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Abstract When faced with a database containing millionsgive an experimental comparison under various parameter
of tuples, a user may be only interested in a (typically muchyettings on both synthetic and real datasets. Our evatuatio
smaller representative subset. Recently, a query called tlshows that the optimal choice of methods for regret min-
regret minimization queryas proposed towards this pur- imization depends on the application demands. This paper
pose to create such a subset for users. Specifically, thig queprovides an empirical guideline for making such a decision.
finds a set of tuples that minimizes the user regret (measured
by how far the user’s favorite tuple in the selected set isifro
his/her favorite tuple in the whole database). The regret mi 1 |ntroduction
imization query was shown to be very useful in bridging the
best worlds between two existing well-known queries, kop- Nowadays, a database system usually contains millions of
queries and skyline queries: like tdqmueries, the total num- - typles and an end user might be interested in finding his/her
ber of tuples returned in this new query is controllable, angayorite tuples in the database. Consider the following sce
like skyline queries, this new query does not require a usefario for a car database where each car is described by some
to specify any preference function. Thus, it has attracted attributes. Alice visits the car database and wants to find a
lot of attention from researchers in the database communitgar with high horse power (HP) and high miles per gallon
Various methods were proposed for regret minimization(MPG) (i.e., HP and MPG are the two attributes picked by
However, despite the abundant research effort, there is nalice, based on which she makes a decision). Note that the
systematic comparison among the existing methods. Thisar database can be very large and it may consist of thou-
paper surveys this interesting and evolving research tmpic sands of cars and thus, it might be impossible for Alice to
broadly reviewing and comparing the state-of-the-art methgo through every car tuple in the database. A possible solu-
ods for regret minimization. Moreover, we study differenttion is that the database system provides some operators to
variants of the regret minimization query that has garneredhow a representative subset of cars to Alice. Such opera-
considerable attention in recent years and present some ifors can be regarded asilti-criteria decision-makingpols.
teresting problems that have not yet been addressed in the order to decide which cars to be shown to Alice, we im-
literature. We implemented 12 state-of-the-art methodis pu plicitly assume that there is a preference function, cadled
lished in top-tier venues such as SIGMOD and VLDB fromutility function, in Alice’s mind. Based on this function, we
2010 to 2018 for obtaining regret minimization sets, anccan compute aitility for each car in the database. A high
utility indicates that this car is favored by Alice and a car
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the highest utilities are returned to the user. For exandge, e
ice’s utility function can have weight 70% for HP and weight KRMS O
30% for MPG. Here, a higher weight indicates that the cor- |( 2-dimensional / D-dimensional APPW“CS\ :
. . . . . . . Approaches Ve N\ (Theoretical\ Non-Linear RMS*
responding attribute is more important to Alice. With this AHeu“st;lc Approsches
- . s S pproaches I ive RMS
utility function, each car’s utility is computed, and tkears sweepDPON | 0 ol cube o nieractive
with the highest utilities are shown to Alice. Unfortunatel BiSearch O Averagc RMS
itis hard for most users to provide their utility functions e GraphDP fmpGreedy | eKemel Diversified RMS
plicitly to the database system and even the users thensselv GeoGreedy Sphere Multi-RMS
i i ili i handl
might not know their exact utility functions. o cinhandle StoredList HittingSetO> ——
Alternatively, theskylinequery [8.9,24,26.29] could be cnhande | — EEe—
used if the utility function (assumed to be monotonic) is not non-lincar k - / _ ‘
RMS Binary Constrained RMS

provided to the database system. In particuldid@nina-
tion” concept is applied. A tuple is said todominatean-
other tupleqg if pis not worse thaig on each attribute angd
is better tharg on at least one attribute. For example, par
with HP 300 and MPG 30 dominates @awith HP 250 and  think that a higher rating is more important while the other
MPG 25 since no matter what utility function Alice has, the users might think that higher quality is more important. A
utility of car p is always higher than the utility of carand  regret minimization query finds a set of products minimiz-
thus, camp is more desirable to Alice. The skyline query re-ing the “regret” level of all users. Those products can be
turns all tuples that are not dominated by any other tuples tpromoted on the home page to attract customers since no
the users and those tuples are also callegkyéine tuples  matter what preference a customer has, s/he can always find
Itis easy to see that the user’s favorite tuple must be a skya product in the suggested set that s/he is interested ire(sin
line tuple. Unfortunately, the output size of a skyline guer the regret ratio is small). Other applications of regretimin
is un-controllable. In the worst case, the whole database camization queries includes Information Retrieval (IR)I[35,
be returned by a skyline query, resulting in its difficulty in[37] and Recommendation Systems (RS)[19,25,42].
providing a small representative subset to the users. Due to the superiority of regret minimization queries,
Recently, a regret minimization quefy[28] was proposedgxtensive efforts [28, 31, 1174, 2]21], 44] in the database
which solves multi-criteria decision-making from a novel munity have been spenton finding algorithms for computing
perspective. In particular, it overcomes the deficiencies oregret ninimization ts (RMS)However, there lacks a com-
both the topk query (which requires the user to provide theprehensive comparison among them. In this paper, we give
exact utility function) and the skyline query (which does no an overview of existing methods for RMS and present some
have a controllable output size). Instead, it maintains théteresting variants of RMS that receive considerablenatte
major advantage of the tdpquery (whose output size is tion in the last decade (summarized in Figlire 1). Specifi-
controllable) and the major advantage of the skyline quergally, we start with an extensive survey that covers 12 exist
(which does not require the user to provide any exact utilitying methods for RMS. We describe the key idea behind each
function). Specifically, a regret minimization query finds amethod and summarize the main results known for each method.
small set of tuples from the database such that the utility ofVe also classify the existing methods into three categories
any user’s favorite among these tuples is guaranteed to &) the exact approaches for RMS when each tuple in the
a small fraction, quantified as thegret ratio, less than the database is described by 2 attributes, (2) the heuristic ap-
utility of his/her favorite in the whole database, regasdle proaches and (3) the theoretical approaches for RMS when
of his/her utility function. Intuitively, the regret ratiguan- ~ each tuple in the database is describeditattributes ¢ >
tifies the “regret” level of a user if s/he gets the best tuple2). Then, we present 9 popular variants of RMS studied in
in the selected subset, but not the best tuple in the wholée literature. In particulakRMS and non-linear RMS are
database. For example, a regret minimization query on thée two major variants of RMS and we show how some ex-
car database returns a set of cars from the database so tigitng algorithms designed for RMS can be extended to han-
Alice can find some cars in the returned set that she is indling these variants (shown in circles and stars in Fifire 1)
terested in (since her regret ratio is small) without prongd We performed a comprehensive experimental evaluation
her utility function. In addition to the car database applic on the 12 existing methods for RMS on synthetic datasets
tion, the regret minimization query can be applied in many6] with different distribution characteristics (e.g. roelated
other scenarios. For example, on an online shopping applicalatasets and anti-correlated datasets) and six commagtdy us
tion, each product is usually described by multiple attielsu  real-world datasets with up to five million tuplds |28} 31,
(e.g., rating and quality). Different users can have défer [11[7[4] 2,21, 44]. The experimental results could give an in
preferences in their minds. For example, some users miglsight to researchers for RMS. According to our experiments,

Fig. 1 Taxonomy of Regret Minimization Queries
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there is no single algorithm which dominates the other al-_Car®) | HP  MPG | fos06(P) fo208(P) foz03(P)
gorithms in all aspects. Specifically, some algorithms.(e.g Bl 14200 2% 6206 3208 gg 3
2d-BISEARCH [[7]) solve RMS optimally but it is restricted pi 180 24 86.4 55.2 133.2
when each tuple in the database is described by 2 attribute  p, 200 8 84.8 46.4 142.4
while some other algorithms (e.g.R&EDY [28]) are heuristic-  Ps 70 8 32.8 20.4 51.4
based, but they are executable on datasets of any dimension-P% 60 24 138524 T 3146.24 T 43;
alities. Some algorithms (e.g.UBE [28]) constructs asolu-  RegretRatioofpr,pa} | —, 888~ 52 = 1824

tion for RMS efficiently but the empirical maximum regret
ratios of their solutions are large, which means that thesuse
can be regretful if they see the solutions, while some other
algorithms (e.g., HITINGSET [2]]) spend more time to re- Similar to [28[31,2l7,28,10], the user's happiness can
turn the solutions but they are good at constructing a smalle modeled by an unknowutility function, denoted byf,
representative subset of the whole database for the useghich is a mappingf: R4 — R.. Denote theutility of a
The best choice of algorithms depends on the user demangsint pin D w.r.t. f by f(p). A high utility indicates thap
The rest of the paper is organized as follows. The foris favored by the user and a point with the highest utility is
mal definition of regret minimization set (RMS) and somea favorite point of the user. For each user, we defiegret
known properties/theoretical lower bounds on this problematio based on his/her utility functiof.

are described in Secti@h 2. In Sectidn 3, we survey the eXiSBefinition 1 ([28]) Given a seSC D and a utility function

ing methods for RMS, summarize the main results for eacf} th { ratioof S Dwrt f. denoted b ¢
method and provide a comprehensive comparison among eregretra L?a(;peD f()(\;)efma)\;g‘f&p)’ eno iaxpeg?()p()s’ )

them. Different variants of RMS are described in Sedibn 4S defined to b maxsep 1(p) ~ M@Xpep F(P)
and experimental evaluations on both real and synthetisdat

. X For example, given a utility functiofy 4 0.6 wherefa p(p) =
are presented in Secti@h 5. Some open problems that haye, p[1] +bx p[2]and a poinpy in Tablel1, the utility ofpg
not yet been explored in the literature are summarized i

/ _ : ; W.rt. fos06is foso06(Psa) = 0.4 x 200+ 0.6 x 8=84.8. The
Sectior6 while conclusions are found in Secfion 7. utilities of remaining points ifD w.r.t. fo4 0.6 are computed

similarly in Table[1. Consider a s&= {p1, ps4} (shown
shaded in Tablgl1). The point with the highest utilitySn
w.r.t. fos06 is P4 and its utility is equal to 84.8 while the

The input to our problem is a tuple Stwith n tuples (i.e., PNt with the highest utility irD w.r.t. fo406 is ps and its
ID| = n) in a d-dimensional space where each dimensiortility is equal t? 86.4. Then, we can computg(S, fo0.)
corresponds to an attribute of a tuple. In this paper, we ago be 1—- %m =1- 848 _1.85%.
sume that the dimensionalityis a fixed constant. Note that Given aseSC D, we have mages f(p) < maxpep f(p)
each tuple irD could be described by more thdmttributes,  (sinceSis a subset oD) and thus, the regret ratio in Def-
but the user will select precisetiyof them that s/he is inter- inition [ ranges from 0 to 1. A user sappy(some papers
ested in, and based on which s/he makes decisions. use the ternmot regretfu) with a given se8if his/her regret
ratio is close to 0 since the highest utility #is close to
the highest utility inD (i.e., the best tuple in the selected set
2.1 Terminologies Sis close to his/her favorite tuple in the whdg. Table[2
summarizes the frequently used notations in the paper.
Unfortunately, in real cases, it is difficult to obtain the
user’s exact utility function. Thus, we assume that the’siser

Table 1 Car Database and Car Utilities

2 Problem Definition

We use the word “tuple” and “point” interchangeably and
use the word “attribute” and “dimension” interchangeahly i

the_ restof the paper. Denote ikt value of ed-dimensional utility function in a_function_dass, denoted blyC. Examples
pointp < D by _p['] wherei € [1,d] anq denote the L2-n0rM ¢ nction classes include thieear [28] andmultiplicative
of pby [|p|. Without loss of generality, we assume that thef n ion class[[32]. Then, theaximum regret ratiof a set

value in each dimension is non-negative and a larger value i 5 qefined over a function clag€. which can be regarded
each dlmer.15|on.|s preferable to al! users. Ifa smallt.er\/lalue-as the worst-case regret ratio w.r.t. a utility functiorFi
preferable in a dimension (e.g., price), we can modify the di

mension by subtracting each value from the maximum valu®efinition 2 ([28]) Given a seSC D and a function class
so that it satisfies the above assumption. Recall that in a c&, themaximum regret ratiof SoverD w.r.t. FC, denoted
database, each car is associated with 2 attributes, HP aRd mrro (S, FC), is defined to be supec (S, ).

