshold T = 1, 500, 000, therefore λ = 1/3. There are two
element counts between the bound and the threshold, and one

element count above the threshold at 1, 784, 420. Total F1 is

3.673× 107.

Using only the gap assumption we get the number of groups

to be g = 93516. Adding the F1 information we get g = 221,
choosing ǫ = 1/2, β = 9 so that (3) is less than 0.02. The
communication cost for all the sketches is 0.884M , counting

4 bytes per counter. The ratio to raw data is 7.5%. We

encounter no false negatives or false positives at this setting.

Encouraged by this, we pushed the parameters to extreme

values to examine the performance of our algorithm on this

dataset.

In Figure 4 we reduce the number of groups. The false

negative remained at 0. We can see that false positives do not

occur when g = 60, which corresponds to communication cost
of only 2%. Even at g = 20 the false positive rate is still very

low.

Assume that we underestimated the bound to be B =
400, 000 instead of B = 500, 000. So λ = 1/3.75 and

we choose β = 5 in (3). Further assume that we severely

underestimated F1 to be 2 × 107 instead of 3.673 × 107. We

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 10 20 30 40 50 60 70 80 90 100

e
rr

o
r

ra
te

number of groups

false positive

Fig. 4. Varying Number of Groups

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 4 6 8 10 12

e
rr

o
r

ra
te

sketch size

false positive
false negative

Fig. 5. Varying Sketch Size

will get g = 53 which still give very good performance. This

shows that it is not crucial for us to get accurate estimates of

bound B or total F1 for deriving the number of groups.

In the following we make the problem harder by reducing

the iceberg threshold to T = 1, 000, 000, i.e. λ = 0.5. We

also replace the large iceberg by one right at the threshold,

i.e. with size 1, 000, 000. We fix g = 100 and study how other

parameters affect performance.

In Figure 5 we vary the sketch size, i.e. number of counters

per sketch. We can see that false negative rate increases as

sketch size decreases, which is expected. We see that false

positive rate is not very sensitive to sketch size, verifying our

remark about sketch size and false positive rate in the previous

section.

Next we study how the size of a non-iceberg element affects

the false positive rate. We insert non-iceberg of various sizes

into the data. In Figure 6, the x-axis ratio is relative to the

threshold T . We see that after the element reaches a certain

size it starts to increase false positive rate, then it reaches a

plateau where the group containing this element is very likely

to report positive. We have remarked before that when a non-

iceberg is close to the threshold it is hard to distinguish it from

an iceberg.

Figure 7 plots the average relative error for the two size

estimators when the iceberg size changes. Estimator 1 is the

simple estimator, and Estimator 2 removes the bias. The x-
axis ratio is relative to the threshold T . The peculiar result is

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

ra
te

non-iceberg size relative to threshold T

false positive

Fig. 6. Varying Non-iceberg Size

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 1 1.2 1.4 1.6 1.8 2

a
v
e

ra
g

e
 e

rr
o

r
iceberg size relative to threshold T

Estimator 1
Estimator 2

Fig. 7. Size Estimator

that although estimator 2 is unbiased, estimator 1 has slightly

less average relative error in this case.

Next we will change λ and see how it affects performance.

We still use g = 100 and sketch size 10. We remove the 3

elements above the bound, and for each λ we set the threshold

and insert an iceberg at 1/λ times the bound. Figure 8 shows

the result. We see that even for higher λs (e.g., λ = 0.7, where
the iceberg is less than 1.5 times the bound) the algorithm

still performs well. For λ closer to 1 we will need larger g
to control false positive and larger sketch size to control false

negative.

Hence, we see that for real data our algorithms greatly

out-perform the provided theoretical guarantees. The reason

for this is that all the guarantees we give are worst-case,

whereas real network data follows a highly skewed power-law

distribution.

VIII. BACKGROUND AND RELATED WORK

In this section we briefly survey the previous work on the

issue of detecting distributed icebergs. The term iceberg was

introduced by Fang et al. [13]. The term “iceberg” for a

distributed heavy-hitter comes from the idea that, like icebergs

in an ocean, only the tip of an item with gigantic mass can

be observed from a single location. Iceberg queries are known

to be useful for various applications, including detection of

attacks [14], discovery of heavy-hitters in Content Delivery

Networks [15], discovery of worms and other anomalies [16],

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e
rr

o
r

ra
te

λ

false positive
false negative

Fig. 8. Varying λ

and ensuring SLA compliance [17].

Manjhi et al. [6] studied the problem of discovering icebergs

in a distributed environment when the nodes are in a multi-

level tree topology. Their work differs from ours in that they

aim to detect recently frequent elements, whereas we consider

the problem of detection in a fixed interval. Also, our solution

aims solely to detect icebergs, which allows us to discard the

identities of the elements when aggregating the streams.

