
Data Streaming Algorithms for Estimating Entropy
of Network Traffic

Ashwin Lall
University of Rochester

Vyas Sekar
Carnegie Mellon University

Mitsunori Ogihara∗

University of Rochester

Jun (Jim) Xu†

Georgia Inst. of Technology
Hui Zhang‡

Carnegie Mellon University

ABSTRACT
Using entropy of traffic distributions has been shown to aid
a wide variety of network monitoring applications such as
anomaly detection, clustering to reveal interesting patterns,
and traffic classification. However, realizing this potential
benefit in practice requires accurate algorithms that can op-
erate on high-speed links, with low CPU and memory re-
quirements. In this paper, we investigate the problem of
estimating the entropy in a streaming computation model.
We give lower bounds for this problem, showing that neither
approximation nor randomization alone will let us compute
the entropy efficiently. We present two algorithms for ran-
domly approximating the entropy in a time and space effi-
cient manner, applicable for use on very high speed (greater
than OC-48) links. The first algorithm for entropy estima-
tion is inspired by the structural similarity with the semi-
nal work of Alon et al. for estimating frequency moments,
and we provide strong theoretical guarantees on the error
and resource usage. Our second algorithm utilizes the ob-
servation that the performance of the streaming algorithm
can be enhanced by separating the high-frequency items (or
elephants) from the low-frequency items (or mice). We eval-
uate our algorithms on traffic traces from different deploy-
ment scenarios.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Computer-
Communication Networks: Network Operations—Network
Monitoring;

∗Supported in part by grants Xerox/NYSRAT #C040130
and NSF-EIA-0205061.
†Supported in part by NSF grant NETS-NBD 0519745 and
NSF CAREER Award ANI 0238315.
‡Supported in part by grants NSF CNS-0433540 and ANI-
0331653 and U.S. Army Research Office contract number
DAAD19-02-1-0389.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’06, June 26–30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/0006 ...$5.00.

General Terms
Algorithms, Measurement, Theory

Keywords
Traffic Analysis, Data Streaming

1. INTRODUCTION
In network traffic flow analysis there has been a shift of

focus from simple volume-based analysis to network flow
distribution-based analysis. Much work has been published
for making inference about the network status from such
statistics [12, 17, 24]. Intrinsically, distribution-based anal-
ysis could capture the network status more succinctly than
volume-based analysis would, but it requires appropriate
metrics to encapsulate and capture features of the under-
lying traffic distribution.

The standard quantities in assessing distributions are the
moments (the mean, standard deviation, skewness, kurtosis,
etc.). A number of recent empirical studies [7, 17, 23, 24]
have suggested the use of entropy as a succinct means of
summarizing traffic distributions for different applications,
in particular, in anomaly detection and in fine-grained traffic
analysis and classification. With respect to anomaly detec-
tion [17], the use of entropy for tracking changes in traffic
distributions provides two significant benefits. First, the use
of entropy can increase the sensitivity of detection to un-
cover anomalous incidents that may not manifest as volume
anomalies. Second, using such traffic features provides addi-
tional diagnostic information into the nature of the anoma-
lous incidents (e.g., making distinction among worms, DDoS
attacks, and scans) that is not available from just volume-
based anomaly detection. With respect to fine-grained traf-
fic analysis and traffic classification [24], the entropy of traf-
fic feature distributions offers useful information to measure
distance among (traffic) clusters.

While these recent studies demonstrate that using the en-
tropy of traffic distributions has tremendous value for net-
work monitoring applications, realizing the potential benefit
requires efficient algorithms for computing the entropy. In
general, computing traffic statistics on high-speed links is
a hard task, because it is infeasible for traditional methods
to keep up with the line-rates, due to constraints on avail-
able processing capacity. In addition, constraints imposed
on memory make it almost impossible to compute the statis-
tics per flow, or even to maintain per-flow state. Then, the

use of sampling comes as a natural solution. Sampling based
methods [5, 6] have been shown to be able to reduce the
processing and memory requirements, and to be suitable for
capturing some traffic statistics. However, one must trade
off accuracy for efficiency—the estimates obtained from sam-
pled data may have large errors [10].

One may then naturally wonder whether there are efficient
methods for accurately estimating the entropy. In particu-
lar, we ask the following questions:

• What amount of resources (time and space) do we
provably need to capture the entropy of a stream of
packets on a high-speed link?

• Are there efficient algorithms for entropy computation
that can operate on high-speed links which have low
memory and CPU costs?

To address these questions, data streaming algorithms as-
sume significance. Data streaming algorithms [19] for com-
puting different statistics over input streams have recently
received tremendous interest from the networking and the-
ory communities. Data streaming algorithms have the desir-
able property that both the computational and memory re-
quirements are low. This property makes them ideal for such
high-speed monitoring applications. They are also guaran-
teed to work with any distribution, which makes them useful
in dealing with data for which the distribution is not known.

The contribution of this paper is the investigation and
application of streaming algorithms to compute the entropy
over network traffic streams. The challenge is to design algo-
rithms for estimating entropy that are lightweight in terms
of both memory and computational complexity. We present
two algorithms for computing the entropy in a streaming
model. The first algorithm is based on the insight that es-
timating the entropy shares structural similarity with the
well-known problem of estimating the frequency moments [2].1

Despite the apparent structural similarity, providing theo-
retical approximation and resource guarantees for entropy
estimation is a challenging task. Our contributions are the
identification of appropriate estimator functions for calcu-
lating the entropy accurately, and providing proofs of ap-
proximation guarantees and resource usage. The theoreti-
cal guarantees hold for arbitrary streams, without making
any assumptions regarding the underlying distributions and
structural properties of their distribution.

Network traffic data-streams have considerable underlying
structure (e.g., they may have a Zipfian or power-law dis-
tribution), which suggests that we can optimize algorithms
further by leveraging this fact. Our second algorithm builds
on the basic streaming algorithm, but can substantially im-
prove the efficiency based on techniques for separating the
large (elephant) flows from the small (mice) flows. We use
a lightweight sampling method that enables sieving out the
elephant flows from the stream, and extend the earlier al-
gorithm to utilize this separation to achieve better perfor-
mance in practice.

We evaluate our algorithms on real traffic traces collected
from three different deployment scenarios. The first stream-
ing algorithm outperforms traditional sampling based ap-
proaches, and provides much lower estimation errors while
1This approach has also been independently proposed by
Chakrabarti et al. [1]. We will discuss this and other ap-
proaches in Section 8, highlighting that while our intellec-
tual trails cross each other on some results, our approaches
and evaluations differ substantially in others.

using similar (or lesser) memory resources. Interestingly, we
notice that the observed errors are an order of magnitude
smaller than the theoretical error guarantees. While it has
proved difficult to provide rigorous theoretical (i.e., worst-
case) guarantees for the second algorithm (which makes use
of the elephant-mice separation), we find that the observed
errors are further reduced with this approach.