MPG. Consider the example in Talle 1. The car database;; We define the maximum regret ratio using the supremum instead

i.e.,D = {p1, P2, P3, P4, Ps, Ps}, contains six 2-dimensional of the maximum since the function clag€ can consist of an infinite
points, each of which represents a car in the database.  number of utility functions and a maximum may not exist.
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| Notation | Meaning | | | Results | Related Materials]
D The set ofd-dimensional points|D| = n) Scale-invariance Theoreni
f(p) The utility of pw.r.t. a functionf RMS Stability Theoreni P
FC A utility function class Lower bound Q(r*rfl ) Theoren B
L The linear utility function class NP-hardness Theorenl#
rp(S f) The regret ratio o5 overD w.r.t. f
mrrp (S FC) The maximum regret ratio @w.r.t. FC Table 3 Known Results about RMS
r The maximum output size, i.85 <r
The required maximum regret ratio, ] N ] o
€ i.e.mrp(SFC)<e¢ of linear utility functions denoted by, which is very pop-
r _ The smallest size of any set ular in modeling user preferencés|28/31[11 217, 23,10]. We
with maximum regret ratio at most relax this assumption in Sectibh 4 by considering other vari
e The smallest maximum regret ratio of ts of RMS. S ificall tility f tiofi is li if
v any set with at most points ants o - Specifically, a utility functiofh is linear i
k-maxpep f(p) | Thek-th highest utility among points iB _f (p) = u-p VV_hereU IS aUU“tY_VeCtOY- The Utl'_lty vectoru
k-rrp (S, ) The (maximum-regret ratio ofS is aq-d|menS|onaI npn-nggaﬂvg vector Whgr[q measures
(k-mrrp(SFC)) the importance of theth dimensional value in the user pref-

Table 2 Frequently Used Notations

To illustrate, assume th&C consists of three utility func-
tions fo406, fo208 andfo7o3 in Table[d. By following a
similar procedure before, we can comptg(S, fo.s06) =
1.85%,rrp (S, fo_z,o_g) =15.9% aner (S, f0.7’0.3) =0%. Then,
the maximum regret ratinrrp(S,FC) is computed to be
Supcrc ro(S, f) = max{1.85% 15.9%, 0%} = 15.9%.

2.2 Problem Definition

Without knowing which function a user exactly usesrié
and the distribution of functions iRC, our goal is to find

a regret minimization seé% C D, optimizing over the worst
case (maximum regret ratio), so that the worst-case regr
is minimized and the happiness @fchuser is guaranteed.
Formally, we define the regret minimization query (RMS).

Problem 1 (The Regret Minimization Query (RMS) [28])
Given a seD and a function clasBC, we want to find a re-
gret minimization se8 C D of at mostr points so that the
maximum regret rationrrp (S, FC) is at moste.

There are two parameters that come into play in RMS
namely (1) the maximum output sizeand (2) the required
maximum regret rati@. We assume that> d. Otherwise,
the maximum regret ratio might not be bounded] [28]. In
traditional RMS, we aim at minimizing (or bounding) the
maximum regret ratio while fixing the output siZze [28, 31].

Recently, however, some existing studies focus on a dug|

version of RMS which aims at minimizing (or bounding)
the output size while fixing the maximum regret rafid 7, 2].

erence. In the rest of this paper, we refer to a utility fumcti
f by its utility vectoru whenFC = L is clear in the context.

2.3 Properties

In this section, we introduce thecale-invarianceand the
stabilityof RMS, which are two important properties of RMS.

Scale-Invariance Intuitively, RMS is said to bscale-invariant
if the maximum regret ratio of a given solution set is the
same even when the attribute value of each poirDirs
scaled by a certain factor. Specifically, we consider a scale
dataseD’ = {pj,...,p,} of D wherep{[j] = Ajpi[j], Aj >

0 for eachj € [1,d]. For example, we can create a scaled
dataseD’ for the car database in Talile 1 by converting HP
1@ watts and MPG to kilometers per liter by settilyg= 750
andA, = 0.425 since 1 HP = 750 watts and 1 MPG = 0.425
kilometers per liter. The following theorem shows that the
definition, maximum regret ratio, is independent of theecal
of each attribute and thus, RMS is scale-invariant.

Theorem 1 (Scale-Invariance[[2B])Let S= {pi,,..., i}
be any subsetofDand S {p{ ,..., p;, } be the correspond-
ing subset of Dwhere D is a scaled dataset of D (i.e., for
each pin D and each pin D', pf[j] = Ajpi[j] whereA; >0
and je [1,d]). We havenrrp(S,L) = mrrp (S, L).

Stability. RMS is said to bestableif the maximum regret
ratio of any seSis independent of thpink points being in-
serted into or deleted from the database. Specifically, @ poi
D is said to be gunk point if it does not have the highest
utility w.r.t. any utility function inL. Intuitively, a junk point

is the point not favored bginyuser. According to the defini-

Moreover, some recent methods relax both the maximum "&ons above, stability is a desirable property since a detab

gret ratio and the output size simultaneousl¥[21,4]. Fer th
ease of illustration, we do not distinguish these variaris e
plicitly but describe them in a unified manner in Prob[ém 1.
In general, any function clas¥ can be applied in RMS
and the utility functions irrC can have an arbitrary distribu-

system is not allowed to manipulate the solution by strategi
cally inserting/deleting a number of junk points not fawbre
by any user. The stability of RMS is summarized below.

Theorem 2 (Stability [28]) Given a set S D and a junk

tion. For the ease of illustration, we first focus on the clasgpoint p,mrrp(SL) = mrrp /15 (S L) = mrrp (S L).
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2.4 Lower Bound and NP-hardness According to Lemmdll, we can obtainrrp(S,L) by
computingn alternative maximum regret ratiesrs ,p, (S,L)

In this section, we summarize the best-known lower boundfor eachp in D (which are easier to be computed). Specifi-

on RMS [44.27]. Informally, we show that by returning a cally, given a poinpin D, we compute itsnrrs ) (S, L) by

set of at most points from the database, it is not possible toformulating it as a linear programming (LP) probleém][28]:

guarantee a maximum regret ratio better tlfﬂz(m*aE_l ). max X

Theorem 3 (Lower Bound [44])For any dimensionality d, st.  (p—qu>=x VgeS

there is a d-dimensional database such that the maxirznum re- p-u=1 (1)
gret ratio of any set of at most r points is at Ie%séﬁr)*ﬂ—_l. ujj>0 vi<j<d

where the optimal objective* is the desired maximum re-

Corollary 1 ([27]) For any dimensionality d and € (0,1], ~ 9retratiomrrs (S L) for the givenp and, by Le_mm_ﬂl,
there is a d-dimensional database such that any RMS amo(S L) is the maximum suck’ value over all points ii.
gorithm needs to return at Iea%t(s—lg)d—zf_l points from the

database to guarantee a maximum regret ratio at ngost 2.6 SQL Extensions

. F|nd.|ng an optimal solynon for RMS (ie., flnd!ng.a MIN" Similar to the SQL extension for the skyline query (i.e., the
imum size set guaranteeing a certain regret ratw find- ¢, v1 1nE OF clause in [6]), SQL'SSELECT statement can
ing the minimum regret set with at maspoints) was first . oy tended by an OptioNREGRET-SET OF WITH

provento be an NP-hard problemin general by Chester et aly,,,se for the regret minimization query (RMS) as follows.
[17]. Formally, we formulate the decision version of RMS

below, whose NP-hardness is shown in Thedrém 4. SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
Problem 2 (Decision-RMS)Given a seD, a functionclass REGRET-SET OF A; [MIN|MAX], ..., Aq [MIN|MAX]

FC, an integer and a real value, we want to determine WITH [SIZE r | ERROR €]

whether there exists a solution &€ D of at mostr points  ORDER BY ...

so that the maximum regret ratiorrp (S, FC) is at moste. whereA, ..., Aq denote thel attributes selected by the user,
e.g., HP, MPG and priceMIN andMAX specify whether a
smaller or a larger value is preferable in the corresponding
dimension. For example, a larger HP is preferiek(anno-

Unfortunately, the NP-hardness proof in [11] requiredtation) whereas a lower price is preferreédlf annotation).
both the size and the dimensionality of the dataset to be aRBesidesr ande are the parameters we constrain in RMS
bitrarily large. In particular, it was left open whethershi (see Probleril1), which represent the output size and the re-
problem is NP-hard for small dimensionalities. Cao et alduired maximum regret ratio, respectively. The query below
[7] and Agarwal et al.[[2] resolved this issue independentlys & SQL query for RMS, which finds at mastars from a
by showing that RMS is NP-hard for al> 3. Tabld sum- car databaseARS with high HP, high MPG and low price.
marizes all the aforementioned known results about RMS. SELECT * FROM CARS

REGRET-SET OF HP MAX, MPG MAX, price MIN
WITH SIZE r

Theorem 4 (NP-Hardness[[1l1]Pecision-RMS is NP-hard.

2.5 Computing Maximum Regret Ratio . .
The semantics dEGRET-SET OF clause are very straight-

forward. The implementation ®EGRET-SET OF clause can

be encapsulated by a new logical operator in a database sys-
tem, say theegretoperator, which is typically executed after
SELECT... FROM... WHERE... GROUP BY... HAVING...
but before thédRDER BY clause. In other words, the imple-

Given a seBC D, itis difficult to compute the maximum re-
gret ratiomrrp (S, L) directly according to Definitionl2 since
there are an infinite number of linear utility functionslin
In practice, we can approximaterrp (S L) by sampling a

finite number of utility functions (e.g., 100,000 utilityria- _ e X A
tions [2]) in L, based on which we compute their regret rg-mentation of existing logical operators (e gcanandjoin)

tios. Thenmrrp(S,L) can be estimated to be the largest re-Of a datfabgse system does not negd to be chgnged and we
gret ratio among them. Alternatively, we can also computé:an easily mtegratg thegretop.erator |nt.o- atradmonal SQIﬁ

the exactnrrp(S,L). This is done by dividing the computa- query processor with some minor modifications on the eX|st.—
tion of mrrp(S,L) into a finite number of smaller problems. ing parser and query optimizer. Same as most of other logi-

Formally, we have the following lemma frofi [28]. cal operators of a datak_)ase system (gsgmandjoin), the_
regret operator can be implemented in different (physical)

Lemma 1 ([28]) mrrp(S,L) = maxpep mrrg py (S, L). ways, which will be discussed shortly in Sectidn 3.
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3 RMS Algorithms (shown in red). Assume that initially, the solution set has a
single line(a, f) (whose lower envelope ig, ) itself) and
In this section, we survey the existing algorithms for RMSthe rotating lineL encounters the intersection point, namely
and they can be classified into three categories according between(a, f) and(b, e). If we include(b,e) into the so-
to the dimensionality and whether they provide theoreticalution set, the lower envelope of the updated solution set be
guarantees on the solutions, as summarized in Table 4.fSpesbmes(a, j,e), which is closer to the target lower envelope
ically, whend = 2, RMS can be solved optimally in poly- (a, j,h,d). Then, the dynamic programming data structure
nomial time. The 2-dimensional exact RMS algorithms arén 2d-SweeprDP will be updated by adding the ling, e).
presented in Sectidn3.1. The heuristic-based algoritimuis a Similar process continues untilreaches the positiyeaxis.
the algorithms with theoretical guaranteeslidimensional 2d-BiSearch (denoted as E-@epvy-1 in [7]). Cao et al.
spaces are discussed n Section 3',2 and Secfion 3'3’, re,Spﬁ?éposed the @ B1SEARCH algorithm [7] for solving RMS
tively. Fma!ly, a theoretl_cal comparison among all exigti optimally, which improves the efficiency oH2SWEEFDP .
.RMS algor|thm§ Is provided in Secp@A while the exper- 2d-BISEARCH is a randomized binary search algorithm
imental comparison appears later in Secﬁbn 5. . and it uses the solutions of Decision-RMS (i.e., Prodlgém 2)
Recall that an algorithm can control either the MaximuMy s subroutines. Specifically, given the maximum output size

