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ABSTRACT
Continuous monitoring of human physiology and behavior
in natural environments via unobtrusively wearable wire-
less sensors is witnessing rapid adoption in both consumer
healthcare and in scientific studies, since those portable and
long-running devices can provide critical information for di-
agnosis and early prevention of disease, as well as invaluable
data for scientific studies. Due to the requirement of contin-
uous monitoring, these sensors, all operating on small wear-
able batteries, require frequent recharging. Lowering this
recharging burden is essential for their widespread adoption
. In this paper we explore mechanisms for significantly en-
hancing the lifetime of these wearable sensors at the cost
of a small loss in their sensing accuracies. We propose two
ideas that build upon our observation that collecting bursts
of samples over short periods of time is sufficient to capture
the most interesting and informative part of the signal. In
the first part of this paper, we propose a general methodol-
ogy for reconstructing bandlimited signals accurately from
such short bursts of samples. While this reconstruction task
is in nature an ill-conditioned problem, we show that the in-
sertion of an analog “modulated pre-filter” hardware module
before the ADC can almost surely alleviate this conditioning
problem. In the second part of this paper, we describe just-
in-time sampling, which by sampling in short bursts at the
“right”times, can accurately track R-wave peaks in ECG sig-
nals. Using simulations on publicly available traces as well
as self-collected data, we show the efficacy of this technique.

1. INTRODUCTION
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Remote health monitoring via wearable sensors is witness-
ing rapid adoption especially for elderly care and chronic dis-
eases. For such patients, remote health monitoring makes
diagnosis more accurate, improves the quality of care, and
reduces the cost of care. For example, one study found that
in-home monitoring and coaching after hospitalization for
Congestive Heart Failures (CHF) reduced rehospitalizations
for heart failure by 72%, and all cardiac-related hospital-
izations by 63% [8]. Moreover, those devices could aid the
diagnosis of diseases (e.g., heart diseases) that require long
term monitoring and provide preventive care for susceptible
population so that serious diseases can be detected at early
stages. As the accuracy of remote monitoring devices im-
proves, their cost decreases, and they become easier to use
(accelerated by improvements in technology and special ini-
tiatives such as NIH’s Genes Environment Initiative (GEI)
program), their adoption will accelerate.

Similarly, unobtrusively wearable sensors are revolutioniz-
ing scientific studies by providing continuous and objective
measurements of daily behaviors such as exercise and dietary
habits, and of personal exposures to psychosocial stress, ad-
dictive substances (e.g., smoking and drinking), and envi-
ronmental pollutants (e.g., diesel exhaust), etc. [24]. These
studies seek to investigate the causes, associated physiolog-
ical responses, and public health consequences of prevalent
human diseases such as chronic stress, addiction, obesity,
panic disorders, etc., and to design and evaluate appropri-
ate interventions for them. Use of wearable sensors makes
it possible to collect objective data from the natural envi-
ronment of subjects that have unprecedented ecological va-
lidity as compared to lab based studies, while not suffering
from human biases and high compliance burden associated
with collection of self-reports or ecological momentary as-
sessments [14].

Although a variety of new wearable sensors have emerged
that provide scientifically valid measurements from wearable
form factors aided by the GEI initiative and other similar
programs, they all face some major roadblocks to widespread
adoption. Limited lifetime on small wearable batteries is
one of them. It has been noted in experience reports of field
deployment that the need for recharging adds to the partic-
ipant burden and complicates the study logistics as the par-
ticipants must be provided with a charger and instructed on
how to take off the sensors and recharge them overnight [9].
Since compliance is known to be one of the biggest hin-
drances in behavioral studies, behavioral scientists usually
place a high premium on devices that can run for the entire



length of the study without a need for recharging. Since
several applications in both remote health monitoring and
scientific studies involve detection of phenomena that can
occur in an instant (e.g., stress, craving for a drug, panic
attack, heart failure, etc.), it places a lower bound on the
sampling frequency of sensors and an upper bound on the
delay in inferring behavioral events. Given that behavioral
studies or long term health monitoring may last for weeks,
sometimes several months, it is a challenge to enable sen-
sors to last several months on wearable batteries (usually of
< 1100 mAh capacity), while still capturing a majority of
behavioral events of interest.

To address the issue of power consumption, these sens-
ing devices are equipped with very low-power hardware [4,
12] that maximizes their lifetime between recharges. An-
other common solution is to perform duty cycling [13, 17],
wherein the device regularly cycles between on and off states.
By remaining on for only a small proportion of the time, the
device spends only a fraction of its normal power consump-
tion. A significant drawback of regular duty cycling is that,
for some signals of interest, this type of sampling may miss
interesting events when it is powered down.

In this paper, we explore two novel techniques for en-
hancing the lifetime of these wearable sensors by an order of
magnitude at the cost of a tolerable loss in the accuracy of
measurements they produce. Both schemes perform on-off
sampling of signals like in conventional duty cycling schemes
to save power, that is, the ADC (Analog-to-Digital Con-
verter) on the device alternates between the state of “on”
for a short interval (say 100ms), wherein a burst of mea-
surements (called samples) are gathered, and the state of
“off” for a much larger interval (say 900ms). However, both
circumvent the problem of significant information loss and
signal distortion caused by the aforementioned conventional
duty cycling scheme, in very different ways.