The remainder of this paper is organized as follows. We
introduce the notation that we will use and formally define
the problem in Section 2. In Section 3 we prove that any
(deterministic) approximation algorithm or (exact) random-
ized algorithm must use a linear amount of space. Section 4
outlines the basic streaming algorithm and provides theo-
retical approximation guarantees, while Section 5 provides
improvements based on the technique of separating the ele-
phant and mice flows. We evaluate our algorithms on real-
world traces in Section 6, confirming the effectiveness of our
approaches. We discuss some features of our algorithms in
Section 7 and related work in Section 8, before concluding
in Section 9.

2. PROBLEM FORMULATION
We first outline the notation used in the remainder of the

paper, and formulate the problem of estimating entropy in
a streaming context. Throughout this paper we will assume
that all items coming over the stream are drawn from the
set [n] = {1, 2, 3, . . . , n}. For example if we are interested
in measuring the entropy of packets over various application
ports, then n is the number of ports (maximum of 65535
ports for each protocol). Similarly, if we are interested in
measuring the entropy of packets over unique source or des-
tination addresses in the traffic stream, then n would have
a maximum value of 232 for 32-bit IPv4 addresses.

We will denote the frequency of item i ∈ [n] (e.g., the
number of packets seen at port i) by mi and the total num-
ber of items in the stream by m, i.e., m =

∑n
i=1 mi. The

jth item observed in the stream will be denoted by aj ∈ [n].
We define n0 to be the number of distinct items that appear
in the stream, since it is possible that not all n items are
present. As a simple example consider a stream drawn from
a set of n = 4 different possible objects {A, B, C, D}. Let
the stream X = (A, A, B, B, C, A,B, A, C). For this stream,
the total number of items m = 4 +3 +2 = 9, with the num-
ber of distinct items n0 = 3. Note that all our analysis is in
terms of m, rather than n, since in general n >> m.

The natural definition of entropy (sometimes referred to
as sample entropy) in this setting is the expression H ≡
−
∑n

i=1
mi

m
log (mi

m
). Intuitively, the entropy is a measure

of the diversity or randomness of the data coming over the
stream. The entropy attains its minimum value of zero when
all the items coming over the stream are the same and its
maximum value of log m when all the items in the stream
are distinct. Unless otherwise specified, all logarithms in this
paper are to the base 2 and we define 0 log 0 = 0. For our
example stream X, the entropy H(X) = −(4/9) log (4/9) −
(3/9) log (3/9) − (2/9) log (2/9) = 1.53. Often it is useful to
normalize this number to compare entropy estimates across
different measurement epochs. For this purpose, we define
the standardized entropy to be H/ log m. In our example,
the standardized entropy is 1.53/ log 9 = 0.48.

To compute the entropy,

H = −
n
∑

i=1

mi

m
log (

mi

m
)

=
−1

m

[

∑

i

mi log mi −
∑

i

mi log m

]

= log (m) −
1

m

∑

i

mi log mi,

it suffices to compute S ≡
∑

i mi log mi, since we can keep
a count of m exactly with log m bits. For the remainder
of this paper we will concern ourselves with estimating the
value S. The measure of accuracy we use to evaluate our
estimates is the notion of relative error, which is defined to
be |S − S̃|/S, where S̃ is the estimated value and S the
true value. For practical applications in traffic monitoring,
we require that the relative error be low (say less than 2-
3%), so that the accuracy of applications such as anomaly
detection and traffic clustering is not affected.

An accurate estimate of S may not necessarily give an
accurate estimate of H. In particular, when H is very small
and S is close to its maximum value, a small relative error
estimate of S may not correspond to a small relative error
estimation of H. Let S̃ be the estimated value of S and
H̃ the estimated value of H computed from S̃, i.e., H̃ =
log (m) − S̃/m. Suppose we have an algorithm to compute
S with relative error at most ε. Then, the relative error in
estimating H can be bounded as follows:

|H − H̃|

H
=

| log (m) − S/m − log (m) + S̃/m|

H

=
|S − S̃|

Hm

≤ ε
S

Hm
.

Note that the relative error in H actually depends on the
ratio S

Hm
, which can theoretically become arbitrarily high if

H is close to zero. However, given reasonable lower bounds
for how small H can get, an algorithm that can give an
approximation of S with relative error at most ε can be
converted to one that gives an approximation of H with
relative error ε′ = Θ(ε). Specifically, since we know that
S ≤ m log m, if we assume a lower bound of α log m for H
(for some constant α) then the relative error in estimating
H is at most ε′ = ε/α. Thus any approximation scheme for
S can be converted to one for H if we can assume a lower
bound on the entropy. Our evaluations (Section 6.2) confirm
that the errors for H and S are comparable.

3. LOWER BOUNDS
In this paper we will present a randomized approximation

algorithm that uses O(log m) space for computing the value
S of a stream. Before we do this, we would like to answer the
first question of how much effort is required to estimate the
entropy of a given traffic distribution. We will demonstrate
that any exact randomized algorithm or any deterministic
approximation algorithm needs at least linear (in the length
of the stream) space. This motivates the need to use both
randomization and approximation.

We first demonstrate that any randomized algorithm to
compute S must use Ω(m) space by reducing the commu-

nication complexity problem of set intersection to it. Using
communication complexity is a common way to prove lower
bounds for streaming algorithms [2, 18]. We show here how
to apply it to the computation of S (and hence the entropy
H).

In the communication complexity model two parties (typ-
ically called Alice and Bob), who have non-overlapping but
jointly complete parts of the input, wish to compute some
function of the input. The communication complexity of the
function at input size n is then the largest number of bits
that the parties have to communicate using the best proto-
col to compute the function, for any input of size n. There
are no bounds on the computational power of either party
and the only resource being measured is the number of bits
communicated.

For the problem of set intersection, Alice and Bob have
subsets A and B of {1, . . . , N} as input. The question is then
whether the sets A and B have any elements in common. It
is known that the deterministic communication complexity
of this problem is Θ(N) [15]. It was shown by Kalyanasun-
daram and Schnitger in [11] that any communication com-
plexity protocol for set intersection that has probability of
error at most δ, for any δ < 1/2, must use Ω(N) bits of
communication. We make use of this result in the proof.

Theorem 1. Any randomized streaming algorithm to com-
pute the exact value of S when there are at most m items
must use Ω(m) bits of space.

Proof. Let us assume that we have a randomized stream-
ing algorithm that computes S =

∑

i mi log mi for any stream
exactly using s bits of space. This gives rise to a commu-
nication complexity protocol, using Θ(s) bits of communi-
cation, for computing set intersection that works as follows.
Suppose that Alice and Bob have as input subsets of the set
{1, . . . , m/2}. Alice simulates the algorithm using her set (in
any arbitrary order) as input into the algorithm and sends
the saved state of the algorithm (at most Θ(s) bits) to Bob.
Bob then restarts the algorithm, starting with that saved
state, and enters his entire set. At the end of this run, Bob
checks the output of the algorithm—if the output is zero, he
outputs “disjoint,” otherwise he outputs “not disjoint.”