EUEEUtf S|zer| or thsl\;esqbﬂrid (rjnaxntnutr: regreltl rattaol(or ¢ r, it maintains a finite number of candidate values of the op-
oth) for solving - LeTe denote the smallest SIz€ OF 151 ¢ and determines the smallest possible value sxfich

any solution set in the dataset whose maximum regret ratifhat there is a solution whose size is at d maximum
is at most andg; denote the smallest maximum regret rat|oregret ratio is at most (which is a Decision-RMS problem)

of any solution set in the dataset with at mpgbints. by performing a binary search on different values of

To solve a Decision-RMS problem, Cao et al. also trans-
formed the datasdd into a set of lines in a dual space and
solved it in a geometric way. Specifically, given a pgirinh

In this section, we present the algorithms, which solve RMS?> they defined a dual line in the parametric fofiA) =
optimally in 2-dimensional spaces (i.€.= 2). Some exist- P[HA +P[2(1—A) with A € [0,1]. Given a seSC D, the
ing algorithms are properly renamed to avoid confusion. UPPer envelopef Sin the dual space can be expressed as

. max,csfp(A) for A € [0,1]. Then, given a real valug and
2d-SweepDP(denoted as@kRMS in [L1]). Chester etal. ﬁtegggr, )it solves [the]Decision—RMS problem by com-
[11]] offered th_e.f|rst exact algorithm for RMS in 2-d|mensaxbnputing a setS of at mostr points such that the upper en-
Spaces. S_pecmcally, they worl_<ed odualspace where each velop of S lies entirelyabovethe scaledupper envelop of
pom.tlnD IS rgpresent_eq by aline and thep, they shqwgd th in the dual space where the scaling factor is 4 (i.e.,
solving RMS in 'Fhe original space is equivalent to fmdmg amaxpesfp(/\) > Maxeen(1— €)fp(A) for A € [0,1]). The
subset of lines in the dual space whcbgwer envelop.es . main result of 2-BISEARCH is shown in the following.
closeto the lower envelope of the dual lines of all points in

D. Note that thdower envelopef a set of lines in the dual thaorem 6 ([7]) Given an integer r, the 21 SEARCH al-

space is a piecewise linear convex chain, which is & SeqUeNggithm returns an optimal solution set of at most r points
of line segments with decreasing slopes where any two cofg . rpms (d= 2) in O(nlogn) time.

secutive line segments have a common end point. Thus, the

proximity between two lower envelopes can be computedby  To jllustrate, assume that there are four dual lines of
evaluating the endpoints of each line segments in lower e jn Figure[3. The upper envelope Bfis shown in solid
velopes. They proposed a plane sweeping algorithm, whiched while the(1 — €)-scaled upper envelop &f is drawn in
computes the desired lower envelope by rotating a line gashed red, which lies entirely below the liteb) in Fig-
from the positivex-axis to positivey-axis. WhenlL encoun-  yre[2. If p is the corresponding point ¢&, b) in the original
ters a new intersection point (of two lines in the dual space)spaceS= {p} is a valid solution for this Decision-RMS.

it checks Whetherth_e Iowerenve_lope Ofthe.currentSeIBC.tIOZd-GraphDP (denoted as @RRMS in [2]). Asudeh et al.

set of lines can be improved using dynamic programming . . . .

The optimality of 21-SWEEFDP is shown as follows [4] transformed RMS in a 2-dimensional dataset into a path
P y ' search problem in a weighted complete grapk= (V,E)

Theorem 5 ([11])Given an integer r, the 2&weerDPal-  WhereV is the set of all skyline pointps, P, .., Ps-1, Ps in
gorithm returns an optimal solution set of at most r pointsP @nd two dummy pointgo andps. 1, sorted in the “clock-
for RMS (d= 2) in O(rn?) time. wise” order anck is the set of edges between every pair of

pointsinV. In particular, for each edgg betweerp; andp;
For example, given a datadetwith 3 dual lines(a, f),  in E, the edge weight, denoted Iy j, is defined to be the
(b,e) and(c,d) in Figurd2, their lower envelopeis, j,h,d)  regret ratio of removing all skyline points betwepnand

3.1 2-dimensional Approaches
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Fig. 2 2d-SweepDP Exampl€ig. 3 Upper Envelope  Fig. 4 2d-BiSearch ExampleFig. 5 2d-GraphDP Example Fig. 6 Orthotope Set

. . Maximum . . Related
Algorithm Output Size Regret Ratio Time Complexity Remark Material
2-Dimen- | 2d-SweePDP [11] 0o(rn?) Theorenlb
sional 2d-BISEARCH 7] r & O(nlogn) Theorenlb
Exact sis # of skyline pointsg
Algorithms 2d-GRAPHDP [4] O(rslogsloge) is # of convex hull points Theoreniy
d-Dimen- GREEDY [28] Oo(nr?)
. Al I > .
B one] S| a0
Algorithms [~ STOREDLIST o(r require pre-processing
quire p
CuBE [28] r O(r~/(d-1)) o(n) Theoren B
] O(=ag7z) € Oo(n+ %) there is a large hidden
d-Dimen- | & KERNELET] r O(r— 7@ On+r& g(dfl>) constant in big-O notations Theoren(D
ThS|ona_l | SPHERE[AA] r O(r 20T o(nr?) Theoreni 1D
Al eo_r;eht:]cqa HITTINGSET O(re) for d < 3 and (A-y)e+y | O+ ¢ + LZ%) yis a user controlled
gorithms O(r¢logre) ford > 4 I ez Theoreni Tl
[2l21] parameter (& y < 1)
O(r) ford <3 and (1—y)&+ O(n+i+ﬂ) Xxy=s
O(rlogr) ford > 4 V)& +Yy v‘“yd v3<d*;:”2
O(log(ny”) - (n
DMM [4] r c&+(1—c¢) | (2min(2™n} ) y, c are user controlled para- Theoreni IR
meters (Kc<1,y>1)
rdlogy ce +(1—c) O(2ny?log(ny®))

Table 4 Summary of Existing RMS Algorithms in terms of (1) Output &ig2) Maximum Regret Ratio and (3) Time Complexity

pj. Then, given the output sizg the goal is to find a path 3.2 d-dimensional Heuristic Approaches

from pp to ps;1 with at mostr intermediate points whose

subscripts are in an increasing order so that the maximunm this section, we summarize the heuristic-based appesach

of the edge weights is minimized, which can be efficientlyfor RMS ind-dimensional spaces, including the Linear Pro-

computed based on dynamic programming (see Flgure 5).gramming (LP) algorithms, namelyr/&EDY [28] and IMp-
Formally, letDP(pi,r’) be the optimal solution of a path GReeDY [44], and the geometric algorithms, namelf-G

starting fromp; to ps;1 with at mostr’ <r intermediate oGREeEDY [31] and SToREDL IST [31]. Note that all heuris-

points which minimizes the maximum edge weights. Clearlytic algorithms presented here mainly differ in implementa-

DP(po,r) is the desired solution for RMS. The recursive for- tions and thus, they produce exactly the same solution sets.

mula for the dynamic programming is given as follows: . . o )
Greedy [28]. GREEDY is the first heuristic algorithm for

DP(pi,r') = rJn>iin{max{WU ,DP(pj,r' —1)}} RMS, which performs well by returning a s&tvith a small
h is initiali hatth _ maximum regret ratio empirically. Initiallys can be initial-
whereDP(p;, 0) is initialized to bew s,.1. Note that the pair- ized to be the point with the highest first dimensional value

Wi?‘e_ regret ratios (i._e., the ed.ge Weigthrt (V.E)) are [28] (or d points where théth point has the highestth di-
efficiently computed irl[4] by simply checking the end POINtS ensional value [31]). Then,&EDY iteratively adds more
of each edge (instead of solving the LPs in Sedfion 2). Th

A 0.0 DP i ed as fol %oints intoSuntil |[S| =r or mrrp(S L) < € (depending on
performance ot d-GRAPHDF IS summarized as follows. - ypich parameters we are controlling). At each iterations, th

Theorem 7 ([4]) Given an integer r, the 26GRAPHDP al-  point in D that realizes the current maximum regret ratio
gorithm returns an optimal set of at most r points for RMSmrrp(S,L) is included into the current s& We say that
(d=2)in O(rslogslogc) time where s is the number of sky- a pointq realizesthe maximum regret ratienrrp(S,L) if
line points in D and c is the number of points in D, whichmrrp(S,L) = mrrgq,(S,L) [28]. Such a poing is deter-
are also on the boundary of the convex hull of D (i.e., themined by computingnrrg ;1 (S,L) using the LP[{IL) for
smallest convex set containing D). eachp € D and then, we havg= argmaxep mrrg p} (S L).
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Itr s mrrs,p) (SL) computations in Tablg 5 where maximum regret ratios in the
PL [ P2 [ Ps [ Pa[Ps] Ps same column are non-increasing from top to bottom.

; {é1p4p}4} 0'(?0 8:;3 8:% 8 8 0':7 We show how LP computations are reducecMRGREEDY.

3 s, 627 paT 0 o To3l o o 0 Assume that points in Tallé 5 are processed from left to right

4 | {p1, P2, P3Pa) 0 0 0 0 o0 0 in each iteration of MPGREEDY. In the first iteration, we

computed the maximum regret ratios for all point®inJust
before we procesps in the second iteration, we know that
the upper bound ofirrs, (s} (S, L) isub= mrrg p1 (S1, L) =

Example 1Consider our car database in Table 1. Assumé and the largest maximum regret ratio observed so far is
that we want a solution S&C D with mrrp(S,L) = 0. We ~ MIT* = MaXc [ 4 mrrs, i3 (S, L) = 0.2. Sinceub < mrr,
illustrate how GREEDY works in Tabldb (where each cell We can directly conclude that cannot be the point with the
contains a maximum regret ratiorrg , (S.L)). Assume Ia_rg_est maximum regret ratio and _skip its LP computa_ltion.
thatS s initialized to be{ps} which is the point with the Similarly, some other LP computations can also be skipped
highest first dimensional value. Then, in the first iteration N IMPGREEDY and they are shown shaded in Telle 5

p1 is the point realizing the current maximum regret ratio
since p; = argmaxep mrrg,(py (S,L) (shown in bold) and
p1 is inserted tdS. This process continues until we find that
mrrp(S,L) = 0 after 4 iterations an8= { p1, P2, P3, P4}-

Table 5 Greedy & ImpGreedy Example

Note that Qiu et al.[34] also considered a variation of
IMPGREEDY by applying a randomized sampling énbe-
fore performing the greedy selection to further reduce the
number of LP computations. However, they sacrificed the
quality of the solution set (e.g., the maximum regret ratio)
for better efficiency and there is no theoretical guarantee o
the quality of the solution set provided in[34].