Our first technique, called pre-filtering, is a general method-
ology for reconstructing band-limited signals from “bursts”
of samples collected during the aforementioned “on” inter-
vals. However, extrapolating a band-limited signal from a
burst of closely spaced samples is an inherently ill-conditioned
problem. Our idea is to scramble the original signal with an
analog modulated “pre-filter” that can operate without need
for the ADC to be on. We show that if the signal is band-
limited, it is possible to reconstruct the original signal from
such bursts of samples with very little information loss and
distortion.

Our second technique, called just-in-time sampling, is to
turn on the ADC “just in time” to capture the most inter-
esting or informative segments of the signal of interest and
then to turn it off immediately after such segments are ob-
tained to save power. Unlike in duty-cycling, here the ADC
is turned on and off at “right times” as computed by our
signal processing (detection, inference, and prediction) pro-
cedures. We show that the proposed simple mechanisms for
predicting when to collect short bursts of samples are suf-
ficient to guarantee small measurement error. In addition,
just-in-time sampling allows us to turn off the entire sensing
chain (not just the ADC) to save even more power.

We experimentally apply our just-in-time sampling algo-
rithm to accurately track R-wave peaks (to determine beat-
to-beat variations) in ECG signals, a measure used widely in
both remote monitoring of health conditions related to heart
and in scientific studies of stress, obesity, addiction, among
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Figure 1: A bandlimited signal which is being sampled in

bursts. It is clear that although the total number of samples

is above twice the bandwidth, the samples do not give us infor-

mation about salient features occurring between the bursts. Our

ability to reconstruct this signal depends strongly on the time in

between bursts and the length of the bursts and only very weakly

on the number of samples per burst.

others [15]. Using simulations on publicly available traces
as well as data collected from a mobile device, we show that
we can track heartbeats with little error while keeping the
entire sensing ADC on about 10-25% of the time.

The rest of this paper is organized as follows. In Section 2
we introduce the use of pre-filtering for recovering band-
limited signals. Section 3 details the workings of our just-in-
time sampling mechanism for intelligently power-cycling the
sensor. Finally, we discuss related work in Section 4 before
ending with our conclusions and suggested future work in
Section 5.

2. MODULATED PRE-FILTERING
In this section, we consider the general problem of re-

constructing a signal from samples taken in “bursts”. The
scenario is illustrated in Figure 1. As we will discuss below,
this problem is inherently ill-conditioned if the time between
the burst is much greater than the inverse of the bandwidth
of the signal. However, we will show how this type of ac-
quisition can be preconditioned by performing some simple
analog operations on the signal before it is sampled. We
will treat the problem from a mathematical standpoint, fo-
cussing on the types of mathematical transformations that
need to be applied to the signal before it is sampled, and
leave aside for know the question of how to implement these
components.

A signal x(t) that is bandlimited to W is sampled K times
every second. The samples are equally spaced, but are clus-
tered into bursts of size m which occur over a time period
L every T seconds (so L ≤ T , the spacing between the sam-
ples is m/L, and the number of samples in each burst is
m = KT ). The question, then, is what the relationship be-
tween W , m, L, and T needs to be to accurately reconstruct
the signal.

If the samples were equally spaced (m = 1, K = 1/T ,
L = T ), then the celebrated Shannon-Nyquist theorem tells
us that we can take W ≤ 1/(2T ) = K/2 — we can re-
cover signals whose bandwidth is up to half the number of
samples we are taking per second. The answer is somewhat
murkier in the burst sampling case, but we can use some
classical guidelines for a qualitative analysis. We can see
from Figure 1 that if m is large, the samples within a burst



are highly correlated. This leads us to believe that after a
point, increasing the number of samples in each burst does
not really help in reconstructing the signal; in a sense, these
excess samples are wasted. Indeed, consider for a moment
that we observed the continuous signal over [0, L] (or any
other interval of length L). The space of signals we could
observe are those than can be written as a W bandlimited
signal that is then time-limited to [0, L]. The essential di-
mension of this space (when L is small) is ≈ 2WL (see [19]
for a nice exposition). This means that no matter how many
samples m we take, only about 2WL of them will be linearly
independent. For L � T , this means that we will only be
able to reconstruct signals with bandwidth W ≈ 1/T , even
though we are taking m/T samples per second. There is
absolutely no benefit to taking the samples more quickly, all
that matters is the spacing between the bursts.

We will show below that if the signal is modulated and
then filtered in a certain way before it is sampled, then this
sampling rate does make a difference; increasing m will give
us a greater number of diverse observations. These opera-
tions, by spreading the signal out in frequency and then in
time, effectively “precondition” the burst sampling operator
by combining information about the original signal over long
periods of times and at all frequencies into each sample.

To develop the ideas above more precisely, we will spe-
cialize the discussion to the following scenario which can be
described neatly using the language of linear algebra. Sup-
pose that x(t) is a bandlimited periodic signal with period
T = 1; we can write x(t) as

x(t) =

b−1∑
`=0

α`e
j2π`t,

where α0, . . . , αb−1 are the (non-zero) Fourier series coef-
ficients of x(t). Notice that we are taking x(t) to be “half
band”; it is complex valued, and can be reconstructed per-
fectly from b equally spaced samples (also complex valued)
on [0, 1]. We do this only to simplify the notation in the ex-
position; the discussion translates easily to real signals with
non-zero Fourier coefficients at negative frequencies.

We collect a single burst of samples of x(t) spread out on
[0, L] at the beginning of the period [0, 1]. We observe

yk = x(kL/m) = x(k/n), k = 0, . . . ,m− 1,

where n = m/L. We will assume that things are arranged
so that n is an integer; it can be interpreted as the sample
rate, the number of samples per second we would be taking if
the burst lasted the entire period. Combining the equations
above, we can write

yk =
1√
n

b−1∑
`=0

α̃`e
j2π`k/n, (1)

where we re-normalize the α` as α̃` =
√
n · α`.