The above protocol relies on the fact that any items that
have frequency at most one do not count toward the sum S
(since 1 log 1 = 0 log 0 = 0). So, the value of S computed is
exactly twice the size of the intersection. If we find that the
intersection has size zero then we know that Alice and Bob’s
sets are disjoint, otherwise they have something in common.
Hence, even if the streaming algorithm is randomized, it
must use s = Ω(m) bits. If it used fewer bits it would
lead to a randomized protocol for set intersection with less
than Ω(N) communication, which we know from [11] to be
impossible.

Theorem 2. Any deterministic streaming algorithm to
approximate S with relative error less than 1/3 must use
Ω(m) bits of space.

Proof. The proof that any (non-randomized) approxi-
mation algorithm is inefficient is similar to the proof of
Proposition 3.7 in [2]. Let G be a family of 2Θ(m) subsets
of {1, . . . , 2m}, such that each subset has cardinality m/2
and any pair of distinct subsets has at most m/4 elements
in common. (It is possible to show such a G exists using the
probabilistic method.)

Let us assume for a contradiction that there exists a deter-
ministic streaming algorithm that estimates S with relative
error at most 1/3, using less than linear (in m) space. For
every pair of elements G1, G2 ∈ G, let A(G1, G2) be the
sequence of length m consisting of the elements of G1 in
sorted order followed by the elements of G2 in sorted or-
der. By the pigeonhole principle, if the memory used by the
algorithm has less than log |G| = Ω(m) bits, then at least
two distinct subsets Gi, Gj ∈ G result in the same memory
configuration when their contents are entered into the algo-
rithm. Hence, the algorithm cannot distinguish between the
streams A(Gi, Gi) and A(Gj , Gi). For the input A(Gi, Gi)
we have that S = (m/2)(2 log 2) = m, but for A(Gj , Gi),
S ≤ (m/4)(2 log 2) = m/2. Now, if the relative error for
A(Gi, Gi) is less than 1/3, its estimated value is more than
2m/3, but if the relative error for A(Gj , Gi) is less than 1/3
its estimated value is less than 2m/3. Therefore, the algo-
rithm makes a relative error of at least 1/3 on at least one
of these inputs. This tells us that any non-randomized al-
gorithm must either use Ω(m) space or have a relative error
of at least 1/3.

Thus, we see that if we use only randomization or only
approximation we cannot hope to use a sublinear amount of
space. As a result, the following algorithms that we present
are both randomized and approximate. Fortunately, when
we allow for these two relaxations we get algorithms that
are sublinear (in particular, polylogarithmic) in space and
time per item.

4. A STREAMING ALGORITHM
In this section we present our first algorithm and show

guarantees on the performance and the size of the memory
footprint. The basic algorithm is based on the key insight
that estimating S is structurally similar to estimating the
frequency moments [2]. The advantage of this technique is
that it gives an unbiased estimate of the entropy, with strong
theoretical guarantees on the space consumption based upon
the desired accuracy of the algorithm. We then show how
the assumptions and analysis of the algorithm can be further
tightened.

4.1 Algorithm
As demonstrated in the previous section, randomization

and approximation alone do not allow us to estimate S ef-
ficiently. Hence, we present an algorithm that is an (ε, δ)-
approximation of S. An (ε, δ)-approximation algorithm is
one that has a relative error of at most ε with probability at
least 1− δ, i.e., Pr(|X − X̃| ≤ Xε) ≥ 1− δ, where X and X̃
are the real and estimated values, respectively.

This algorithm uses the idea of the celebrated Alon–Matias–
Szegedy frequency moment estimation algorithm [2]. Con-
ceptually, the algorithm can be divided into three stages.
In the first stage we select random locations in the stream.
These locations decide the set of counters that the algorithm
tracks during the online stage. In the second stage, the on-
line stage, we keep track of the number of occurrences of
items that appear at the randomly selected locations. For
each selected item, we keep an exact counter for the number
of subsequent occurrences of that item. For example, if po-
sition k in the stream was selected, we keep an exact counter
for the item at position k (denoted as ak) for the remainder
of the stream (i.e., between locations k and m). In the third

Algorithm 1: The streaming algorithm

1: Pre-processing stage

2: z := d32 log m/ε2e, g := 2 log (1/δ)
3: choose z ∗ g locations in the stream at random

4: Online stage

5: for each item aj in the stream do

6: if aj already has one or more counters then

7: increment all of aj ’s counters
8: if j is one of the randomly chosen locations then

9: start keeping a count for aj , initialized at 1

10: Post-processing stage

11: // View the g ∗ z counts as a matrix c of size g × z
12: for i := 1 to g do

13: for j := 1 to z do

14: Xi,j := m ∗ (ci,j log ci,j − (ci,j − 1) log (ci,j − 1))
15: for i := 1 to g do

16: avg[i] := the average of the Xs in group i
17: return the median of avg[1], . . . , avg[g]

and final stage the algorithm uses the various counters it
has tracked to obtain an estimator for the S value of the
stream. The goal of the post-processing or estimating stage
is to obtain an estimate of S that is unbiased and whose
error is provably low.

We present the pseudocode for this algorithm in Algo-
rithm 1. In the pre-processing stage we need to choose z ∗ g
locations in the stream. Note that for this stage we need
to know the length of the stream to both compute z and
to choose the random locations. The choice of the random
locations can be deferred as described in [2] and to compute
z we can use a safe overestimate for log m without increas-
ing the space too much. In the online stage, for each such
position we keep a counter c for that item from that position
on. We update at most one record per item during the on-
line stage, using a data structure described in the following
section.

In the post-processing stage, for each of the tracked coun-
ters we compute an unbiased estimator for S as follows:

X = m(c log c − (c − 1) log (c − 1)).

These g ∗ z unbiased estimators are then divided into g
groups each containing z variables. First we compute the
average over each of the g groups, and then obtain the me-
dian of the groups as our returned estimate for S. Intu-
itively, the estimator variable X provides us an unbiased
estimate of S, but does not give good guarantees on the
variance, and hence the relative error. By computing many
such estimates, and obtaining the median over the averages
of multiple groups, we can provide rigorous guarantees on
the error as we will see in Section 4.3.

4.2 Implementation Details
One major advantage of this algorithm is that it is light

weight. For any item in the stream, the algorithm has to
update its count if the item is being counted. Checking
whether the item is being counted can be done very quickly
using a hash table. However, it is possible that a single
item has multiple records for it. In the worst case, we would
need to update every record for each item. We could greatly
improve the efficiency of the algorithm by instead keeping

a single record for every unique item. This can be imple-
mented by only updating the most recent record for that
item and maintaining a pointer to the next most recent
record. When the entire stream has been processed, the
counts for the older records can be reconstructed from those
of the newer ones.

The record data structure that we suggest is illustrated
in Figure 1. Each record in our implementation would re-
quire ∼ 200 bits because we would need to store the item
label ITEM LABEL (∼ 100 bits), the counter for the item
COUNTER (32 bits), a pointer CHAINING PTR (32 bits)
to resolve hash collisions if we use chaining and another
pointer PREV PTR (32 bits) to point to the older records
for the item. We use a conservative estimate of 100 bits for
each item label, assuming that we would store all 5 main IP
packet header fields, i.e., 〈srcaddr, dstaddr, srcport, dstport,
protocol〉.