ImpGreedy [44]34]. To determine the point realizing the
current maximum regret ratio, FEEDY solves the LP[{1)
for each point inD in every iteration, which is very expen-
sive. MPGREEDY overcomes this deficiency by identifying GeoGreedy [31]. GEOGREEDY follows the same frame-
the unnecessary LP computations and thus, speeds up tWerk as that in @EeDy. However, it differs from GEEDY
overall process. Specifically, it develops the followingipu By computingmrrg 15, (S L) using thecritical ratio of p
ning strategies for reducing the LP computations: (whose formal definition is given shortly) instead of the P, (
Before we introduce the critical ratio, we present some

1. Upper bounding: Sinc_e we \_Nantthe pointwith t_he I_argesferminology first. For each poirg € D, we define theor-
mrrg,(p)(S,L) in every iteration, MPGREEDY maintains thotope sebf p [31], denoted byOrth(p), to be a set of

an upper_bound OrhrrSJ{p}(.S L) for eachp during the . d-dimensional points constructed B9, p[1]} x {0, p[2]} x
computation. If the bound is at most the largest maxi- {0, pld]}. That is, for eacti € [1,d], thei-dimensional

mum regret ratio observed so far, we skip the exact co Jalue of a pointirOrth(p) is equal to either 0 opli]. Given

Emf"‘ticl’ndc’fg“::&{p}(ﬁ L) .sincep.ca[r;n%t be the pt?int tg a setSC D, we define the orthotope set &f denoted by
f inciuded. Lor.ma Y, glver:jgmh ,ft"e u.ppelr oun Orth(S), to be{J,sOrth(p) and we letConv(S) be thecon-
of mrrs,(p} (S L) is presented in the following lemma. o, b1l the smallest convex set, of the orthotope se of

Lemma 2 ( [44[34])Given a set S and a point p in D, Definition 3 ([31]) Given a seSC D and a poinp € D, the

mrr L) <mrr S,L)where =S and " . . ) )
q isiﬁg}lf'zt pzo_int adsdue{g}t(o S i21 previous grge{c?; process(?mlcal ratio of pw.r.t. S, denoted byRatio(S, p), is defined

to be mir’{%, 1}, wherep' is the intersection between the

ray shooting fromO to p and the surface dfonv(S).
2. Invariant checking: The LP solutions obtained in previ-
ous iterations can be re-used directly for computing the ~ The following lemma shows that the definition of crit-
mrrs,(p} (S) in the current iteration if certain conditions ical ratio cRatio(S, p) is closely related tanrrg,p (S L)
are satisfied. Formally, the lemma is shown as follows. and thus, we can compuigrs () (S L) in a geometric way
(i.e., by computing the critical ratio using a ray intersea}.
Lemma 3 ( [44]) Given a set S and a point p in D, we
havemrrsJ{p}(S, L) = ml’l’gu{p}(sl, L) if (p —q)- Ug > Lemma 4 (m:l) mrrSJ{p}(S Ly=1- cRatio(S p)
mrrgugpy (S, L) where $= S\ {q}, q is the last point ) . .
added to S in previous greedy process agisthe utility Example 3Consider our running example in Table 1 where

vector such thatrg p) (S, Ug) = mrrgyp (S, L). D= {p}, P2, P3, P4, Ps, Ps}. For the ease of preseqtatiqn, we
normalize HP/MPG to (0,1] and visualize the points in Fig-

Example 2Let § be the solution set obtained in théh it- ure[8 where theX; and X, coordinate represent HP and
eration in Tabldb. According to Lemnfa 2, we know thatMPG, respectively. The orthotope s@tth(pz) = {p2, 5,
mrrgugpy (S, L) <mrrg up(S-1,L). Itconforms with our  p3, (0,0)} is shown in Figuréle wherg), = (0, p2[2]) and
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p5 = (p2(1],0). Similarly, Orth(p3) is shown in the same introduced by Agarwal et al. in[1]. Specifically, a &€ D
figure. GiverS= { p, ps}, we defineOrth(S) to beOrth(p2)U s said to be am-kernel ofD if ?:;fjj:g:ﬂ::gii\\',% >1—¢
Orth(ps). The convex hullConv(S) is shown in Figurél7.  for each non-zero vectar Intuitively, ane-kernel ofD pre-
Given p; andS= {pz, ps}, the Intersection betwee@p:  serves the “width” ofD for each direction; e.g., Figufd 9
and the surface ofonv(S) is denoted tawl' By Lemma,  shows a seb (dot points), itss-kernelS (points enclosed by
mrrgp,} (S L) = 1—cRatio(S p1) = Hg—iH =0.9. g  circles), the width oD (denoted byw) and the width ofS
) (which is(1— £)w) along one particular direction

StoredLlst[Bj]. STORE_DL'ST' proposed by Pe”g gtml], It was shown in[[Z,17] that the definition &fkernel is
is a materialized version of €0GREEDY. Specifically, it cjosely related to RMS. Specifically, 8 is an e-kernel of
pre-computes a setof candidate points for RMS, callgthy (1) < ¢, which indicates tha$ can be returned
points in D, based onwhich it runs E0GREEDY and mate- 54 5 solution for RMS. Moreover, it is well-known that one

rializes the results. T.h.en, Whe_n the user issues a query, RMSn compute ag-kernel of sizeO(s*dﬁ_l) according to the
can be answered efficiently with the materialized results. procedure in[L.45]. The following theorem follows diract!

Theorem 9 ([2[7])Given a real value > 0, one can com-

3.3 d-dimensional Theoretical Approaches pute a set & D of size std;zl) with mrrp (S) < e.

In this section, we summarize tedimensional algorithms Cao et al.[[7] translated Theordmh 9 to an approximate
(d>2), namely @BE [28], e-KERNEL [2[7], SPHERE[44],  algorithm for RMS for obtaining am-kernel of at most
HITTING SET [2[21] and DMM [4], which provide theoret- points. This is done by setting a proper valueeah Theo-

ical guarantees on the solutions returned for RMS. rem[9. The result is summarized in the following corollary.

Cube [28]. Cusk is the first algorithm which provides a Corollary 2 ([]) Given an integer r, one can compute a set
provable theoretical guarantee on solutions returned®®R 5 p of at most r points witnrrp (S) = o(r*:ﬁ—l)_
Specifically, after some initialization steps€e constructs
the solution se8 by first, dividing the data space into mul- ~ Combining the results above with the lower bounds pre-
tiple hypercubes based on the figst 1 dimensions of the Sented in Sectionl Z-KERNEL is the firstasymptotical op-
data space, and second, picking a point from each hypep'_mal algorithm for RMS. Another advantage &fK ERNEL
cube, which has the largestdimensional value in that hy- is that it allows for maintaining the solution efficiently @
percube and inserting that point in® Since QWBE picks the dataset is changed by point insertions and deletioihs wit
one point from each hypercube, the number of hypercubedUt building the entire solution from scratch. However, the
constructed in OBE has to be determined appropriately ac-hidden constant behind the big-O notationscek ERNEL
cording to the maximum output size. For example, in the 31S €xtremely large (see a more detailed discussion i [44]),
dimensional example in Figu 8, the data space is dividefhaking it difficult to be applied in real scenarios.
into four hypercubes based on the first two dimensions an8phere [44].Recently, ®HERE, which is also an asymptot-
the points, namelg;, s;,s3 andss, which have the largest ical optimal algorithm for RMS, was proposed by Xie et al.
third dimensional value in each hypercube, are inserted tf#4] to reduce the hidden constantdrK ERNEL. The core
the solution se8. According to the construction above, no of SPHEREconstructs a small set of “representative” utility
matter which hypercube the user’s favorite point is in, ¢her functions inL and then, includes the points Dwith high
is a pointp in Swhich is in the same hypercube and thus, theutilities w.r.t. those utility functions into the soluticet.
utility of pis close to the utility of the user’s favorite point. Formally, HERECOMputes a small sét of utility vec-
For example, if a user’s favorite point & as indicated in tors such that for each utility vecterin L, there is a util-
Figure[®, there exists a point, say which is inSand isin ity vector in U, denoted by, anddist(u,u’) < & where
the same hypercube g8. Thus,s; has its utility close to  dist(u,u’) denotes the Euclidean distance betweemdu’,
the utility of p*. Sinces; has been included int§, the user andd is a non-negative similarity threshold (i.a.is similar
will be satisfied withS and we can bound the regret ratio. to U'). Intuitively, U can be regarded as a representative set
Formally, we provide its theoretical guarantee as follows. of utility vectors that araniformly distributed in the utility
Theorem 8 ([28])Given an integer rCUBE returns a set S space sugh that fgmy gtility yector uin L, there is a u.ti.l'
. d-1 ity vector inU, whichu is similar to. Then, for each utility
of at most r points such thatrrp(S,L) < ——S———. ;- . . !
r—d41) @1 4d-1 vectoru’ in U, SPHERE searches it®-basis(to be defined
shortly) inD, which is then included into the solution st
GivenB C D and a vectot/ in U, we define the distance
betweerB andu/, denoted bylist(B, U’), to be the minimum
e-Kernel [2I[7]. e-KERNEL improves the upper bound in distance between the endpoint of veatoand a point in the
CuBE by utilizing the concept ofé-kernel”, which was first  convex hulbf B. Then, we define theD-basis” as follows.

Specifically, for a fixed dimensionalityyrp (S,L) = O(rfﬁé1 ).
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Definition 4 ([44]) Given a seB C D and a utility vector three particular function$o 406, fo.2,08 andfg703 shown
U in U, Bis said to be &-basis ofu’ if (1) for each proper in Table[l. Take the utility functiorfp 406 as an example.
subseB’ of B (i.e.,B' C B), we havalist(B,u’) <dist(B’,u’) ~ We define the seRy 406 to be{qe D | fo406(q) > (1—
and (2) we haveist(B,u’) = dist(D, U’). g)maxpep fo406(P)} ={qe D | fos06(q) > 0.9x86.4=
77.76} = {ps, pa}. Similarly, we haveRy208 = {p2, P3},
Ro0.7,03 = {P3, P4} and thusR = {Ro 4,06, R0.208,R07,03}-
According to the way we defing, it can be easily ver-
ified that a setSC D is a hitting setof 5 (i.e., SNR #
0 for all Re R) if and only if mrrp(S/L) < €. For exam-
ple, givene = 0.1, the setS= {ps} is a hitting set ofy =

Intuitively, the D-basis ofu’ is a minimal subset ob
whose distance ta’ is equal to the distance betweén
andu’. For example, consider the car database in Figure 1
where the endpoint of a vectaf in U is indicated. The
distance betweeb andu/, dist(D,u’), is drawn in dashed,

which is the minimum distance between the endpoint’of :
L : S (D,R) whereR = {Ry.4,06,R0.2,038:Ro.7,03} (defined above)
and a point in theeonvex hullof D (drawn in solid lines). and thus,mrro(S.{ fo406, fo208, fo703}) < € = 0.1 By

Point g, represented by a cross point, is the point in the .. . ; . .
' o A utilizing the well-known approximate algorithm for the it
convex hull ofD achieving such minimum distance. Tbe 9 PP 9

. . . ti t probl J0] and allowi imati both
basis ot 1B~ {py ps) sincedis(B,u/) = iseD.u) — SR O SR D D T e
dist({q},u) and, for eactB’ C B, dist(B,u’) < dist(B/,u) ¢ P

(i.e..dist(B. ) < dist({ po}, ) anddist(B, ) < dist({ p} . U)) ously, HTTINGSET solves RMS by (1) sampling a finite

It was shown in[[44] that, given d in U, the points in numbe_r of utility functions irL, (2).constructlng_the corre-
. ; . - , o sponding set system and (3) solving the resulting hittirig se
the D-basis ofu’ has high utilities w.r.tu’. For each utility : .
. ) . , . . problem. Formally, the result is summarized as follows.
vectoru in L, since theD-basis ofu’ has been included into
the solution seS andu andu’ are similar, the points s~ Theorem 11 ([2])Givene and a user-controlled parameter
also have high utilities w.r.u and thus, the regret ratio can 0<y<1, HITTINGSET returns a set S such thairrp(S,L) <
be bounded. Formally, we have the following theorem. (1 —Yy)é+yand|§ = O(r) for d < 3and|S| = (r¢logr.)
for d > 4 where £ is the smallest size of any solution set in

Theorem 10 ([44])Given an integer r SPHEREreturns a the dataset whose maximum regret ratio is at ngost

set S of at most r points such thatrp(S,L) <
Note that the boundl — y)¢ + y on the maximum re-

gret ratio in Theoreri 11 can be made arbitrarily close to

. 1 (d—1)d by increasing the execution time (i.e., sampling moretutili
ming 1- d’ 1 2 functions). Kumar et al[]21] improved the execution time
max{ 1/4, L(r?g) ﬁJ } +(d-1)d of HITTINGSET by applying it on a pre-computestkernel
of D. Besides, Agarwal et al.[2] extended therHING SET

algorithm to find a solution set for RMS with size at most
crlogr (for a given output size constraintwherecis an ap-
propriate constant by runningIFriNG SET multiple times
HittingSet [2]21]. RMS was first formulated as a hitting set in a binary search manner on different values of maximum
problem in [2]. Specifically, given the s&, [2] constructs regret ratios. Formally, the result is summarized below.

? sglt syfster; (or aéarége syStte)H]f(DR’R) where(l;tis a q Corollary 3 ([2]) Given r and a user controlled parameter
amily of subsets ob. Each subseRin R is created based <y <1 HITTINGSET returns a set S of points such that

on a particular utility functiorf in L andR is defined to be _

{geD| f(q) > (1—¢&)maxep f(p)}. That is, the utility mro(SL) < (1= y)& +y and |8 = O(r) for d < 3 and

of any point inR is at least(1 — ¢) of the utility of user’s

(whose utility function isf) favorite point in the whol®.
To illustrate, assume thatis set to be 0.1 and we con- DMM [4]. DMM works similarly as HTTINGSET by dis-

struct the set systefn = (D, R) based on the datasetand  cretizing the utility space based on a user-controlledrpara

Specifically, for a fixed dimensionalityyrp (S L) = O(r*d%1 ).

|S| = (rlogr) for d > 4 whereg; is the smallest maximum
regret ratio of any set in the dataset with at most r points.
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eter and formulating RMS as matrix min-maxproblem — Optimal?Algorithm A returns an optimal solution.