We can write this more compactly. Let F be the n × n
normalized discrete Fourier transform (DFT) matrix

F`,k =
1√
n
e−j2πk`/n, `, k = 0, . . . , n− 1,

notice that F ∗F = I∗. For convenience we will use the
notation xd[k] = x(k/n) for k = 0, . . . , n− 1 for the samples

∗Throughout the paper, we use A∗ to denote the conjugate
transpose of the matrix A. Here, since F is n × n and its
rows are orthogonal, F ∗ is also the inverse of F .

of x(t) taken uniformly over [0, 1] with spacing 1/n; we will
assume that n > b, so the continuous-time signal x(t) can be
safely reconstructed from the n-vector xd. Let Rm be the
m × n “sampling matrix” such that Rmv returns the first
m entries of the n-vector v, and so y = Rmxd. Using this
notation, we can write xd = F ∗R∗b α̃; the operator R∗b (the
transpose of Rb) takes the b-vector α̃ and zero-pads it to
length n, while F ∗ synthesizes the signal and samples it on
the dense grid. Then we can rewrite (1) as

y = RmF
∗R∗b α̃.

Below, we will use the notation F ∗mb = RmF
∗R∗b . Notice

that F ∗mb can be constructed by taking the Fourier matrix
F ∗, extracting the first b columns, and then extracting the
first m rows.

The question, which was addressed qualitatively above, is
whether we can stably recover α̃, and hence x(t), given the
(possibly noisy) samples in y. The answer, unfortunately, is
no in just about every meaningful situation. As we are not
making any assumptions about the structure of α̃, we will
consider the least-squares estimate

α̂ = (FbmF
∗
mb)
−1Fbmy,

where Fbm is the adjoint (conjugate transpose) of F ∗mb. The
stability of this recovery is completely characterized by the
singular values of F ∗mb. To have confidence in our estimate
α̂, we would like F ∗mb to be well-conditioned. That is, we
would like the spectrum (the set of singular values) of F ∗mb
to consist of b non-zero values that are all about the same
size.

We can examine the conditioning of F ∗mb by calculating
the spectrum for a particular case. For concreteness, we take
n = 1000, b = 10, m = 10 (in this case L = m/n = 1/100,
so we are observing samples over just 1% of the fundamen-
tal interval). A plot of the log-spectrum is shown in Fig-
ure 2. From the plot, we see that F ∗mb is essentially rank-2,
and even then there is a factor of ≈ 20 between the largest
singular value and the second largest. This means we are
acquiring at most 2 linearly independent samples, making
it impossible to recover a vector with b = 10 entries. If we
increase the sampling rate while keeping the length of the
burst L = m/n constant, the spectrums are almost identi-
cal. This indicates that these additional samples do not give
us any new information about the signal — they are simply
linear combinations of one or two principal components. (In
this example, we have kept the ratio m/n constant. Increas-
ing m without increasing n corresponds to taking samples
over a longer period; increasing n without increasing m cor-
responds to taking samples at a faster rate, but making the
burst over a shorter amount of time. In either case, the rank
of F ∗mb will scale with m/n.)

The fundamental problem is that the signal is concen-
trated in frequency and the sample locations are concen-
trated in time. We will show below that if we spread the
signal out in frequency and then convolve with a long and
diverse pulse (which has the effect of diffusing local infor-
mation about the signal across the entire interval) before we
sample it, then the corresponding inverse problem is beau-
tifully conditioned.

Our proposed sampling architecture is shown in Figure 3.
The signal passes through a modulator, which mixes it against
a pseudo-random binary waveform, then is passed through
a filter with impulse response h(t). Each of these compo-
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Figure 2: (a) Plot of the singular values (on a log scale) of

F ∗mb for b = 10,m = 10, n = 1000. The m × b matrix is es-

sentially rank-2. (b) Plot of the ten largest singular values for

b = 10,m = 100, n = 10, 000; the spectrum is nearly identical to

(a) indicating that the conditioning of the burst-sampling process

is independent of the number of samples m in the burst.

nents is analog, mapping a continuous time signal to an-
other continuous time signal. However, because all of the
signals involved are bandlimited and periodic, they can be
represented with discrete sets of numbers (equally spaced
samples or Fourier coefficients, for example). Much of the
analysis below will model these analog components by how
they map a discrete representation of the input to a discrete
representation of the output; since the components are all
linear, the action of each can be captured with a matrix. We
will use parentheses (e.g. x(t)) to index a continuous-time
signal and brackets (e.g. xd[k]) to index a discrete represen-
tation.

The waveform p(t) we mix x against in the modulator is
periodic with the same period as x(t) and is bandlimited to
πn. We can write it as

p(t) = θ(t) ? hlp(t),

where θ(t) is constructed on [0, 1] from independent and
identically distributed random variables θ0, . . . , θn−1 that
take values ±

√
n/m with equal probability†,

θ(t) = θi, for i/n ≤ t ≤ (i+ 1)/n,

the convolution ? is circular, and hlp(t) = sin(nπt)/ sin(πt)
is the Dirichlet kernel. The samples of the output u(t) of
the modulator can be written in terms of the samples of the
input as

ud[k] := u(k/n) = θkxd[k], or ud = Θxd,

where Θ = diag ({θ0, . . . , θn−1}).
As x(t) (and also u(t)) is periodic, we will also take the

subsequent filtering operation to be circular. We give the
impulse response diversity by constructing it from a random
Fourier series. We set

h(t) =
1

n

n−1∑
`=0

σ`e
j2π`t,

where σ0, . . . , σn−1 is another sequence of iid ±1 random
variables. The samples vd of the output v(t) = u(t) ? h(t) of
the filter can then be written as

vd = Hud

†This choice of scaling factor, as we will see later, of√
n/m =

√
1/L makes the total energy of the samples

roughly the same as the total energy of the signal x(t).