CHAINING_PTR
(32 bits)

(~ 100 bits)

(32 bits)

ITEM_LABEL

COUNTER

PREV_PTR
(32 bits)

Figure 1: The record data structure

At the end of each epoch the algorithm needs to perform
the operations of averaging and finding the median of a list.
However, both these operations only need to be done in
the post-processing step. If we make an epoch sufficiently
large, then these computations need be done relatively in-
frequently.

4.3 Theoretical Guarantees
We present analysis that shows we can give strong guar-

antees while using very little space. The proof is along the
lines of the one in [2] and the main contribution here is to
show how the variance of the variable X can be bounded to
give such a small space requirement. The proof requires the
assumption that S ≥ m or, equivalently, that H ≤ log m−1.
We show in Section 4.5 why this assumption is reasonable.

Theorem 3. If we assume that S ≥ m, then Algorithm 1
is an (ε, δ)-approximation algorithm for S that uses
O(log m log (1/δ)/ε2) records.

Proof. We will first show that the variable X is an un-
biased estimator for S. We will then make use of Cheby-
shev’s inequality to bound the probability of having a rela-
tive error greater than ε. Next, we show that if we average
z = d32 log m/ε2e variables, this probability is at most 1/8.
We can then use Chernoff bounds to show that if we take
g = 2 log (1/δ) such averages, with probability at least 1− δ
more than half of them have less than ε relative error. In
this case, the median of the averages must have relative error
less than ε.

We first observe that the expected value of each variable
X is an unbiased estimate of our desired quantity S:

E[X] =
m

m

n
∑

i=1

mi
∑

j=1

(j log j − (j − 1) log (j − 1))

=

n
∑

i=1

mi log mi

= S.

To make use of Chebyshev’s inequality, we need to bound
the variance of X from above, in terms of S2. The bound
proceeds as follows:

V ar(X) = E(X2) − E(X)2

≤ E(X2)

=
m2

m

[

n
∑

j=1

mj
∑

i=2

(i log i − (i − 1) log (i − 1))2
]

.

Now we observe that

n log n − (n − 1) log (n − 1) = log
nn

(n − 1)n−1

≤ log
nn

nn−2

= 2 log n, (1)

where the inequality comes from the facts that the logarithm
function is monotonically increasing and that for all n > 1,
nn−2 ≤ (n − 1)n−1, which is proven as follows:

For n = 2 the fact can easily be checked. For all other n,
n > e, so

nn−2

(n − 1)n−1
=

1

n

(

n

n − 1

)n−1

=
1

n

(

1 +
1

n − 1

)n−1

.

This is at most e/n ≤ 1. So, the inequality holds.
Now, substituting (1) into the bound on the variance, we

get that

V ar(X) ≤ m

n
∑

i=1

mi
∑

j=2

(2 log j)2

≤ 4m

n
∑

i=1

mi log2 mi

≤ 4m log m

(

∑

i

mi log mi

)

≤ 4S log m

(

∑

i

mi log mi

)

= 4S2 log m,

where for the last inequality we make use of our assumption
that S ≥ m.

Let the average of the ith group be Yi. We know that
V ar(Yi) = V ar(X)/z and that it is also an unbiased esti-
mator of S. Applying Chebyshev’s inequality, we get that

for each Yi,

Pr(|Yi − S| > εS) ≤
V ar(Yi)

ε2S2

≤
4S2 log m

zε2S2

=
4 log m

zε2

≤
1

8
.

Now, by Chernoff bounds we get that with probability at
least 1−δ, at least g/2 of the averages have at most ε relative
error. Hence, the median of the averages has relative error
at most ε with probability at least 1 − δ.

Note that if we had chosen z = dlog m/(ε2 ∗ δ)e we could
have guaranteed an error probability of at most δ with just
this one bigger group. While the analysis in the proof works
well for smaller δ (i.e., δ ≤ 1/128), for practical applications
we may want to use larger δ. Because of the independence of
each run, with δ = 10% we detect anomalous entropy values
within one epoch with 90% certainty, within two epochs with
99% certainty and so on. For the case where δ is greater than
1/128 ≈ 0.8% we can use the average of a single group of
z = dlog m/(ε2 ∗ δ)e estimators for our estimate.

The total space (in bits) used by this algorithm is

O
(log m log (1/δ)

ε2
(log n + log m)

)

.

For fixed δ and ε this algorithm uses O(log m) records of size
O(log m + log n) bits.
Numerical Illustration: To put this into a practical per-
spective, let us consider an example where we have a stream
of length m = 226 ≈ 67 million, with n0 = 6 million dis-
tinct items. To compute the entropy exactly, we could have
to maintain counts for each item using 6 million item la-
bels and counters (132 bits/record × 6 million records = 94
MB). Using Algorithm 1 we could approximate the entropy
with at most 25% relative error at least 75% of the time
with 54 thousand records or 1.4 MB, using 200 bit records
as discussed earlier.

4.4 Exact Space Bounds
In practical settings we want to know the exact values

of the parameters of the above algorithm so that we use
as little space as possible. We tighten the bound on the
number of groups needed by making the observation that

jj

(j−1)j−1 = j(1 + 1
j−1

)j−1 < ej. Here is a tighter (non-

asymptotic) analysis for the bound on the variance:

Theorem 4. If we assume that S ≥ m, then Algorithm 1

can be modified to use exactly d (16 log m+64) log (1/δ)

ε2
e records.

Proof.

E(X2) = m
n
∑

i=1

mi
∑

j=1

(j log j − (j − 1) log (j − 1))2

≤ m

n
∑

i=1

mi
∑

j=1

log2 (ej)

= m

(

n
∑

i=1

mi
∑

j=1

log2 j + m log2 e + 2 log e
n
∑

i=1

mi
∑

j=1

log j

)

≤ m

(

n
∑

i=1

mi log2 mi + m log2 e + 2S log e

)

≤ S

(

n
∑

i=1

mi log2 mi + m log2 e + 2S log e

)

(2)

≤ S
(

S log m + m log2 e + 2S log e
)

= S2(log m + m log2 e/S + 2 log e)

≤ S2(log m + log2 e + 2 log e) (3)

≤ S2(log m + 5),

where (2) and (3) require the assumption that S ≥ m.
Hence we have that the variance

V ar(X) = E(X2) − (E(X))2 ≤ S2(log m + 4).

So, we see that z = d 8 log m+32
ε2

e suffices.

Numerical Illustration: Returning to our example of a
stream of size 67 million, the above improvements would
drop the number of records for the case of at most 25%
error with 75% probability to just 16 thousand (400 KB).

4.5 A Note on Assumptions
For the above analysis, we needed to make the assumption

that S ≥ m. It is not hard to see (and prove) that we
need some kind of lower bound on the value of S to protect
ourselves from the case that we are trying to distinguish two
streams of low S value. If one stream has all unique elements
(so that S = 0) and another has only one repeated element,
then it is very hard to distinguish them. However, we must
distinguish them to have less than 100% relative error.