[3€]. Specifically, consider a matriM where each row cor-  — Arbitrary Dimensionality?Algorithm A could be exe-
responds to a point i® and each column correspondsto a  cuted on datasets with an arbitrary dimensionality.
utility function in L (see FigurE1 as an example). Each cell — Parameter-freeAlgorithm A does not require users to
M[p, f] of the matrix is the regret ratio gf w.r.t. f. Given specify additional parameters for executing the algorithm
a setS of r points and a utility functiorf, the regret ratio

rrp (S, f) can be computed to be the minimum value (amoansti
the selected rows of points inS, shown in shaded in Fig-
ure[I1) on the corresponding column bf and the maxi-

All aspects are important to RMS since (1) a determin-
¢ algorithm could be more desirable than a randomized
algorithm in some applications since it returns stable-solu

mum regret rationrro (S, L) is estimated to be the maximum tions; (2) an algorithm which returns a solution with theo-
9 1o retical bounds is more useful than an algorithm which does

assigned regret ratio among all columns\vin Then, RMS not. In particular, the tighter the bound, the more deseabl

is transformed to a min-max problem &, which can be . . : .
. . the algorithm. For example, an optimal algorithm is better
solved as a number of set-cover problems in a binary Sear(iﬁan an asymptotically optimal one, which is then bettentha
manner. Its theoretical performance is shown as follows. : ' . .
a theoretically bounded (but not asymptotically optim#d) a

Theorem 12 ([4])Given r and a user-controlled parameter gorithm; (3) an algorithm which does not have a restriction-
a € [0, 5], DMM returns a set S of at most r points such thatfree MRR bound may give aimvalid bound (e.g., a bound
mrrp(S L) < c& + (1 c) whereg; is the smallest maximum greater than 1) on the maximum regret ratio, which implies
regret ratio of any solution set in the dataset with at most rthat this algorithm does not have a useful bound since the

. coga’/2) cog 11/4) ; . 1—cos—1g maximum regret ratio itself is a real number from 0 to 1;
PoINts, &= Zcogmia-—aryz) anda’ = 2arcsit 2 ) (4) an algoritghm which could not be executed on datasets

of some dimensionalities could have limited generalityd an

While DMM runs inO(nlogn) time in theory, its depen-  (5) a parameter-free algorithm is user-friendly sinceirsgtt
dence on the parameteris exponential. To improve its ef- appropriate parameters requires additional user effort.
ficiency, we can solve the matrix min-max problem approxi-  Consider the comparison summarized in Table 4 and Ta-
mately by solving set-cover problems using the well-knowrble[@. Due to the NP-harness of the problem, only the 2-
greedy strategy, which, however, adds another level of apdimensional exact algorithms returns optimal solutions fo
proximation and increases the output size by a log-factor. RMS. Among them, @-BISEARCH has a clearly better time
complexity ©(nlogn)) than 21-SweerPDP (O(rn?)) while
2d-GRAPHDP is the best algorithm when the number of
skyline/convex hull points in the dataset is much smaller

After surveving different RMS alaorithms. we provide a brie than the dataset size. Unfortunately, the 2-dimensional ex
ying 9 Wep act algorithms are restricted when the datasets have two at-

theoretical comparison among them. In particular, in addi- . . :
. . ; . tributes only. In contrast, the heuristic algorithms can be
tion to the complexity analysis shown in Talble 4, we also

. . ) . . “executed on datasets of any dimensionality. However, they
consider the following aspects which were considered in th(ta . . . .
. . . ail to provide any theoretical guarantee on the solutions.
literature [7/,44] for evaluating the theoretical performa

: . ~ Among them, REEDY and IMPGREEDY scale better than
of an algorithma for RMS (see the summary in Talfle 6): GEOGREEDY, whose performance degrades when the di-

— Deterministic?Algorithm Ais a deterministic algorithm. mensionality is large due to its exponential dependenal on

— Has BoundsAlgorithm A provides theoretical bounds Finally,among altl-dimensional theoretical algorithmspy8e
on the size/maximum regret ratio of the returned set. has the smallest time complexity since it constructs the-sol

— Restriction-free MRR boundhe definition of restriction- tion set by scanning the database once while the time com-
free MRR bound was first proposedin[44]. Specifically, plexities of most of the other theoretical algorithms expo-
it means that when there is a bound on the maximum reaentially depend oml. Meanwhile, WBE is the first the-
gretratio, there is no restriction on the bound. Recall thabretically bounded algorithm for RMS, whose bound is im-
the maximum regret ratio is a real value between 0 angroved later by BHEREande-K ERNEL. Although both $HERE
1. If the bound of the maximum regret ratio of the so-and e-KERNEL provide asymptotically optimal guarantees
lution set returned by is in the range between 0 and 1 on the solutions, the large hidden constant in the bound of
for anysetting, we say that algorithAhas a restriction- &-KERNEL prohibits it from being a restriction-free algo-
free MRR bound. Otherwise, the bound is in the rangeithm. Moreover, in practices-KERNEL and HTTINGSET
between 0 and 1 in somestrictedcases and thus, we are usually implemented in arandomized mannermhG SET
say thatA does not have a restriction-free MRR bound. and DMM are not parameter-free algorithms since they re-

— Asymptotically Optimal&Algorithm Areturns an asymp- quire additional parameters from users and they relax both
totically optimal solution for RMS. the output size and maximum regret ratio simultaneously.

3.4 Theoretical Comparison
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Algorithm Determin- Has Theoretical Guarantees? Arbitrary | Parameter-
istic? Has Restriction-free | Asymptotically Optimal? Dimen- free
Bounds?| MRR Bound? Optimal? " | sionality?
2-Dimen- 2d-SweePDP [11] v v v v v v
sional Exact| 2d-BISEARCH v v v v v v
Algorithms 2d-GRAPHDP v v v v v v
d-Dimen- GREEDY [2 v v v
sional IMPGREEDY v v v
Heuristic GEOGREEDY [31 v v v
Algorithms STOREDLIST[31 v v v
) CuBE [28] v v v v v
dfilonr:gln_ £-KERNEL [2/[7] v v v v
. SPHERE[44] v v v v v v
Theoretical
Algorithms HITTING SET [2121] v v v
DMM [ v v v v

Table 6 Theoretical Comparison among Existing RMS Algorithms

4 Variants

2d-kRMS [11//4].2d-SweePDP [11] and 2-BISEARCH [4]
can be extended to handlikBMS in 2-dimensional spaces.

In this section, we summarize the variants of RMS studiedpecifically, 2I-SweePDP can be modified to SolMRMS

in the literature. In particular, we present the generdlize py finding a setS of lines in the dual space whose lower
kRMS problemin Section 4.1 and RMS over non-linear util-envelope (which corresponds to the top-ranked poin& in
ity function class in Section 4.2, which are two major vari-is close tothe top-k rank contounf the dual lines of all

ants of RMS. Other variants are shown in Secfion 4.3.

4.1 The KRMS Problem

points inD (which corresponds to theranked points iD).
Similarly, 2d-BI1SEARCH can solvekRMS optimally by de-
termining the candidate values of the optingalhere,¢ is
the maximurnk-regret ratio rather than the maximum regret
ratio in RMS) implicitly based on a line sweeping algorithm

A major variant of RM_S is thé&RMS problem proposed.by _since there are much more such values than those in RMS.
Chester et al[J11], which can be regarded as a generalizatio

of the traditional RMS problem. Denote tkeh highest util-
ity among points irD by k-max,cp f(p). In this variant, the
“regretratio” (“maximum regret ratio”) is generalized teet
“k-regret ratio” (“maximunk-regret ratio”).

Definition 5 ([11]) Given a setSC D, an integelk and a
utility function f, thek-regret ratioof SoverD w.r.t. f, de-

noted byk-rrp(S, 1), is defined to be ma0,1— %j%}-

Definition 6 ([11]) Given a selSC D and a function class
FC, the maximum k-regret rati@f S over D w.r.t. FC, de-
noted byk-mrrp (S, FC), is defined to be sypgc k-rrp (S, ).

Different from RMS where a user is happy wi#tif the
highest utility inSis close to the highest utility iD, a user
will be happy withSin kRMS and his/hek-regret ratio is
0 if the highest utility inSis at least thé-th highest utility
in D. Similar to RMS, the goal okRMS is to optimize the
worst-casek-regret ratio, i.e., we want a s8tC D such that
the maximunk-regret ratiok-mrrp (S, L) is minimized.

Whenk is set to be 1kRMS is reduced to the original
RMS problem. Besides, Bis a solution of RMS, it is also

kRMS-Greedy [11]. Chester et al. extendedRGEDY to a
randomized algorithm for the more genekRIMS problem.
Intuitively, it decomposes each iteration in the greedy-pro
cess, which identifies the point realizing the current maxi-
mumk-regret ratio, into a set of 2RMS problems and looks
for a common solution. Specifically, given a utility funatio

f, if pis thek-ranked point inD w.r.t. f, D must be able
to be divided intdk — 1 partitions, namelDy,...,Dy_1, SO
thatp is the 2-ranked point on each of thdse 1 partitions
(i.e., there is exactly one point in each partition with ateg
utility than p). However, it is difficult to find such a partition
without the knowledge of. They used a random partition-
ing approach to construct candidate partitions. In paeicu
they modified the LP{1) to tell whether the partitioning is
successful and whether they need to try new partitions.

kRMS-HittingSet [2121]. HITTINGSET [2,21] can be eas-
ily extended to handling thktRMS problem by re-defining
the set systerfl = (D, R) where each s&®in R is defined to
be{geD| f(q) > (1—&)k-maxep f(p)}. In other words,
the utility of any pointin the redefined sRis at least1—¢)

of thek-th highest utility among all points iD. The remain-

a solution okRMS. However, there can be another solutioning procedure okRMS-HITTING SET is kept unchanged.

for KRMS whose size and maximukeregret ratio are much

Whenk is large, Kumar et al[21] further improved the

smaller. Next, we show how to extend some algorithms origefficiency by sampling a smaller sub&8tof D. It was proven

inally designed for RMS to find a better solution f&RMS.

in [21] that, given any functiorf in L, we can approximate
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the k-ranked point inD by thek'-ranked point inD’ with a FC Lower Upper Bound

high probability wheré! < k and|D’| < |D| so that we can Bound | MINWIDTH [L3] | MiNVAR [52]
solve the originakRMS problem by solving an alternative | Convex | Q(1/r®) O(1/ra1)

K'RMS problem with a smaller input size in a shorter time. | _Concave | Q(1/r?) O(l/ra%) -
kRMS-DMM. Similar to HTTINGSET [2J21], DMM [4] CESp<1) | Q(1/br’) | O(1/bra) O(1/ra1)
can also be extended to suppkiRMS with a minor modifi- | CES0>1) | Q(1/br?) O(1/r®@T) -
cation. This is done by re-defining each ddllp, f] of M to MUF Q(1/r?) - O(in(1+1/ra1))

be thek-regret ratio ofp w.r.t. f (instead of the regret ratio).
The remaining steps dRMS-DMM are kept unchanged.
Remark. KRMS can be further generalized to the topMS
problem[21] where we want a s8such that thé-th highest
utility in Sis close to the-th highest utility inD for every

i € [1,K]. Intuitively, the goal of topgk RMS is to find a set
S approximating the tof-query well. A multi-hitting set
based algorithm was proposed|[in][21] to solve kdRMS.

4.2 RMS over Non-Linear Utility Functions

In Sectior B, we focus on RMS wheF€ = L, the class of
linear utility functions. Now, we relax this assumption by
considering different types of non-linear utility funati.

Definition 7 (Convex Function)A function f is said to be
convex oveiR if for all x;,x, > 0 andA € [0,1], we have
fFAXL+ (1= A)%2) SAT(x0)+ (1—A)f(x).

Definition 8 (Concave Function)A function f is said to be
concave oveR . if —f is a convex function.