There also has been some work that studies a variation of

the problem in which only the k most frequent items are of

interest [18], [19]. Babcock et al. [18] studied this “Top-k”
query problem, and their results were extended by Olston et

al. [19] to support sum and average queries. Their solution

has the feature that they assume that an iceberg must appear

at some local node with high frequecy.

In [5], Zhao et al. proposed algorithms for detecting ice-

bergs in distributed data via size-based sampling and summa-

rization of local frequencies using a combination of quanti-

zation and Bloom filters. In their analysis, they parameterize

their algorithms to give error bounds that are independent of

the manner in which the iceberg is split among the local nodes.

Cormode et al. [20] recently proposed the problem of

functional monitoring, in which local nodes continuously send

updates to the central server. The goal is to minimize the

amount of information sent by these nodes while still maintain-

ing some global guarantee (e.g., detecting icebergs with high

probability). This is a continuous monitoring solution and is

hence incomparable with our work.

An important characteristic of our solution is that, no matter

how the iceberg is split among the local nodes, the quality

of our solution remains unchanged. Whereas [5] designed

their scheme to attain the worst-case performance for every

distribution of the iceberg across the local nodes, we auto-

matically guarantee the same just by using the summable

sketch methodology. In fact, our solution is independent of any

characteristic of the data other than the aggregate frequency

distribution, making our algorithm robust to hidden icebergs.

IX. CONCLUSION

In this paper we introduced the idea of using summable

sketches to solve the global iceberg problem. We show that

these sketches are ideal for aggregating distributed data since

their behavior is independent of how the data is split. Our

solution works when the data is only available as a stream at

the distributed nodes, and even when the distributed nodes are

organized in any arbitrary topology.

Our methodology of using of summable sketches for dis-

tributed aggregation raises the possibility of considerable fu-

ture work. For example, summable sketches could be used for

any frequency query on distributed data. We hope to find even

more applications for this technique in the future.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CNS-0905169

and CNS-0904743, funded under the American Recovery and

Reinvestment Act of 2009 (Public Law 111-5), and NSF grants

CNS-0716423 and CCF-0958490.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[2] Apache, “Apache hadoop,” http://hadoop.apache.org/.
[3] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds

on the multi-party communication complexity of set disjointness,” in
Proceedings of IEEE Conference on Computational Complexity (CCC),
2003.

[4] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-
mating the frequency moments,” in Proceedings of ACM Symposium on
Theory of Computing (STOC), 1996.

[5] Q. Zhao, M. Ogihara, H. Wang, and J. Xu, “Finding global icebergs over
distributed data sets,” in Proceedings of the Symposium on Principles of
Database Systems (PODS), 2006.

[6] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. opher Olston, “Find-
ing (recently) frequent items in distributed data streams,” in Proceedings
of International Conference on Data Engineering (ICDE), 2005.

[7] P. Indyk, “Stable distributions, pseudorandom generators, embeddings,
and data stream computation,” Journal of the ACM, vol. 53, no. 3, pp.
307–323, 2006.

[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, “An informa-
tion statistics approach to data stream and communication complexity,”
in Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), Washington, DC, USA, 2002, pp. 209–218.

[9] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications. Academic Press, 1979.

[10] A. Muller and D. Stoyan, Comparison Methods for Stochastic Models
and Risks. Wiley, 2002.

[11] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
[12] “Internet2 abilene network,” http://abilene.internet2.edu/.
[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.

Ullman, “Computing iceberg queries efficiently,” in Proceedings of the
International Conference on Very Large Data Bases (VLDB), 1998.

[14] P. Ayres, H. Sun, H. Chao, and W. Lau, “ALPi: A DDoS defense
system for high-speed networks,” IEEE Journal on Selected Areas in
Communications, vol. 24(10), pp. 1864–1876, 2006.

[15] “Akamai technologies inc.” http://www.akamai.com/.
[16] S. G. Cheetancheri, J. M. Agosta, D. H. Dash, K. N. Levitt, J. Rowe,

and E. M. Schooler, “A distributed host-based worm detection system,”
in Proceedings of the ACM SIGCOMM Workshop on Large-scale Attack
Defense (LSAD), 2006.

[17] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Accurate and efficient
sla compliance monitoring,” in Proceedings of ACM SIGCOMM, 2007.

[18] B. Babcock and C. Olston, “Distributed top-k monitoring,” in Proceed-
ings of ACM SIGMOD, 2003.

[19] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” in Proceedings of ACM SIGMOD,
2003.

[20] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed
functional monitoring,” in Proceedings of the 19th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2008.