Assuming that S ≥ m, or that H ≤ log m−1, is reasonable
because H attains its maximum value at log m. We now
show some other conditions that give us that S ≥ m, thereby
making them reasonable assumptions to make.

Theorem 5. If m ≥ 2n0 then S ≥ m.

Proof. It is easy to show using Lagrange multipliers that
S attains its minimum value when all the items in the stream
have the same count. Hence, a lower bound for S is

S ≥

n0
∑

i=1

m

n0
log (m/n0) = m log (m/n0).

Since we have assumed that m ≥ 2n0, this gives us that
S ≥ m log (m/n0) ≥ m log 2 = m.

Hence, we need only assume that each item in the stream
appears at least twice on average. This assumption protects
us from the case described earlier and in any setting where
S can get arbitrarily small. We feel that in any practical
setting this simple assumption is very reasonable. For ex-
ample, on all the traces that we experimented on, the factor
m/n0 was in the range of 50 to 300.

4.6 A Constant-space Solution
As it turns out, if we make a stronger (but still reason-

able) assumption on how large the entropy can get, we can
make the space usage of the algorithm independent of m
(assuming fixed sized records). Upper bounding the entropy
is reasonable to do since even during abnormal events (e.g
worm attacks), when the randomness of the distributions
are increased, there will still be a sufficiently large amount
of legitimate activity to offset the increased randomness.

Recall that H attains its maximum at log m, when each
of the m items in the stream appears exactly once. We will
assume that H ≤ β log m. This gives us the following bound
on S:

S = m log m − mH

≥ m log m − β(m log m)

= (1 − β)m log m.

We can now apply this to decrease the space usage of our
algorithm:

Theorem 6. If we assume that H ≤ β log m, then Algo-

rithm 1 can be modified to use exactly d 64 log (1/δ)

(1−β)ε2
e records.

Proof. We once again bound the variance:

V ar(X) = E(X2) − E(X)2

≤ E(X2)

=
m2

m

[

n
∑

j=1

mj
∑

i=2

(i log i − (i − 1) log (i − 1))2
]

≤ m

n
∑

i=1

mi
∑

j=2

(2 log j)2

≤ 4m

n
∑

i=1

mi log2 mi

≤ 4m log m

(

∑

i

mi log mi

)

≤ 4S2/(1 − β).

Hence, we need only z = 32
(1−β)ε2

groups, which is inde-

pendent of m. The desired bound on the number of records
follows from this.

Numerical Illustration: For a stream with 67 million
packets, if we make the simple assumption that the entropy
never goes above 90% of its maximum value then we need 21
thousand records (525 KB), and if we assume that it never
exceeds 75% of its maximum value then we only need 8, 200
records (205 KB). Note that these space bounds will not in-
crease with the size of the stream—they depend only on the
error parameters. Hence, we can use a few hundred kilobytes
for arbitrarily large streams, as long as we can safely make
an assumption about how large its standardized entropy can
get.

5. SEPARATING THE ELEPHANTS FROM
THE MICE

The algorithm described in the previous section provides
worst-case theoretical guarantees independent of the struc-
ture of the underlying traffic distributions. In practice, how-
ever, most network traffic streams have significant structure.

In particular a simple but useful insight [6] is that traffic
distributions often have a clear demarcation between large
flows (or elephants), and smaller flows (or mice). A small
number of elephant flows contribute a large volume of traf-
fic, and for many traffic monitoring applications it may often
suffice to estimate the elephants accurately.

In our second algorithm (see Algorithm 2) we make use
of the idea of separating the elephants from the mice in the
stream. By separately estimating the contribution of the
elephants and mice to the entropy we can further improve
the accuracy of our results, thereby also decreasing the space
usage of the algorithm. We believe that such a sieving idea
has much broader applicability. Other streaming algorithms
for estimating different traffic statistics can potentially ben-
efit by using such an idea. Intuitively, the amount of space
needed by the first algorithm is directly proportional to the
variance of the estimator X (see Section 4.3), and by sieving
out the high-count items we can significantly decrease the
variance of the estimator and hence the space required.

For this algorithm we change the method of sampling
slightly. Rather than pre-compute positions in the stream
(which requires foreknowledge of the length of the stream),
we sample each location with some small probability. After
the item is sampled, an exact count is maintained for it,
similar to the Sample and Hold algorithm described in [6].
If an item is sampled exactly once, then we consider it a
mouse and compute the entropy of the mice using the pre-
vious algorithm. If an item is sampled more than once, we
consider it an elephant and estimate its exact value. Note
that this method is different from [9] in that we are looking
for items that are sampled multiple times, not necessarily in
consecutive samples.

Once an item is sampled a second time, it is considered an
elephant. To estimate its exact value (i.e. to compensate for
the number of times the item appeared before it was first
sampled), we simply add the count between the first and
second sampling. Intuitively, the number of occurrences of
the item between successive samples should be equal if it
is evenly distributed. This method of approximating the
exact count of the elephant was empirically found to be a
good estimator.

The record data structure for this sampling method is
similar that used by Algorithm 1. The main difference is
that we no longer need a pointer to older copies of an item
since we only maintain a single count for each unique item.
To be able to tell whether the item has been sampled before
or not (to determine whether it should be promoted to an
elephant) we require just a single additional bit. Thus, we
see that this sampling method requires minimal overhead to
separate the elephants from the mice.

The sieving algorithm assumes that every flow that is sam-
pled twice is “elevated” to the status of an elephant. Rather
than choose the elevation threshold, we evaluated different
values of the threshold before we arrive at the number two.
Figure 2 shows the relative error in estimating the S (of
the destination address distribution) as a function of k, the
threshold for promoting mice to elephants, for three differ-
ent packet traces. The next section provides further details
on the traces used in our evaluations. We observe that the
lowest error is achieved with a value of k = 2. Intuitively,
a higher strike-threshold decreases the number of elephants,
and we do not achieve the desired elephant-mice separation.

Algorithm 2: The sieving algorithm

1: Online stage

2: for each item in the stream do

3: if the item is sampled then

4: if the item is already being counted then

5: promote the item to elephant status
6: else

7: allocate space for a counter for this item
8: else

9: increment the counter for this item, if there is one

10: Post-processing stage

11: Se := 0
12: for each elephant (with estimated count c) do

13: Se := Se + c log c
14: estimate the contribution of the mice Sm from the re-

maining counts using Algorithm 1
15: return Se + Sm

2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

Threshold for elephant status (k)

R
el

at
iv

e
E

rr
or

Trace 1
Trace 2
Trace3

Figure 2: Selecting the threshold k for Sieving

A natural question with such a sieving algorithm is one re-
garding the relative weights of the two different contributing
factors. Intuitively, if either the elephant or the mice flows
are not substantial contributors, then we can potentially re-
duce the space usage further by ignoring the contribution of
the insignificant one. We empirically confirmed the need for
accurate estimation of both the elephant and the mice flows.
Figure 3 shows the relative contribution of the elephant and
mice flows to the S estimate (for the destination address
distribution on Trace 1). We observe that both elephant
and mice flows have substantial contributions to the overall
estimation, and ignoring one of them can yield inaccurate
results for estimating S, and hence H. The results across
different traces and across different traffic distributions of
interest were similar and are omitted for brevity.