Modulator

Filter
Impulse response 

h(t)
X Burst ADC

LPF

x(t)
xd = F ∗R∗

b α̃

θ(t)

p(t)

u(t)

ud = Θxd

v(t)

vd = Hud

y[k]

y = Rmvd

Figure 3: The prefiltering architecture. The bandlimited sig-

nal passes gets mixed against a psedo-random waveform, passes

through a filter with a broad frequency response, and then goes

to the burst sampler. While it is impossible to recover x(t) from

burst samples, it can be very stably recovered from burst samples

of the prefiltered signal v(t).

where H is a circulant matrix with character h[k] = h(k/n);
we can decompose H as

H = F ∗ΣF, Σ = diag ({σ0, . . . , σn−1}) .

The samples that we observe can then be written as

y = Rmvd = RmF
∗ΣFud = RmF

∗ΣFΘF ∗R∗b α̃.

Our ability to recover α̃ (and hence x(t)) from the burst
of samples y using least-squares

α̂ = (A∗A)−1A∗y, (2)

is now controlled by the singular values of the random matrix
A = RmF

∗ΣFΘF ∗R∗b . A plot for n = 1000, b = 10,m = 10
and particular realization of Θ and Σis shown in Figure 4(a)
(the behavior does not vary too much over different realiza-
tions). We see that not only is A∗A full rank, but it is also
fairly well-conditioned; the ratio of the maximum singular
value to the minimum singular value is about 17. Essen-
tially, this means that we can recover, with reasonable sta-
bility, any b = 10 non-zero Fourier coefficients (and hence
any b-bandlimited x(t)) from the burst of m = 10 samples.
Each of the ten samples represents a linearly independent
measurement of x.

The conditioning of this system gets even better as we
increase the sampling rate. As shown in Figure 4(b), with
m = 100, n = 10000 the condition number is ∼ 1.6. This
means that these added samples really are giving us diverse
looks at this signal — if noise is added to the observations,
taking these extra samples will decrease the variance of the
final estimate in almost the same way that uniform oversam-
pling does in the standard case.

Since the m×b matrix A has all of its singular values close
to 1, we can model the samples that our architecture is tak-
ing as expansion coefficients in a frame which is nearly tight.
This means that if there is noise added to the samples, the
reconstruction (2) will give us the associated oversampling
gains. That is, the total noise in the reconstruction will be
smaller than than the total noise in the measurements by a
factor of about m/b on average.

Injecting this randomness into the measurement system is
an effective preconditioner for the burst sampling process.
The matrix A is random, as are its singular values. If we let
f` be a column of the matrix RmF

∗ and let f̄∗k be a row of
F ∗R∗b , then we can write A as

A =
1√
n

∑
k,`

σ`θkWk,`f`f
∗
k ,
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Figure 4: Log-spectrums of A = RmF ∗ΣFΘF ∗R∗b . In con-

trast to Figure 2, the matrix ATA is getting better and better

conditioned as the number of samples in the burst increases.

where Wk,` = e−j2π(`−1)(k−1)/n, and

A∗A =
1

n

∑
k,`,k′,`′

σ`σ`′θkθk′Wk,`W
∗
k′,`′〈f`′ , f`〉f̄k′ f̄∗k .

The expectation of A∗A is

E[A∗A] =
1

n

∑
k,`,k′,`′

E[σ`σ`′ ] E[θkθk′ ]Wk,`W
∗
k′,`′〈f`′ , f`〉f̄k′ f̄∗k

=
1

m

∑
k,`

〈f`, f`〉f̄kf̄∗k =
∑
k

f̄kf̄
∗
k = I,

where the first equality comes from the fact that the θk and
σ` are independent for all k, `, the second equality comes
from the fact that E[σ`σ`′ ] = 0 and E[θkθk′ ] = 0 unless
` = `′ and k = k′, the third equality comes from the fact
that 〈f`, f`〉 = m/n for all `, and the last equality comes
from the fact that RbFF

∗R∗b = I.
In expectation, A∗A is the identity, meaning that on aver-

age the reconstruction in (2) is very well behaved. Of course,
we would like to be confident that A does not vary from its
mean by too much. As m gets larger, we expect that the
A∗A will concentrate more and more around I (we see this
numerically in Figure 4 as the conditioning gets better as m
increases). We are currently working to make this precise by
developing a tail bound on the random variable ‖I −A∗A‖,
where ‖ · ‖ is the standard matrix norm.

It is worth noting the neither the random modulator nor
the random filter would be an effective preconditioner by
themselves. If we were to simply burst sample the output of
the modulator, we would observe the same samples as the
standard burst sampler, only with their signs changed. This
of course would not improve our ability to recover α̃ from
y, as the conditioning of ΘF ∗mb is exactly the same as that
of F ∗mb. Similarly, if we were to simply pass the bandlimited
signal through the broadband filter, the output will have
the same bandlimit as the signal, and so the problem of
recovering from the samples has not been made easier —
the conditioning of RmF

∗ΣR∗b is exactly the same as that
of F ∗mb.