Definition 9 (CES Function) A function f is said to be a
Constant Elasticity of Substitution (CES) function oiliéir

if fisintheformf(p)= (3% ;& p[i]b)% whereb > 0,5 > 0.

Definition 10 (MUF) A function f is said to be a Multi-
plicative function (MUF) oveRY if f is in the formf (p) =
M%, pli]% where eactw; > 0 andy? ; oj < 1.

Given a functionf, consider themarginal gainon its

utility f(p) caused by every unit increment on a particu-

lar dimensional value of poinp. If f is a linear function
wheref(p) = u- p= S ufi]p]i], it corresponds to eonstant
marginal gain sincd (p) always increased]i] units for ev-
ery unit increment on theth dimensional value op (i.e.,

Table 7 RMS over Non-linear Utility Function Classes

— Concave Function ClasskC is a concave function class
if FC={f|f(p)=yS%, fi(p[i]) where eact; is acon-
cavefunction overR. }. For the purpose of illustration,
we stick to a particular concave function clas8 =
{f | f(p) =3 ,apli]> wherea; > 0 and 0< b < 1};
e.g.f(p) =3, /pli] is in the concave function class.
CES Function Class.FC is said to be a CES function
class ifFC = {f | f is a CES functioh. The CES func-
tion class is a popular function class in Economics.
Multiplicative Function (MUF) Class. FC is said to be
a MUF class iffC = {f | f is a MUF}. The MUF class
is a function class that has more expressive power in
modeling thediminishing marginal rate of substitution
(DMRS)[41] (a popular economic concept).

Note that according td [13,32], the scale-invariance of
RMS is preserved under all non-linear utility function des
defined above. In the following, we summarize the known
lower bounds on RMS when considering non-linear utility
function classes and the best-known algorithms proposed
(both theoretical and heuristic) for solving non-linear BM

Lower bound. Assume that the maximum output size is
fixed to ber. The authors in[13,32] derived the lower bounds
on the maximum regret ratio over each of the non-linear
function classes described above in 2-dimensional spaces
and their main results are summarized in Table 7.

Theoretical Algorithms. CuBE [28] was extended to han-
dling non-linear function classes with provable guarastee
in [13/32]. Specifically, Kessler Faulkner et dl. [13] pro-
posed MNWIDTH, which omits empty hypercubes irvBe

so that sparse datasets can be better handled. Qi etlal. [32]
proposed MN VAR, which performs well even when the dataset

p[i]). In comparison, non-linear functions correspond to othgg siewed. Their corresponding bounds on the maximum re-
types of marginal gains; e.g., a convex (concave) functiogyret ratio for a fixed output sizeare shown in Tablgl 7.

corresponds to an increasing (decreasing) marginal gain.
Based on the definitions above, we summarize the no
linear function classes commonly studied in the literature

— Convex Function ClassFC is said to be a convex func-
tion class ifFC = {f | f(p) = T, fi(p[i]) where each
fi is aconvexfunction overR, }. For the purpose of il-

n

Heuristic Algorithms. Algorithms were also proposed for
solving non-linear RMS heuristically. Specifically,R&A-
GREEDY [[13] constructs a solution iteratively by includ-
ing the point that greatest increases #neaunder the cur-
rent set at each iteration.NGLE [13] computes a set of di-
rections discretizing the polar space and identifies the far

lustration, we stick to a particular convex function classthest point in each direction, which is added to the solution

FC={f| f(p) = YL, ap[i]> wherea > 0 andb > 1};
e.g.,f(p) = T4, pli]?is in the convex function class.

Max DiF [32] greedily selects points according to an upper
bound on the maximum regret ratio for each poinDin
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4.3 Other Variants which is also known as the expected regret ratio. To improve
the computational efficiency, they used sampling to esémat

Many other variants of RMS were also studied in the literathe average regret ratio, which is within an additive dis&an

ture and they are summarized in this section. to its true value with a high probability. It was proven in

Interactive RMS. Nanongkai et al[[27] enhanced traditional[46/47/33] that the average regret ratio is a monotonically
RMS with user interactionsIntuitively, instead of asking Nhon-increasing supermodular set function. Thus, they find
the user for the exact utility functions directly, they ingpl & set with small average regret ratio using the well-known
itly learned the user’s utility function by asking the user t greedy algorithm for minimizing a supermodular set func-
provide some “hints”. Specifically, at each interactionsaru  tion [18]. Specifically, the solutioSis initialized to be the
is presented with a short list of points and s/he is askedto invhole databas® and then they iteratively remove points
dicate the point s/he favors the most among them. Based dfPm Suntil there are at mostpoints inS. At each iteration,
the user feedback, the utility function is learned impljcit the point which minimizes the average regret raticSaé
and finally, the user’s favorite point can be identified. Useemoved. Unfortunately, the above algorithm is very ineffi-
interactions are shown to be very usefu|[27]: they reduc§ient and it has a cubic execution time in the dataset size.
both the user regret and the output sezg@onentially The Various techniques were proposed to improve its em-
main result known for interactive RMS is shown as follows.pirical performance. For example, lazy evaluations, which
maintain a list of lower bounds on the average regret ratios,
Theorem 13 ([27])Given areal valug > 0, one can guar- were considered i [33] to remove unnecessary computa-
antee are regretratio by displaying @slogs ) pointstothe  tions. Pre-computations and re-used computations wege als
user where s is the number of points displayed at each intefytjlized in [47] to improve the efficiency. In particular, wh
action (i.e., the number of rounds of interactions i$d; £)).  only considering linear utility functions on a 2-dimensin
dataset, a dynamic programming based algorithm was pro-

. _ osed in to solve the average RMS problem optimally.
In most casess is small and it can be regarded as ap an g P P ¥

fixed constant. Compared with the traditional RMS algo-Diversified RMS. Hussain et al.[[17] examined how user
rithms presented in Sectigh 3 (e.g., Theofém 9), Theprém 1®gret can be minimized while maximizing tdeversity of
shows an exponential improvement in the output size whethe solution set. In their context, diversity is measurethas
user interactions are allowed. Moreover, by combining Theaverage distance (e.g., Euclidean distance) between every
oren I3 with the following lower bound on interactive RMS, pairs of points in the returned set. They aimed at optimizing
we know that the algorithm i [27] is almost optimal. an objective function which is a linear combination of ap-
propriately scaled diversity and regret metrics. Spedifica
Theorem 14 (Lower Bound on Interactive RMS[27])For  they proposed a greedy-based algorithm, which incremen-
any dimensionality d ane € (0, 1], there is a d-dimensional tally constructs the solution by adding one point at a time,
database such that any algorithm needs to pre€i(stogs 1)  and a swap-based algorithm, which iteratively updates the
points from the database (i.e., to interact with the user forsplution by swapping points to improve the objective value.

Q(log. 1) rounds) to guarantee a regret ratio at mast . . L . .
(logs ¢) Jtog g RMS in Multi-Objective Submodular Function Maximiza-

However, [27] has two major disadvantages. Firstly, ittion (Multi-RMS). Instead of optimizing over a single util-
performs poorly in the number of rounds of interactions whefty function in RMS, it is assumed iri_[39] that there are
a user wants to find the point with a 0 regret ratio (i_e_,multiple submodular objective functions in the user’s mind
£ = 0). Secondly, during interaction, it presents users withand they studied the regret minimization in the context of
some fake/artifical points (i.e., points not in the datapase Multi-objective submodular function maximization (Muilti
Fortunately, Xie et al[T43] proposed algorithms which ever RMS). In this setting, the approximate algorithm for each
come these deficiencies. Specifically, they used a concegtingle objective function maximization is taken as an input
called theutility hyperplane to model the user preference T0 solve Multi-RMS, a coordinate-wise maximum method
and two effective pruning strategies to locate the user's fal39] was proposed to output a fixed size solution and a poly-
vorite tuple in the database. Moreover, the algorithmis3j [4 tope method[[39] was presented to enable users to control
always display true tuples in the database during intevacti the output size. In particular, in the biobjective case, the
and thus, they are said to bgongly truthfulalgorithms. polytope method provides a provable guarantee on the re-
Average RMS. [46/47133] studied the regret ratios in the gret ratio which can not tz)e improved significantly_according
average case, rather than the worst case. In this settiisg, it'© the lower bound2(1/r?) proven for Multi-RMS in [39].
assumed that the probability distribution of utility furmets  Rank RMS. While RMS measures the user regret based
in FCis given. Then, the average regret ratio is defined to ben the utility difference between the points in the selected
the integral of regret ratios over this probability distion,  set and in the whole database, Asudeh et al. [5] measured
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; ; inhic alea d=2 —— d=4 —5—
the user regret based on their rank d!ﬁerence, which is al Dataset] d | D] | Dol | g O 05 —=—
known as rank RMS. In a 2-dimensional space, they pre=—z > T 5810462 37

. . . ' ’ @ 10t a
posed a 2-approximation algorithm based on angular sweep= 2 | 63383 206 8
ing. In ad-dimensional space, they modeled rank RMS by EN | 5 | 178,080 | 483 éloggw
a geometric hitting set problem based onkikset enumera- | NBA | 6 | 16916 | 130 | 7,p i
: . . 7/"'/¢_¢/O—k"
tion (a well-known concept in computational geometry) an 'é'l:' ; 1’(?;%;?078 354760 T ————

solve it with a logarithmic approximation factor. A funatio : dataset size (n)
space partition based algorithm was also proposefllin [g]a,ble 8 Real Datasets Fig. 12 Preprocessed Anti-Correlated Datasets
which provides a fixed approximation on rank RMS.

Candidate Set for RMS.A problem, which is orthogonalto datasets are the most interesting synthetic datasets where
RMS, was raised ir.[31], which aims at reducing the set othe skyline set is large and cannot be returned as a whole.
candidate points that we need to consider for RMS. Ititwell-Thus, we used anti-correlated datasets as our default syn-
known [32] that when we are constructing a solutionSet thetic datasets. Real datasets contain six datasets cagnmon
for RMS, it suffices to consider the set of all skyline pointsused in existing studie$ [28[444]11, 2Ajrline (AL) [4]

in D, denoted byDsyy, since the maximum regret ratio 8f  andlsland (IL) [28] are 2-dimensional datasets, containing
will not be larger if we replace any non-skyline popin  the information of 5,810,462 flights and 63,383 geographic
Swith a skyline point that dominates in Dsx,. Peng and locations, respectively, and they are used for evaluating 2
Wong [31] further reduced the candidate set to be the set afimensional algorithm4L Nino (EN)[L1] consists of 178,080
happy pointsdenoted byDnappy In particular, they proved tuples with five oceanographic attributes taken at the Racifi
that Dhappy € Dsky € D and the optimal solution of RMS  OceanNBA[44] contains 16,916 tuples for each player/season
must be a subset &happy Which is summarized below.  combination from 1946 to 2009. Six attributes are selected
to representthe performance of each playleusehold (HH)

[44] contains 1,048,576 family tuples with 7 attributesywh

ing economic characteristics of each fam@ylor (CL)[28,

[27] contains the color histograms of 68,040 images. The

Apart from [31], [15{16] computed the candidate set forStatistics about real datasets are summarized in Table 8.
RMS by considering skyline points with higfriority and For all datasets, each attribute is normalized to (0, 1]. We
frequency However, these approaches are heuristic-base@reprocessed each dataset such that the preprocessed datas

and there is no known guarantees on their effectiveness. contains skyline points only. The sizes of preprocessed ant

RMS with Binary Constraints. [I2] augmented traditional correlated datasets are shown in Fidurk 12. Note that some
RMS algorithms constrain the output size and some other

RMS withbinary constraintsExamples of binary constraints . i ' s )
include “the HP of this caris among top 10% in the dz;\tabaseR'vIS a.lgorlthms constrfi!n the maximum regret ratio -durlng
and “it is a limousine”. Heuristic algorithms were proposedexecutlon. Unless specified explicitly, the default ougizne

in [12] to find a set with a small maximum regret ratio while IS Zethto :ef 30| (ier — 30) if we constrgm the ogtpgtosslzg,
maximizing the number of binary constraints it satisfies. and the elau t maximum regret. ratio Is set to e b (ie.,
€ =0.05) if we constrain the maximum regret ratio. The per-

formance of each algorithm is measured bygteery time
5 Experiments output sizeandmaximum regret ratioThe query time of an

algorithm is the execution time of the algorithm. The output
We conducted experiments on a machine with 1.60GHz CPsize of an algorithm is the number of points returned by the
and 8GB RAM. All programs were implemented in C/C++. algorithm. The maximum regret ratio of an algorithm is the
Most of the experimental settings follow those[inl[28,4,44] maximum regret ratio of the set returned by the algorithm.
Bothsyntheticandreal datasetsire used in our experiments. Some results are plotted in log-scale for better visuatinat