6. EVALUATION

We first describe the datasets used in this paper. We then
present a comparison of the two streaming algorithms intro-
duced in this paper with other sampling based approaches.
There are two natural metrics for characterizing the perfor-
mance of the streaming algorithm for entropy computation:
resource usage and error. The resource usage is related to
the number of counters used by different algorithms, which
directly translates into the total memory (SRAM) require-

0 10 20 30 40 50 60
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

Epoch

R
el

at
iv

e
C

on
tri

bu
tio

n
to

 S
 E

st
im

at
e

Elephants
Mice

Figure 3: Confirming that estimating both ele-

phants and mice is necessary

ments of the algorithm, and the total CPU usage. For the
following evaluations, we use the notion of relative error to
determine the accuracy of different algorithms.
Datasets: We use three different packet-header traces for
evaluating the accuracy of our algorithms. We provide a
brief description of each.2

• University Trace (Trace 1): Our first packet trace is
an hour-long packet trace collected from USC’s Los
Nettos collecting facility on Feb 2, 2004. We bin the
trace into 1-minute epochs, with each epoch containing
roughly 1.7 million TCP packets, 30267 distinct IP
addresses, and 15165 ports per minute. We refer to
this as Trace 1 in the following discussion.

• Department Trace (Trace 2): We use a 5-hour long
packet trace collected on Aug 5, 2003 at the gateway
router of a medium sized department with approxi-
mately 1350 hosts. We observe all traffic to and from
the 1350 hosts behind the access router to the commer-
cial Internet, other non-department university hosts
and servers. We bin the dataset into 5-minute epochs
for our evaluation, with each epoch observing 500000
TCP packets, 2587 distinct addresses, and 4672 dis-
tinct ports on average. We refer to this as Trace 2 in
the following discussion.

• University Trace (Trace 3): The third trace we use
is an hour-long trace collected at the access link of
the university to the rest of the Internet, at UNC on
Apr 24, 2003. We bin this trace into 1-minute epochs
as with Trace 1. Each epoch contains on average 2.5
million packets, 25565 distinct IP addresses, and 8080
unique application ports. We refer to this as Trace 3.

Distributions of Interest: We focus on two main types
of distributions for our evaluation. The number of distinct
source and destination addresses observed in a dataset, and
the distribution of traffic across destinations are typically
affected by network attacks, including DDoS and worm at-
tacks. We track the distribution of traffic across different
addresses for the source and destination addresses. Under-
standing the application mix that traverses a network can
usually be mapped into a study of the distribution of traf-
fic on different application ports. The distribution of traffic

2The university traces are available on request from the
respective universities. The department trace is a private
dataset from CMU.

across different ports can also be indicative of scanning at-
tacks or the emergence of new popular applications. In each
case we are interested in the distribution of the number of
packets observed at each port or address (source or desti-
nation) within the measurement epoch. Lakhina et al. [17]
give an overview of different types of network events and
distributions that each would affect.

For Algorithm 1 we use the assumption that m/n0 ≥ 2
since it is both a weak assumption (i.e., weaker than the
one made in Section 4.6) and easy to check. To confirm
that this assumption holds for our traces and distributions,
we present the ratio m/n0 for them here. For Trace 1 the
ratio is roughly 55 for the addresses and 115 for the ports.
For Trace 2, m

n0
is around 193 for the addresses and 95 for

the ports. Lastly, the ratio is around 97 for the addresses
and 300 for the ports in Trace 3. Thus we see that in all of
our traces the assumption is satisfied.

6.1 Comparison with Sampling Algorithms
We first evaluate the accuracy of estimation of our stream-

ing algorithms by comparing them against the following:

1. Sampling: This is the well-known uniform packet
sampling approach used in most commercial router
implementations [20]. Given a sampling probability
p, the sampling approach will pick each packet inde-
pendently with probability p. The estimation of S and
H is performed over the set of sampled packets, after
normalizing the counts by 1/p.

2. Sample and Hold: This is the sampling approach
proposed by Estan and Varghese [6]. Here given a
sampling probability p, the algorithm picks each item
in the stream with probability p and and keeps an
exact count for that item from that point on. Each
sample is appropriately renormalized (incrementing by
a factor 1/p) to account for occurrences of the item
before it was sampled.

The Sieving algorithm introduced in Section 5 is also con-
ceptually a sampling algorithm, similar to Sample and Hold
which selects a sampling probability p apriori. In order to
perform a fair comparison of the performance across the
different algorithms, we normalize the number of records to
keep track of to be the same. For the following experiments
we fix the sampling probability p, and pick the (ε, δ) values
for Algorithm 1, such that the number of counters across
different algorithms used is the same.

We implemented and tested our algorithms on commodity
hardware (Intel Xeon 3.0 GHz desktops with 1 GB of RAM).
We found that the total CPU utilization for the streaming
algorithms was very low—even though we used a preliminary
implementation with very few code optimizations, each mea-
surement epoch took less than 10 seconds to process when
the epoch length was an entire minute. This demonstrates
that our algorithm can comfortably run in real-time. We
also found that the post-processing step consumed a negli-
gible fraction of the time of each run. Since all of the algo-
rithms are randomized or sampling-based, for the following
results we present the mean relative errors and estimates
over 5 independent runs. We found that the standard de-
viations were very small, and do not present the deviations
for clarity of presentation.

Figure 4 compares the performance of different algorithms
across different traces, using a sampling rate of p = 0.001

for the different algorithms, and using ε and δ for Algorithm
1 such that the number of counters used in all four algo-
rithms is roughly the same. The figures show the CDF of
the relative error in estimating the entropy of destination ad-
dresses observed across different measurement epochs. The
streaming algorithms consistently outperform the sampling
based approaches. For example, on Trace 1 we observe that
the worst-case relative error with the sampling based ap-
proaches can be as high as 18%, whereas the streaming al-
gorithms guarantee a error of at most 6% (Algorithm 1)
and 4% (Sieving). We also find that the sieving algorithm
provides substantially more accurate estimates for the same
space usage compared to the basic streaming algorithm. The
sieving algorithm has a worst-case error of at most 2-5%,
which bodes well for the practical utility of the algorithms
for traffic monitoring applications.

For the rest of the discussion, for brevity we only present
the results from Trace 1, and summarize the results from
Trace 2 and Trace 3. Figure 5 compares the CDF of relative
error across measurement epochs, for different distributions
of interest from Trace 1. We observe a similar trend across
algorithms: the sieving algorithm is consistently better than
Algorithm 1, which again is substantially more accurate
than the sampling based approaches. Both the streaming
algorithms have a worst-case error of 7% and mean error of
less than 3% across all the different traffic metrics of inter-
est, which is a tolerable operating range for typical moni-
toring applications, confirming the practical utility of our
approaches. We summarize the results for the other two
traces in Table 1 and Table 2.