Both the random modulator [20] and the random filter
[18, 21] have been proposed before in the context of com-
pressive sensing (CS). The high-level goal of CS is different
than our goals here. In CS, we are interested in recovering a
sparse signal from under-sampled measurements; the diver-
sity that the random modulator or random filter introduce
compensates for the small number of samples. Here, we are
interested in a more classical signal model (bandlimited as
opposed to sparse), and we use the diversity introduced by
the two components working in concert to compensate for

Figure 5: P-, Q-, R-, S-, T-Waves in One Beat
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the fact that the samples are taken in bursts. In CS, the
randomness helps us “invert” an underdetermined system,
while here the randomness helps us precondition an overde-
termined system. The idea prefiltering a signal before you
sample also appears in the literature on sampling signals
with finite rate of innovation [23]; our goal here is slightly
different in that we are trying to overcome difficulties caused
by taking the signals in bursts, rather than acquire signals
which are concentrated in time.

3. JUST-IN-TIME SAMPLING
In this section we describe and evaluate our just-in-time

sampling methodology. Whereas the pre-filtering described
in the previous section requires some additional hardware
support that we hope to build in the future, just-in-time
sampling is an entirely software-driven solution. Moreover,
just-in-time replaces regularly interspersed burst sampling
with intelligent selection of sampling periods so as to capture
only the information-rich parts of the signal. We present
just-in-time sampling in the context of measuring features
in cardiac signals, which we describe first.

3.1 Cardiac Signal Processing
Tracking the ECG signal of a patient in the field is use-

ful for numerous cardiac conditions such as arrhythmia as
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Figure 7: Eight superimposed beats for two subjects
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well as an important source of information for non-cardiac
ailments such as diabetes, renal failure, and alcoholism [2].
Moreover, ECG signal is proven to be useful in scientific
studies of psychological or behavior problems such as stress,
obesity, addiction, among others [15]. In this paper, our
primary interest is in the measurement of heart rate vari-
ability (HRV). Although HRV might not be enough for the
diagnosis of cardiovascular disease which might need clinical-
level equipment with strong batteries, long-term continuous
measurement of HRV with affordable cost and easy porta-
bility could be very helpful for a wide range of applications
such as the applications mentioned above. There is a large
body of related works that have been done for processing
and analyzing the ECG signal, which we will summarize in
Section 4.

Here we give a very brief introduction to the nature of
the ECG signal and introduce some medical terminology.
(Please refer to [2] for a more detailed treatment of the
topic.) The ECG signal captures depolarization in the car-
diac muscles as they expand and contract while pumping
blood through the body. In Figure 5, we present an illustra-
tion of a single beat, which is comprised of multiple features
that are called the P-, Q-, R-, S-, and T-waves. Multiple
waves taken together are called complexes, such as the PQR
complex. The principal wave is the R-wave and is the most
distinctive feature in the signal. Hence, we define the period
of the heart beat (medically termed the R-R interval) as the
length of time between the peaks of consecutive R-waves.

In Figure 6, we provided two examples of ECG signals. To
visualize variations in the beat signals, we have eight beats
of each person centered and overlapped in each subfigure
of Figure 7. From these two figures we make the following
observations.

1. Different people may have different beat“profiles”. How-
ever, for the same person, the shape of each beat does
not change often. The eight beats superimposed in
Figure 7 were randomly sampled from a period span-
ning an hour.

2. For different beats from the same person, the heights of
the P-, Q-, R-, S-, and T-waves might be very different.
However, the relative locations of these waves to one
another are very consistent.

3.2 Just-in-time Overview
The problem that we address here is the measurement of

heart rate variability (HRV) based on ECG signals.
Ideally, if we had the omniscient ability to predict the po-

sition of each R-wave peak, we could turn the ADC on only
around the peak. Sampling a short burst centered around
the peak would significantly reduce the energy consumption
in the measurement device. However, because of the high
variation in the ECG signal, it is a very hard problem to ex-

actly predict the next peak position. Several factors, such as
baseline drift, measurement noise, not to mention the lack of
information from unsampled periods make this a daunting
task. The goal of just-in-time sampling is to make this pre-
diction as accurate as possible, and to infer the location of
the peak from the waveforms in the rest of the signal should
the prediction procedure miss it.

In the following we review characteristics of modern ECG
sensors and highlight the features that are matched to the
just-in-time sampling strategy proposed in this paper. ECG
sensors record the electrical activity on the body surface. A
significant source of power consumption for an ECG sensor
is the analog frontend. As an example a low power ECG
monitor [12] uses 600µA for the analog frontend and 150µA
of the ADC unit for a total of 750µA. Commercial ECG
ASICs can further reduce the power consumption to under
1mW (300µA) per channel combining analog frontend and
digital A/D sections in a single optimized chip[1]. While
modern ADCs have fast submillisecond wake-up times, the
standard strategy of turning off the ECG sensor between the
ECG samples is not feasible since the ECG analog frontend
have long transients due to the time-constants of the various
filters and amplifiers. Just-in-time sampling strategy relies
on turning off the frontend and the ADC for inactive peri-
ods of fraction of a second providing sizable power savings at
a nominal increase in the computation load. The required
power consumption for computation is small compared to
the realized savings from turning off the ECG sensor for
long time windows. For a concrete example, TI MSP430’s
energy consumption is only 165µA/MIPS, and the next gen-
eration of chips can perform powerful computations at even
lower power levels. Moreover, these chips consume very lit-
tle power in stand-by (RTC) mode (0.7µA for TI MSP430).
This means that the cost of continuously performing one
million instructions per second would be equivalent to keep-
ing the ECG sensor on 165

750
≈ 22% of the time. As long as

we constrain our computation costs to (say) 0.1MIPS , the
cost of the computation for the prediction is negligible in
comparison with the savings in power draw from the ECG
sensor. In other words, using a little energy for intelligent
processing gives us large savings in the energy cost of the
ECG sensor.