Synthetic datasets were generated using a dataset gen- We compared the following three sets of algorithms. Firstly

erator developed for skyline queries [ [6]. Three types ofve compared the 2-dimensional algorithnts @WEEPDP
synthetic datasets with diverse characteristics wereidons [11], 2d-BISEARCH [[7] and 2d-GRAPHDP [4], which solve
ered: (1) anti-correlated datasets (points which are gnod iRMS optimally. Secondly, we evaluated tdedimensional
one attribute are bad in some of other attributes); (2) eorreheuristic algorithms @eepy [28], IMPGREEDY [44] and
lated datasets (points which are good in one attribute ace al GEOGREEDY [31]. Note that SOReDLIST [31] is a ma-
good in other attributes); and (3) independent datasdts (akerialized version of @OGREEDY and thus, it is excluded.
attributes are generated independently). Unless stated exhirdly, we studied the performance dfdimensional the-
plicitly, for each synthetic dataset, the number of tupdeseit ~ oretical algorithms, which can be further divided into two
to be 100,000 (i.e.n = 100,000). Note that anti-correlated sub-categories according to their primary purposesn(h}

Lemma 5 ([31])Given aninteger r, Rappy< Dy € D and
there exists a setS Dpappysuch thamrrp (S,L) = mrrp (S, L)
and|S = |S*| < r where S is the optimal solution of RMS.



16 Min Xie et al.

2d-SweepbP —&—  2d-BiSearch ——  2d-GraphDP —v— 5.1.2 d-Dimensional Heuristic Algorithms
6 6
o ol LI We studied the performance dfdimensional heuristic al-
i; 3574?_/Ejii g 3t gorithms in Figur&14 on 5-dimensional anti-correlatecdets.
S i: | = i Note that all heuristic algorithms differ in implementatio
o ‘ ‘ ‘ f o —y——" | and they produce the same solutions. Thus, we only com-
o4 080 1k 10k SOk 100k 500k 1M pared their query times (their output sizes and maximum re-
output size (r) dataset size (n)
(a) Varyr (n = 100,000) (b) Varyn (r = 5) gret ratios will be shown later). Firstly, we varied the auitp
Fig. 13 2-dimensional Algorithms on Anti-Correlated Datasets sizer in Figure[I4(a). In generalMPGREEDY runs faster

than GREEDY since MPGREEDY avoids the unnecessary
LP computations in GEeDY while guaranteeing the cor-
rectness. Whenis small, GGOGREEDY is the fastest algo-
rithm. However, whem is larger, its performance degrades
and becomes slower tham®GREEDY. This is because &
OGREEDY heavily relies on the convex hull computation to

error algorithms which minimizes the maximum regret ra-
tio while fixing the output size (i.e., @BE [28], SPHERE
[44] and DMM [4]) and (2)min-sizealgorithms which min-
imizes the output size while fixing the maximum regret ra-

tio (i.e., HITTINGSET [2I21] ande-KERNEL [2[7]). Note obtain the critical ratios and the next point to be included

.that some aIgorlthms (e'g"'w”.\',GS'?T) could be applied in the greedy process. Unfortunately, computing the con-
in both cases (with some modifications). We postpone the o i of r points in GEOGREEDY takesO(rO@) time,
detailed description of these variations to later sectigves which is expensive for large, while other algorithms are

optimize the performance of each algorithm and the param%’uadratic inr. Secondly, we proceed with the experiments

ters are set following the setting reported in existing &tsid by varying the maximum regret ratioin Figure[Z3(b). In

We prpceed \_Nith the experiments on synthetic and re‘%ost cases, when a user specifies a smalléine problem
datasets in Secudm_.l and S_ec 5.2. In Segfion 5.3, Wfecomes more challenging and an RMS algorithm needs to
evaluated some existing algorithms when they are extenderg,[urn more points to guarantee the required maximum re-
to handling different varia_nts of RMS' A user study _abOUtgret ratio. Thus, whes is smaller, the running times of all
RMS can be found in Sectign 5.4. Finally, we summarize OUkeuristic algorithms increase. Among all algorithmeap+t

findings and the empirical guideline for RMS in Secfion 5-5.GreeDY achieves the best performance by being faster and

less sensitive ta. Thirdly, in Figurd12(c), we evaluated the
scalability of the heuristic algorithms by varying the dagta
sizen. When there are more points in the database, both
LP-based algorithms and geometric-based algorithms spend
more time to execute, which conforms with human intu-
ition. However, when considering the scalability by varyin

We start with the performance evaluation of 2-dimensional . . L
algorithms (2-SWEEFDP, 21-B1 SEARCH and Zi-GRAPHDP) he dimensionalityd in Figure[12(d), LP-based approaches
. . . GREEDY and IMPGREEDY) scale better than the geometric-
and the results are summarized in Fidgurk 13. Since RMS ¢ : .
ased approach, E&GREEDY, since the time of comput-

be solved optimally in 2-dimensional spaces, all 2-dimemnai . ; .
algorithms produce the same solutions and thus, we only rey g ConVex hulls in GoGREEDY exponentially depends on
' d. According to the experiments above, we obtain the fol-

Eor\t;:]eilnr qtlazrgljltmuetss.iEAQXEBO(?Eh?r?sp::: ft:; g::j%gmqowing useful observations. Firstly, the geometric-based
yvarying P 9 y proach, i.e., @OGREEDY does not scale well with large di-

take only a few milliseconds to return the optimal solutions . ; . : . o
. mensionality and large output size since its operation is ex
However, 21-SWeePDP and 2-BISEARCH are slightly slower L .
pensive in these cases. SecondlyPGREEDY achieves a

than 21-GRAPHDP, which is consistent with the results re- . . . .
superior performance among all heuristic algorithms with a

ported in [4]. This is because bottl-BweerPDP and 2I- : S .
shorter query time and better scalability in most casessinc
BISEARCH have to compute the lower/upper envelope of a

: . . . it avoids a large number of redundant computations. Moti-
given set of lines while & GRAPHDP avoids the envelope o .
computation and solves RMS from a graph perspective anted by this, in the rest experiments, we only compsire |
P grapn persp : REEDY and omit the results of other heuristic algorithms.

also show the query time of each 2-dimensional algorithm
by varying the dataset sizein Figure[I3(b). Since each
pointis only described by 2 attributes, all algorithms @&t f 5.1.3 d-Dimensional Theoretical Algorithms

and not very sensitive to the dataset sizeSimilar to the

result in Figurd_13(a), @ GRAPHDP achieves the smallest In the following, we conducted two sets of experiments for
running time in all cases due to its efficient computations orevaluating thel-dimensional theoretical algorithms. Specif-
the regret ratios and its concise graph representation. ically, we experimentally compared the min-error algarith

5.1 Results on Synthetic Datasets

5.1.1 2-Dimensional Exact Algorithms
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Min-Error. In Figure[I%, we show the performance of the
min-error algorithms by varying the output sizesn a 5-
dimensional anti-correlated dataset. Note that although H
TINGSET and e-KERNEL, which are primarily designed as
min-size algorithms, can be modified to answer min-error
RMS in theory, their empirical performances on solving min-
error RMS are poor due to the large running time (eOgn)

in HITTING SET) and the large maximum regret ratio (e.g.,
&-KERNEL). Thus, we did not include these two variations
in the figure for better visualization. We measured the max-
imum regret ratio in Figurie15(a).UBE produces the worst
maximum regret ratio while other algorithms return solu-
tions with smaller maximum regret ratios. For example, when
r = 30, the maximum regret ratio of UBE is around 0.4,
which is 4 times larger than the maximum regret ratios of
other algorithms. Moreover, according to our results inFig
ure[I%(a), none of the algorithms dominates the others in
terms of maximum regret ratio. Specifically, wheis smaller,
the maximum regret ratio of DMM is smaller while when

is larger, the maximum regret ratios oPSERE and IMP-
GREEDY are smaller. Similarly, we plotted the running time
in Figure[I5(b). Although the maximum regret ratio af €=

is large, it is extremely fast compared with other algorishm
since it constructs the solution by simply scanning thelukgea
once, which can be efficiently implemented. Apart frowgg,
SPHEREIs the most efficient algorithm and it is faster than
both IMPGREEDY and DMM in all values ofr. However,
unlike CuBE which performs poorly in maximum regret ra-
tio, the maximum regret ratio of’/HEREIS not only asymp-
totically optimal, but also small empirically. Another ént
esting phenomenon that we can observe from the experi-
ments is that it takes more time for8eErREand IMPGREEDY

to construct a solution with a larger size while the execgutio
time of DMM is less sensitive to the output size. Specifi-
cally, SPHERE and IMPGREEDY construct solutiongncre-
mentally they start with an empty solution set and construct
the solution set by gradually adding more points to it. In-par
ticular, when a larger output size is required, an increadent
algorithm takes more time to execute. In comparison, DMM
solves RMS by solving a number of set cover problems in
a binary search manner and thus, its performance is less de-

and18). For completeness, we also compared the best heuris-
tic algorithm, MPGREEDY, in the experiments.

pendent on the output size (but it is slower tha®HERE
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and IMPGREEDY). Note thatin some scenarios, a user might ImpGreedy —&—  eKemel —v—  HittingSet —o—
want a large output size. For example, when a job seekeris  *° — 5 -
looking for a job in a job recommendation system, s/heis g *| [ SR
willing to be recommended with a sufficient number of po- é zz o 2 |
sitions to increase his/her chance to get some jobs finally 3 ;| Tl
since each job position will only hire one or a few people 02 T 0 —

0.1 0.08 0.06 0.04 0.02 0.1 0.08 0.06 0.04 0.02

from a large number of candidates. The existing min-error ) _ . _

A s A ) 3 maximum regret ratio (g) maximum regret ratio (g)
algorithms are not efficient in these scenarios. It is naircle (a) (b)
whether RMS can be solvatecrementallywith theoretical ~ Fig. 17 Min-Size - Varye on Anti-Correlatedif = 100,000,d = 3)
guarantees; that is, it starts with the entire dataset asathe

lution and constructs the solution set by gradually remgvin ImpGreedy —&—  e-Kemel —v— HittingSet —o—
points from it. In particular, when a larger output size is re e 8
quired, it takedesstime to construct the solution. o 2 N ey
Min-Error (Scalability Test). We studied the scalability of £ 12 ! | ¢ Al
the min-error algorithms in Figutell6 wharés fixed to be 3 W = 30
30. When the dataset sinéFigure[ 16 (a)) or the skyline size ol by G
(Figure[I6 (b)) increases, the maximum regret ratios of all A zr:; S oM R (1:)” S oM
algorithms are stable and are not sensitive to the incrgasin (@) Varyn (¢ = 0.05,d = 3)
dataset/skyline size. It conforms with the lower bounds in ImpGreedy —&—  e-Kemel —v—  HittingSet —o—
Sectior 2, which is independent of the dataset/skyline size er
In particular, $HEREand IMPGREEDY return the set with 3 5 ol
the smallest maximum regret ratios in most cases. Differ- 3 g 4
ent from the stable performance in maximum regret ratio, 3 - 21

3 N

all algorithms take longer execution times when the dataset s 4 e ® 10 12 14 S 4 e 8 10 15 14

contains more points. @E is still the fastest one while skyline size (x10%) skyline size (x10%)
DMM and IMPGREEDY are slower. For example, when the (b) Vary skyline size£ = 0.05,d = 3)
dataset contains 1 million points, DMM is 6.0 times ImpGreedy —&—  &-Kemel —v— HittingSet —o—
slower than other algorithms. The increasing trend of exe- 100 : : 400

cution time w.r.t. the dataset size is very intuitive. Hoeev o % ] 300 |
in the era of big data, the sizes of datasets are increasingZ 0| )
at an unprecedented rate (e.g., the whole dataset cannot b& “F 1
loaded into the main memory). Moreover, data nowadays is : ‘ o X
distributed over different data centers and thus, it is impo 2 3 4 5 2 3 4 5
tant to design RMS algorithms in a distributed environment d'me(";":;;ry;‘g (6 —0.08.n— 1oq‘gm0‘:;])s'°"a"‘y @