Table 1: Trace 2: Mean relative error in S estimate

Distribution Sample Sample&Hold Algo. 1 Sieving
DSTADDR 0.061 0.047 0.032 0.011
SRCADDR 0.064 0.049 0.033 0.012
DSTPORT 0.077 0.067 0.037 0.016
SRCPORT 0.076 0.060 0.037 0.017

Table 2: Trace 3: Mean relative error in S estimate

Distribution Sample Sample&Hold Algo. 1 Sieving
DSTADDR 0.198 0.192 0.013 0.013
SRCADDR 0.054 0.049 0.017 0.004
DSTPORT 0.116 0.109 0.016 0.015
SRCPORT 0.069 0.062 0.016 0.005

6.2 Error in estimating entropy
Recall from our discussion in Section 2, that it may be

the case an accurate estimation of S does not necessarily
translate into an accurate estimate of H. However, we find
from our evaluations that the streaming algorithms can yield
very accurate estimates of H as well. Figures 6(a) and 6(b)
compare the relative error in estimating S to the relative
error in estimating H, for Algorithm 1 and the sieving algo-
rithm respectively. We observe that across different traces
and distributions, that the relative error in estimating H is
very low as well (less than 3% mean error with the sieving
algorithm).

Figure 7 also provides visual confirmation of the utility
of the different algorithms, in tracking the standardized en-
tropy for the destination address distribution. The siev-
ing algorithm once again appears to have greatest accuracy,

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(a) Trace 1

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(b) Trace 2

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(c) Trace 3

Figure 4: Comparing performance of different traces for estimating destination address entropy

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(a) Destination Address

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(b) Source Address

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(c) Destination Port

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Fr
ac

tio
n

of
 m

ea
su

re
m

en
t e

po
ch

s

Sampling
Sample and Hold
Algorithm 1
Sieving Algorithm

(d) Source Port

Figure 5: Comparing different distributions, using Trace 1

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Epoch

R
el

at
iv

e
E

rr
or

Algorithm 1 − H
Algorithm 1 − S

(a) Algorithm 1

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

Epoch

R
el

at
iv

e
E

rr
or

Sieve Algorithm − H
Sieve Algorithm − S

(b) Sieving algorithm

Figure 6: Relative error in S vs. relative error in H

which can be confirmed with visual inspection. We sum-
marize the results for the other two traces in Table 3 and
Table 4, and we observe that in each case the error in H is
comparable to (or less than) the corresponding error in S
(Tables 1 and 2 respectively).

Last, we vary the memory consumption of the algorithm,
and show how the mean and maximum relative errors (for
destination address entropy on Trace 1) vary as a function of
the memory usage in Figure 8. We observe that the stream-
ing algorithms have an order of magnitude lower error than
the sampling algorithms, and can achieve very high accuracy
(< 2% mean error), even with as low as 10 KB of SRAM
usage. Note that even though the sampling algorithms also
can give reasonably low errors at higher memory consump-
tion (> 80 KB), the corresponding sampling rates are much

Table 3: Trace 2: Mean relative error in H estimate

Distribution Sample Sample&Hold Algo. 1 Sieving
DSTADDR 0.128 0.096 0.069 0.023
SRCADDR 0.132 0.102 0.033 0.026
DSTPORT 0.154 0.131 0.076 0.032
SRCPORT 0.148 0.117 0.073 0.034

Table 4: Trace 3: Mean relative error in H estimate

Distribution Sample Sample&Hold Algo. 1 Sieving
DSTADDR 0.147 0.142 0.009 0.009
SRCADDR 0.082 0.073 0.026 0.006
DSTPORT 0.121 0.114 0.017 0.015
SRCPORT 0.096 0.085 0.023 0.007

higher (> 1 in 200 packet sampling) than what is feasible
for very high-speed links.

7. DISCUSSION
One interesting observation from our evaluations is that

the observed errors on the traffic traces are much smaller
than the theoretical guarantees for Algorithm 1. In par-
ticular, we observe that the empirical error is at least one
order of magnitude smaller than the theoretical error guar-
antee. This is because the algorithm must guarantee the
error bound for any stream with any distribution. Real-
world packet traces have considerable underlying structure
that the algorithm cannot directly take advantage of.

0 10 20 30 40 50 60
0.515

0.52

0.525

0.53

0.535

0.54

0.545

0.55

0.555

Epoch

S
ta

nd
ar

di
ze

d
E

nt
ro

py

Actual
Algorithm 1 Estimate

(a) Algorithm 1

0 10 20 30 40 50 60
0.52

0.525

0.53

0.535

0.54

0.545

0.55

Epoch

S
ta

nd
ar

di
ze

d
E

nt
ro

py

Actual
Sieving Estimate

(b) Sieving algorithm

Figure 7: Verifying the accuracy in estimating the

standardized entropy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

M
ea

n
re

la
tiv

e
er

ro
r

Space usage (in KB)

Sample
Sample&Hold

Algorithm 1
Sieving algorithm

(a) Mean error

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120

M
ax

im
um

 re
la

tiv
e

er
ro

r

Space usage (in KB)

Sample
Sample&Hold

Algorithm 1
Sieving algorithm

(b) Maximum error

Figure 8: Relative error in estimating H vs. memory

usage for different algorithms

It now follows that one way to tighten the bounds on
the space/error tradeoff is to make reasonable assumptions
about the distribution of the stream and have our algorithms
take advantage of them. In Section 4.6 we demonstrate this
by making the simple assumption that the standardized en-
tropy of the stream never goes above some fixed constant.
This gives us an algorithm that needs a fixed number of
records, independent of the size of the stream. Such addi-
tional assumptions can help in tightening our space bounds.
However, in order to be as general and trace-independent
as possible, in our algorithms and evaluations we use very
weak assumptions (i.e., m ≥ 2n0).

It is a common observation that network packets have a
skewed Zipfian distribution. We took advantage of this fact
by separating out the few high-count elephants to facilitate
the estimation of the remainder more accurately. In doing
so, however, we do not make any assumption about the na-
ture of the stream. Algorithm 2 has the property that if
there are no elephants in the stream, then it should perform
comparably to Algorithm 1. Hence, we expect that, in gen-
eral, Algorithm 2 should perform better for highly-skewed
distributions, but no better than Algorithm 1 when the skew
is less pronounced.

8. RELATED WORK
Many of today’s networking monitoring applications use

the traffic volume, in terms of flow, packet, and byte counts
as the primary metric of choice. These are especially of in-
terest for anomaly detection mechanisms to flag incidents
of interest. Some of the well-known methods include sig-
nal analysis (e.g., [3]), forecasting (e.g., [4, 21]), and other
statistical approaches (e.g., [16, 25]).

There has been a recent interest in using entropy and
traffic distribution features for different network monitoring
applications. Lakhina et al. [17] use the entropy to augment
anomaly detection and network diagnosis, within their PCA
framework. Others have suggested the use of such infor-
mation measures for tracking malicious network activity [7,
23]. Xu et al. [24] use the entropy as a metric to automat-
ically cluster traffic, to infer patterns of interesting activ-
ity. For detecting specific types of attacks, researchers have
suggested the use of entropy of different traffic features for
worm [23] and DDoS detection [7].