Novel ASIC designs that integrate Analog frontend and
Successive Approximation ADCs into a single chip (e.g. [25]
) recently proposed by academia might also result in dra-
matic power savings for EEG/ECG acquisition sensors. How-
ever, ASIC is a feasible alternative only when they are man-
ufactured in bulk, considering the large financial investment
and time needed to develop a commercially viable ASIC. In
contrast, our scheme could leverage the chips now available
on the market. Moreover, our algorithm can be easily inte-
grated into the ECG ASIC through combination of analog
peak detection and digital logic for active event detection to
provide further power savings for ASIC design.

Our just-in-time sampling framework is comprised of two
components: feature identification and prediction. The pre-
diction component decides when to sample next, while the
feature identification component deciphers the information
sampled, makes an estimate of heart beat location based on
it, and decides when to turn off the ADC. If the feature
identification module cannot extract any useful feature to
make the decision, the ADC is kept on until there is enough
information to make a decision. Some instances of just-in-



time execution are illustrated in Figure 8. We see that while
most R-waves are completely covered by our samples, some
are only partially covered (e.g., second from the right), and
other are completely missed (e.g., second from the left).

Of the abovementioned tasks, it would seem that the iden-
tification of R-waves is the easiest and should have well-
established methods to solve it. However, even though there
is a great deal of recent literature [3, 7, 10] on this topic, all
this works attempts to robustly count/detect R-waves from
a continuously sampled signal. The design target of our al-
gorithm is fundamentally different; we need to identify the
beat as accurately as possible from a small windowed sam-
ple. If the QRS complex is covered in whole or in part, we
need to robustly identify it. If the QRS complex hasn’t been
sampled or identified, either because it has already passed
or hasn’t arrived yet, which is possible since the prediction
is inherently difficult, we still try to identify the information
contained in the area outside QRS complex, such as in the
P- or T-wave (cf. Figure 5).

Here we summarize the key ideas of just-in-time sampling:

1. If we can intelligently turn on the ADC only around
the peak of each beat, we would be able to save a great
amount of energy in sampling.

2. Since the shapes of the beats are very similar, even if
the samples do not cover the peak of the beat, as long
as they cover some area inside the P-T region which
contains some information to identify a peak, we are
still able to estimate the location of the R-wave.

3. Since the shapes of beats are stable for the same per-
son, we can build a profile for each subject to make
our algorithm both efficient and robust.

3.3 Algorithm
As outlined above, our algorithm has a prediction and a

feature identification component. For prediction, we adopt
a simple solution: we estimate the size of the current R-R
interval to be the minimum of the previous four R-R in-
tervals. This is reasonable most of the time since there is
usually very little variation in R-R intervals from beat to
beat. Unfortunately, this is not reliable all the time (e.g.,
due to sudden increases in the HRV at the onset of strenu-
ous activity, measurement error, and normal variations). In
such cases, we have to rely on the feature identification com-
ponent to get us back on track, which encapsulates much of
the complexity of the algorithm.

The algorithm handles feature identification as follows.
The device keeps the ADC on until the sampled signal shows
features that are strong enough for the algorithm to guess
the offset of the sampled signal. As long as some identifiable
feature appears in the signal, the algorithm will estimate the
location of the next peak and use this to compute the delay
before taking the next set of samples. Hence, the problem
comprises of two related parts: how to select robust and
easily-computable features and how to decide when to start
sampling again.

Another challenging aspect for our algorithm is that it
cannot use absolute values of signals to detect peaks. The
signal collected may be influenced by base-line drift or may
have some low-frequency components. Traditional peak-
detection algorithms [7] use a low-pass filter, such as the
moving average filter, to filter out the low-frequency compo-
nents. However, since we are using on-off sampling, low-pass
filter are not effective for such short periods. Hence, all our

algorithms are designed to be robust against low-frequency
noise and to capture the features of the transitions of the sig-
nal rather than to perform absolute thresholding. We next
describe how we achieve these goals.

3.3.1 Threshold-Based Sections (TBS)
For convenience of processing, we first split the signal sam-

pled into a series of rising and falling sections. The sim-
plest way to do this would be to simply cut sections into
monotonically increasing/decreasing regions. That is, sup-
pose t0 is the starting point and t1, t2, . . . are local max-
imum/minimum points, then each segment starting from
point tj to point tj+1 is considered a section. However,
this may introduce too many small sections due to small
fluctuations in the signal. To overcome this problem, we de-
fine a concept called Threshold-Based Sections (TBS). These
threshold-based sections are still delimited by the local max-
imum/minimum points. However, they disregards small sec-
tions whose range of signal values is less than a threshold V .
The TBS can be computed in a single pass over the data.

In the Figure 9(a), we present an example to illustrate this
concept of TBS. In the figure, we can see some local maxi-
mum/minimum points skipped by the cuttings with thresh-
old 20, but retained in the cuttings with threshold 5. There
are also some small fluctuations that are skipped by both
thresholds. Applying TBS to the ECG signal results in sec-
tion shown in Figure 9(b). We can see that the peaks of P-,
Q-, R-, S-, and T-waves are all border points of some TBS.

For segmented TBS, we next define some interesting fea-
tures of each section, namely the range of the signal values in
the TBS and the maximum rising/falling speeds over some
window width w. Suppose the signal values in a section
from s to t are x(s), . . . , x(t). We define the following for
each TBS:

value range = max
k∈[s,t]

x(k)− min
k∈[s,t]

x(k)

maximum rising speed = max
k∈[s,t−w]

x(k + w)− x(k)

w

maximum falling speed = min
k∈[s,t−w]

x(k + w)− x(k)

w

3.3.2 The first feature: VRMRS
With the help of the definitions above, we can now define

the following feature of the latest section [s, t] to identify the
QRS complex, which we called the VRMRS feature:

1. If value range ≥ ThR range and maximum rising speed ≥
ThR speed, then the section is marked as the rising side of
an R-wave.

2. If value range ≥ ThR range and maximum falling speed ≤
−ThR speed, then the section is marked as the falling side
of an R wave.
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Figure 9: Illustration of the concept of TBS



Table 1: Actions after observing the QRS detection feature

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
-150

-100

-50

0

50

100

150

200

250

300

350

 

 
signal
sample area
sampled signal
section changepoints
estimated R peak position

(a) If sampling starts before
Q wave, use the onset of the
section (Q peak) to estimate
R peak

49.8 49.9 50 50.1 50.2 50.3 50.4
-300

-200

-100

0

100

200

300

400

seconds

m
V

 

 
signal
sample area
sampled signal
section changepoints
estimated R peak position

(b) If sampling starts af-
ter/around Q wave, use the
offset of the section to get R
peak position

5.4 5.45 5.5 5.55 5.6 5.65

-200

-100

0

100

200

300

 

 
signal
sample area
sampled signal
section changepoints
estimated R peak position

(c) If sampling starts before
R wave, use the onset of the
section to get R peak position

112.55 112.6 112.65 112.7 112.75 112.8 112.85 112.9 112.95
-300

-200

-100

0

100

200

300

400

 

 
signal
sample area
sampled signal
section changepoints
estimated R peak position

(d) If sampling starts af-
ter/around R wave, use the
offset of the section (S peak)
to estimate R peak position

Figure 10: Use VRMRS feature to get/estimate po-
sition of R wave

For the setting of ThR range, we found experimentally that
VR/3 works well, where the VR is the profiled height of R.
Though ThR speed could also be determined by profiling, we
simply use 10µV/ms in all evaluations since the rapidity of
the change is itself a very strong feature.

If our sensor controller identifies that the currently sam-
pled section has one of the features described above, it es-
timates the location of the R-wave peak accordingly. More
precisely, there are four possible situations listed in Table 1
and exemplified in Figure 10. In short, the crux of the idea
is to use the location of the Q-wave or S-wave peak to es-
timate the location of the R-wave peak whenever we miss
it.

In spite of its simplicity, this VRMRS feature works well
on signals of different people. However, its weakness is that
it is only useful when some portion of the QRS complex
is observed. Since it is possible for the sampled signal to
be outside of the QRS complex we develop the following
method to recover from this.
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Figure 11: An illustration of peak-span

3.3.3 Mining information from the “weak” signal re-
gions

As we have discussed above, even if we miss the QRS
complex, we should still be able to estimate the location
of the R-wave peak if we could identify the P- or T-wave.
However, P- and T-waves are not as “strong” as the QRS
complex and differ significantly from one person to another.
In this section, we design another simple feature to aid in
detection even in“weak”signal regions, and then discuss how
we can further improve the result at the cost of additional
computation.

The feature we propose is called the “peak-span”, defined
as follows. Suppose i is the point connecting two TBS com-
plexes, and hence should be a local maximum or minimum
point, then the span of the peak i with threshold V ′ is de-
fined by:

SPV ′(i) =

[
min

(k>i)∧(|x(k)−x(i)|≥V ′)
k − max

(k<i)∧(|x(k)−x(i)|≥V ′)
k

]
.

For convenience, we let the span be negative when the peak
point is a concave point.

The calculation of the peak-span can easily be added to
the algorithm for computing threshold-based sections with-
out much increase in computation. Moreover, during the
single-pass segmentation of the TBS complexes with thresh-
old V , we can get the span of the peak with multiple thresh-
olds V ′1 , V

′
2 , . . . at the same time.

One examples of peak-span is presented in Figure 11.
Since the shapes of either P,Q,R,S waves are very different

for each people, the peak-span are very different for differ-
ent people in the same way. Hence, the only way to use
it is to build a profile for each person. We do this using
a type of nearest-neighbor clustering algorithm; the details
are omitted here in interest of space.

3.3.4 Matched Filter
The final step of our algorithm, after finding the features

described above, is to use a matched filter [22] to check the
sampled region against previously recorded profiles. The
reason why matched filter works here is that, in a short range
of time such as 20ms, the sampled signal can be regarded
as a linear transformation of the corresponding part of the
profile signal. The features above help us identify a handful
of profiles signals to be matched against, allowing us to pick
the closest fit. Since this matching process is only needed
when the features are found (as opposed to every point in the
sampled region), it is well within the computation budget of
0.1 MIPS.
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Figure 12: Statistics of Results

3.4 Evaluation
In this section, we evaluate the performance of our algo-

rithms on two real data-sources. The first data source is the
Apnea-ECG Database‡. We use the first 24 traces, each of
which is about three hours long. Our second source is data
that we collected in the field, which we refer to as Field-
Stream data. Our data is comprised of 24 traces, also three
hours in length. For some traces from the Apnea Database,
the first 10-20 minutes were flat-lined, and hence we man-
ually had to remove them. For both the Apnea and Field-
Stream data, we first upsampled the data to 500Hz since
they were recorded at 50–100Hz to save storage space. We
did not perform any pre-processing of the data other than
those mentioned above, such as low- or high-pass filters to
remove power-line or base-line drift.