Streaming algorithms have received a lot of interest in the
algorithms and networking community. The seminal work is
that of Alon et al. [2] who provide a framework for estimat-
ing frequency moments. Since then, there has been a huge
body of literature produced on streaming algorithms, and
this is well surveyed in [19]. Kumar et al. use a combination
of counting algorithms and Bayesian estimation for accurate
estimation of flow size distributions [13, 14]. Streaming al-
gorithms have also been used for identifying heavy-hitters
in streams [22, 26].

While the entropy can theoretically be estimated from
the flow size distribution [13], computing the flow size dis-
tribution conceptually provides much greater functionality
than that required for an accurate estimate of the entropy.
The complexity of estimating the flow size distribution is
significantly higher than the complexity of estimating the
entropy, requiring significantly more memory and effort in
post-processing.

We are aware of two concurrent efforts in the streaming
algorithms community for estimating entropy. Chakrabarti
et al. [1] independently proposed an algorithm to estimate
S that is similar to Algorithm 1. In this paper we show
how this algorithm can be modified such that the memory
usage is independent of the size of the stream if we make
a simple assumption on how large the standardized entropy
can get. McGregor et al. [8] outline algorithms estimat-
ing entropy and other information-theoretic measures in the
streaming context. However, our algorithms provide unbi-
ased estimates of the entropy, and do not make strong as-
sumptions regarding the underlying distribution. We also
provide extensive empirical validation of the utility and ac-
curacy of our algorithms on real datasets, and observe that
our sieving approach actually outperforms Algorithm 1.

9. CONCLUSIONS
In this paper, we addressed the need for efficient algo-

rithms for estimating the entropy of network traffic streams,
for enabling several real-time traffic monitoring capabilities.
We presented lower bounds for the problem of estimating the
entropy of a stream, demonstrating that for space-efficient
estimation of entropy, both randomization and approxima-
tion are necessary. We provide two streaming algorithms for
the problem of estimating the entropy. The first algorithm
is based on the key insight that the problem shares struc-
tural similarity with the problem of estimating frequency
moments over streams. By virtue of the strong bounds that
we obtain on the variance of the estimator variable, we are
able to limit the space usage of the algorithm to polyloga-
rithmic in the length of the stream. Under some practical
assumptions of the size of the entropy, we also give an algo-
rithm that samples a number of flows that is independent
of the length of the stream. We also identified a method for

increasing the accuracy of entropy estimation by separating
the elephants from the mice. Our evaluations on multiple
packet traces demonstrate that our techniques produce very
accurate estimates, with very low CPU and memory require-
ments, making them suitable for deployment on routers with
multi-gigabit per second links.

Acknowledgments
We would like to thank A. Chakrabarti, K. Do Ba, and
S. Muthukrishnan for their useful discussion and for kindly
sharing the most recent version of their paper [1] with us.
We thank Minho Sung for helping us with the datasets used
in this paper. We would also like to acknowledge the useful
feedback provided by the anonymous reviewers.

10. REFERENCES
[1] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan.

Estimating entropy and entropy norm on data
streams. In Proceedings of the 23rd International
Symposium on Theoretical Aspects of Computer
Science (STACS), 2006.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proceedings of ACM Symposium on Theory of
Computing (STOC), 1996.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal
Analysis of Network Traffic Anomalies. In Proceedings
of ACM SIGCOMM Internet Measurement Workshop
(IMW), 2002.

[4] J. D. Brutlag. Aberrant behavior detection in time
series for network monitoring. In Proceedings of
USENIX Large Installation System Administration
Conference (LISA), 2000.

[5] N. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. In
Proceedings of ACM SIGCOMM, 2003.

[6] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proceedings of ACM
SIGCOMM, 2002.

[7] L. Feinstein, D. Schnackenberg, R. Balupari, and
D. Kindred. Statistical approaches to DDoS attack
detection and response. In Proceedings of the DARPA
Information Survivability Conference and Exposition,
2003.

[8] S. Guha, A. McGregor, and S. Venkatasubramanian.
Streaming and sublinear approximation of entropy
and information distances. In Proceedings of ACM
Symposium on Discrete Algorithms (SODA), 2006.

[9] F. Hao, M. Kodialam, and T. V. Lakshman.
ACCEL-RATE: a faster mechanism for memory
efficient per-flow traffic estimation. In Proceedings of
ACM SIGMETRICS, 2004.

[10] N. Hohn and D. Veitch. Inverting sampled traffic. In
Proceedings of ACM/USENIX Internet Measurement
Conference (IMC), 2003.

[11] B. Kalyanasundaram and G. Schnitger. The
probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics,
5(4):545–557, 1992.

[12] V. Karamcheti, D. Geiger, Z. Kedem, and
S. Muthukrishnan. Detecting malicious network traffic

using inverse distributions of packet contents. In
Proceedings of ACM SIGCOMM Workshop on Mining
Network Data (MineNet), 2005.

[13] A. Kumar, M. Sung, J. Xu, and J. Wang. Data
streaming algorithms for efficient and accurate
estimation of flow distribution. In Proceedings of ACM
SIGMETRICS/IFIP WG 7.3 Performance, 2004.

[14] A. Kumar, M. Sung, J. Xu, and E. Zegura. A data
streaming algorithm for estimating subpopulation flow
size distribution. In Proceedings of ACM
SIGMETRICS, 2005.

[15] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, New York,
NY, USA, 1997.

[16] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of ACM
SIGCOMM, 2004.

[17] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In
Proceedings of ACM SIGCOMM, 2005.

[18] K. Levchenko, R. Paturi, and G. Varghese. On the
difficulty of scalably detecting network attacks. In
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2004.

[19] S. Muthukrishnan. Data streams: algorithms and
applications.
http://athos.rutgers.edu/~muthu/stream-1-1.ps.

[20] Cisco Netflow. http://www.cisco.com/warp/public/
732/Tech/nmp/netflow/index.shtml.

[21] M. Roughan, A. Greenberg, C. Kalmanek,
M. Rumsewicz, J. Yates, and Y. Zhang. Experience in
measuring internet backbone traffic variability:
Models, metrics, measurements and meaning. In
Proceedings of International Teletraffic Congress
(ITC), 2003.

[22] S. Venkataraman, D. Song, P. B. Gibbons, and
A. Blum. New Streaming Algorithms for Fast
Detection of Superspreaders . In Proceedings of
Network and Distributed System Security Symposium
(NDSS), 2005.

[23] A. Wagner and B. Plattner. Entropy Based Worm and
Anomaly Detection in Fast IP Networks. In
Proceedings of IEEE International Workshop on
Enabling Technologies, Infrastructures for
Collaborative Enterprises, 2005.

[24] K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling
internet backbone traffic: Behavior models and
applications. In Proceedings of ACM SIGCOMM,
2005.

[25] Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg.
Network anomography. In Proceedings of
ACM/USENIX Internet Measurement Conference
(IMC), 2005.

[26] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund.
Online identification of hierarchical heavy hitters:
algorithms, evaluations, and applications. In
Proceedings of ACM/USENIX Internet Measurement
Conference (IMC), 2004.