We used the following statistical measures to evaluate the

‡http://www.physionet.org

results:

• Sensitivity: the total number of identified correct
beats, divided by the total number of real beats.

• Specificity: the total number of identified correct
beats, divided by the total number of identified beats.

• Accuracy: the total number of beats identified di-
vided by the total number of real beats.

• On-Time ratio: the total on-time of the ADC, di-
vided by the total time.

We generated ground truth to compare our results using
code by Rupert Ortner§, which implements the method pro-
posed in [3]. This is not a perfect solution as it has some
errors such as mistakenly marking some thin S- or T-waves
as R-waves and hence counting more beats, or missing short
R-waves. These errors were found using manual inspection.
When we changed the upsampled frequency from 500Hz to
100Hz, we found a 0.05–1% change in the number of beats
detected by the program, which means the “ground truth”
we use has at least 0.05–1% error itself.

The cumulative distribution function of the statistics listed
above are shown in Figure 12. In Figure 12(a) and (b), we
present the result for the Apnea and FieldStream data sepa-
rately. The results are achieved after using all methods dis-
cussed previously, including the two features and matched
filter. For the Apnea data, we achieved specificity and sensi-
tivity above 96% in most cases with on-time ratio less than
20%. We also observed that the results for the FieldStream
traces were slightly worse than the results for the Apnea
data. This is expected, since data collected in field under-
standably has more noise compared with that collected in
laboratory settings.

In Figure 12(c), we present the result on Fieldstream data
with two combinations of methods, only using the first fea-
ture (the VRMRS feature described in Section 3.3.2) and
using all methods including “peak-span”. We observes that
the peak-span method, which tries to detect the “weak” sig-
nals outside the QRS complex, improves the sensitivity while
slightly lowering the specificity. The reason for this is that
the simpler method reacts quickly but perhaps not very ac-
curately. The accuracy after using the peak-span method
is very close to 1 in most cases. Since even a perfect algo-
rithm may have up to 0.05–1% error in the total number of
beats, this result is fairly promising. In our experiments, the
ADC-on-time ratio was within 10–25% almost all the time.

4. RELATED WORK
There is a large body of research on detecting QRS com-

plexes in ECG signals [3, 7, 10]. [3] proposes a frequency-
domain method which decomposes the signal by several filter
banks and makes decisions based on a heuristic combination
of the results from each sub-band. We use this method to
generate the ground truth for our evaluation. [7, 10] make
use of time-domain heuristics, although they also need some
frequency-domain pre-possessing. The features they use in-
cludes high amplitude, steep edges, and sharp peaks. In
[7], the expected location of the next beat is also taken into
account since there is small probability of seeing two beats
very close to one another.

§Downloaded from http://www.koders.com/matlab/



While all these method are designed for real-time imple-
mentation, our goals are very different. Instead of having
the entire continuous signal, we assume that we have short
bursts of samples with which to work. As a result, the
features used by earlier work cannot be directly used here.
However, we still try to draw from previous work. For ex-
ample, our value range feature is similar to detecting high
amplitudes and our maximum rising/falling speeds are sim-
ilar to the threshold of slopes in [7].

There has also been work done on the detection and elim-
ination of artifacts in ECG data. [6] models the effect of
missed and spurious R-waves and demonstrates that every
beat is important to heart period variability analysis. [5]
proposes methods to identify artifacts. We leave the in-
corporation of these methods into our framework as future
work.

Finally, there has been a slew of work on designing pro-
totype hardware for portable and low-power ECG moni-
tors [11, 17, 16, 13]. However, all this work focuses on the
hardware aspect of the problem and typically employs sim-
ple duty cycling to capture the signal. As a contrast, our
algorithms could intelligently turn off the ADCs (and also
the entire sensing chain) and save the majority of power.
To the best of our knowledge, ours is the first work to pro-
pose intelligent cycling for capturing the target signal in a
power-efficient manner.

5. CONCLUSIONS
In this paper we explore different mechanisms for sampling

short bursts of physiological signals with the view of extend-
ing the battery life of wearable sensing devices. We present
two different approaches that are both capable of large en-
ergy savings by turning off the ADC on the device without
a significant loss in measurement information. In the case
of pre-filtering, we are able to reconstruct a complete band-
limited signal with the help of specialized analog hardware.
Just-in-time sampling, on the other hand, requires standard
hardware and can be implemented on current devices. How-
ever, just-in-time sampling is not as generic as pre-filtering
and could only capture some interesting part of the signal,
rather than reconstruction of the complete signal. Currently,
it is only tailored for detecting the R waves of ECG signals
and hence measuring heart rate variability. We show, via
simulation on data sets collected from two different sources,
that just-in-time sampling is extremely effective in captur-
ing the R waves, while reducing the power consumption by
an order of magnitude.

Future work includes capturing locations of every nth
heartbeat (for small n) and extrapolating the other positions
from these. This could conceivable cut down the number of
samples needed by an order of magnitude and result in fur-
ther extension of the battery life. We also hope to find other
physiological signals (e.g., respiration rate) that may benefit
from our proposed methodology.
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