S0 that Iarge_ datasets can be ha_mdled r_nore_ ef_ﬂCIeme' Hov\é-ig. 18 Min-Size - Scalability Test o7n Anti-Correlated Datasets
ever, these issues are not considered in existing RMS algo-

rithms, limiting their applicability in real applications

Similarly, when the dimensionalityincreases (Figufe 16 Note that it is possible to modify DMMT4] to be a min-size
(c)), the maximum regret ratios of most algorithms increas@igorithm by solving a so calleBlinimum Rows Satisfying
slightly. This conforms with the lower bounds in Sectidn 2the given Threshold (MRST) problgd. However, due to
and it is intuitive since it is more difficult to guarantee theits |arge output size, we did not plot its result for better vi
same regret with the same number of points on datasets witfyjalization. Figur€17(a) depicts the output size of each al
larger dimensionalities where each pointis described byemogorithm. When the user requires a smaller maximum regret
attributes. On datasets with large dimensionalities,lgb-a  ratio, all algorithms tend to return more points to the ulser.
rithms spend more time to execute. In particular, the rupnin particular,c-K ERNEL has the largest output size in all cases,
time of DMM increases rapidly whed > 7. For example, while the output size ofMPGREEDY and HTTING SET are
whend = 7, DMM takes more than 300 seconds to deter-comparamy smaller. For examp|e\/||:|>GREEDY and HT-
mine a solution while other algorithms finish in seconds.tingSET returns less than 30 points, which is half of the
This is because the operations of DMM are exponentiallyyoints needed by-K ERNEL to guarantee a 0.01 regret ratio.
dependent od and thus, its execution time is sensitivedto  This also justifies that the notion of maximum regret ratio is
For better visualization, we omit its results wheer 7. useful in giving a “big picture” of the database and helping
Min-Size. We evaluated the min-size algorithms by varyingusers to find the points that they are interested in: instead
€ on a 3-dimensional anti-correlated dataset in Fiduie 17of asking the user to examine the entire dataset containing

200 r

time (s)

100
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2d-SweepDP —&—  2d-BiSearch —+—  2d-GraphDP —<—

100,000 points, a user only needs to examine as few as 30  >° — 91e

a ol P
options to get a “good” point (only with 0.01 regret), withiou . ; 74:¢_/E;E 042 f
a | e

providing his/her exact utility function. Figufe117(b) sh® N 0.08 5 )
the execution time of each algorithm. BothTHING SET 004y e ]

time (ms)
time (s)

It
2]

. . % L
ande-KERNEL have comparable execution times, but they 0 oo
are slower than the heuristic algorithrwHGREEDY. SR 24 608 10
put. S|_ze (] output size (r)
Min-Size (Scalability Test). The scalability test of the min- (a) Airline (b) Island

size algorithms is provided in Figufel18 wherés fixed to ~ Fi9- 21 2D Algorithms on Real Datasets
be 0.05. According to the results, the output size of-H

TINGSET is smaller thane-KERNEL and IMPGREEDY in ¢ rrelated datasets, while on independentand correlatedets,
most of the cases while its running time is comparable tG needs as few as 8 and 4 points, respectively, to guaran-
€-KERNEL, but slower than that ofMPGREEDY. In par-  tee the same regret ratio. This observation is consisteht wi
ticular, compared with MPGREEDY, the running times of - yataset characteristics. For example, correlated dateset
HITTINGSET and e-KERNEL are more sensitive t0 the di- t4in points with high values in all attributes and thus, caly
mensionalityd since their operations are exponentially de-gmail number of points is needed to guarantee a small maxi-
pendent ord. This indicates the insufficiencies of the ex- oy m regret ratio. Similar phenomenon can also be observed
isting RMS algorithms (especially, the min-size RMS al-j, the running time of each algorithm. For example, points in
gorithms) in handling datasets with large dimensionalitie gnii-correlated datasets which have high values in some di-
which might be the case in real scenarios. This claim als@,ansions might have low values in other dimensions, mak-

conforms with our theoretical results summarized in Thble 4ng the trade-off among dimensions more difficult and mak-
where the execution times ofiHTING SET ande-KERNEL  jng it more time-consuming to construct the final solution.

are exponentially dependent on the dataset dimensionality

Theoretical Algorithms on Other Synthetic Datasets Fi-

nally, we studied the performance of the RMS algorithms or5.2 Results on Real Datasets

other synthetic datasets with different characterisfics,,

independent datasets and correlated datasets) in F[g8res @n 2-dimensional real datasets, Airline and Island, in Fig-
and20 (results on the anti-correlated datasets have been pure[21, we evaluated the performance of the 2-dimensional
sented in Figurds_16 afdl18). Each algorithm follows a simalgorithms by varying the output sizeSimilar to the results
ilar trend as it behaves on anti-correlated datasets. Howsbserved on synthetic datasetd; QWEEPDP is the slowest
ever, the maximum regret ratios / output size of each algoalgorithm and 8-GRAPHDP is consistently faster than both
rithm on correlated datasets is smaller than those on ind&d-SweepPDP and 2-BISEARCH while being not sensitive
pendent datasets, which is then smaller that those on antir. This is because®2 GRAPHDP avoids the expensive en-
correlated datasets. For example, to guarantee a 0.0% reguelope computation and it computes regret ratios (i.e., the
ratio, IMPGREEDY has to return more than 20 points on anti- edge weights in the graph representation) efficiently.
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In Figured 2P anf 23, we evaluated the performance aémpirical maximum regret ratio thamPGREEDY, which is
eachd-dimensional algorithm on the EI Nino, NBA, House- also observed irl [44]. For example, wher- 12 on NBA,
hold and Color datasets. In particular, we studied minferrothe maximum regret ratio oMPGREEDY is 0.075 while the
algorithms and min-size algorithms in Figurél 22 and Fig-maximum regret ratio of SHEREis 0.05, which is a 30%
improvement overMPGREEDY. Secondly, consider the re-
algorithms in Figur€ 22 where we varied the output size sults of min-size algorithms [0 23 where we varied the maxi-
Similar to what we observed on synthetic datasets, DMMmum regret rati@. HITTING SET ande-KERNEL take more
does not scale well w.r.t. the dimensionality and thusgts r time to execute compared witimPGREEDY. Nevertheless,
sults on Color are omitted due to the large execution timeHITTING SET consistently returns the smallest solution set
Except forr > 40 on EI Nino, DMM has the largest execu- in all setting and thus, it is suitable in providing a small
tion time and its maximum regret ratio is much worse tharrepresentative set of the database in multi-criteria datis
making. Note that the evaluation on real datasets is consis-
tent with our observations on synthetic datasets and it sup-
0 regret while the maximum regret ratio of DMM is greater ports the claims we make in Section]5.1. In Sedfioh 5.5, we
will formally summarize those claims/observations, which
also motivates the open problems introduced in Se€iion 6.

ure[23, respectively. Firstly, consider the results of @irer

those of $HERE and IMPGREEDY; e.g., whenr = 50 on
NBA and El Nino, both 8HEREand IMPGREEDY achieve

than 0.1. In addition, though®®EREQnd IMPGREEDY have
comparably small running times,PEERE gives a smaller
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5 — T 02—
In this section, we demonstrate the experimental perfooman | 015
.. . L 3t )
of some existing RMS algorithms when they are extended to r | ¥ o1f
solving different variants of RMS. In particular, two major = | |7 oost
variants of RMS, namelkRMS and non-linear RMS, are o e e o e |

o 2 2 il 0
studied in Sectioh 5.3.1 and Sectlon 5.3.2, respectivaly. B 510 1502::;?;2083({5) 404580 10 15;‘:;“?;‘2’:(5040 455
s!des, although none of thg eX|§t|ng RMS algorithms can be(a) Anti-Correlated Datasets & 100,000.d — 3) (b) NBA
directly extended to handling interactive RMS where user_. o :
. . .. . . Fig. 26 Running times on Non-Linear RMS
interaction is involved, we also conducted experiments in

Sectiori 5.3.13 comparing the best performing RMS algorithms

against those interactive RMS algorithms, demonstrakiegt for largek tend to be smaller than those returned for stkall
effectiveness of user interactions in reducing the useeteg This conforms with our intuition that we can guarantee the
and the output size. Due to the limited space, we only resamek-regret ratio with a smaller set whéis larger since

port the experimental results of each RMS variant on thgRMS can regarded as a relaxation of traditional RMS.
anti-correlated dataset and the NBA dataset in this section

Results on other datasets are similar and thus are omitted.

5.3.2 Results on Non-linear RMS
5.3.1 Results on kRMS

We performed the experimental evaluation on non-linear RMS
We evaluated the performance of DMM [7] andiiINGSET by comparing the following algorithms: (1) the original €&
[2121] when they are extended to handlkigMS for min-  algorithm [28] and its extensions for non-linear RMSINV
error RMS and min-size RMS, respectively. Although&kpy WIDTH [13] and MINVAR [32]; and (2) the heuristic algo-
[28] is extended to solvingRMS in [11] askRMS-GREEDY,  rithms for non-linear RMS, REAGREEDY [13], ANGLE
its execution time is much worse than those of DMM and[13] and MaxDir [32]. Both MINWIDTH and MINVAR
HITTING SET since the number of LPs and the size of eachprovide guarantees on non-linear RMS (see Table 7).

LP in KRMS-GREEDY are very large. For the ease of pre-  In Figure[Z6, we plotted the running time of each al-
sentation, results dRMS-GREEDY are not reported. gorithm by varying the output sizeon the anti-correlated

Results on the anti-correlated and NBA dataset are shovdataset and the NBA dataset. According to the resulks /4
in Figured 2% anf25. In general, when the paramleier  GREEDY is the most time-consuming non-linear RMS algo-
kRMS increases from 1 to 5, the running time of each algorithm since it requires expensive area computatioaxid1F
rithm increases. Meanwhile, we also observe that the maxis faster than REAGREEDY, but is slower than AGLE and
mumk-regret ratio and the size of the solution set returneacube-based algorithms, which only scans the database once.
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Fig. 28 Maximum Regret Ratios on Non-Linear RMS (NBA)
UH-Rand —x— UtilityA —a— i
U Simotex o G Phere 5.3.3 Results on Interactive RMS
0.14 i 01X
g 2 We proceed with the experiments on interactive RMS. Re-
S oot g oo1f ] call thatin interactive RMS, a user interacts with the daszb
() (2 .
- - system forrounds At each round, the system displags
0 & & 06—o—o & i i i
, oo E e e - e points and the user is asked to select the point that s/hesfavo
maximum # of pts displayed maximum # of pts displayed the most among them. Based on the feedback, the system
~ (@) Anti-Correlated Datasets &100000d=3)  (b) NBA learns the user’s preference implicitly and finally, idéeti
Fig. 29 Vary Number of Points Displayed on Interactive RMS the user’s favorite point and returns that point to the user.
We implemented the best-known algorithms for inter-
3 iy —o— 5 e active RMS: UH-$vPLEX [43], UH-RaNDOM [43] and
2> 80 T T 2 200 T T T . .
2 ! g UTILITY APPROX[27]. We sets (i.e., the number of points
2 ol o B displayed at each round) to be 2. Then, we compared the
3 ) 5 100] ] above algorithms against the single round algorithrrs{ERRE
s : ——a— £ 0y ; [44] and HTTINGSET [2/[21] to demonstrate the effective-
% 0 X 0 ness of user interactions in reducing the regret ratio aad th
= 5% 1% 05% 01% 0% & 5% 1% 05% 0.1% 0% . . . . ..
regret ratio regret ratio output size, respectively. Since user feedback is required
(a) Anti-Correlated Datasets & 100000d =3)  (b) NBA interactive algorithms, we modeled the users’ behavior by
Fig. 30 Vary Regret Ratio on Interactive RMS randomly generating their utility vectors. The exact tili

vectors we generated were not disclosed to any algorithms.
Different from traditional RMS, the performance of each
We also evaluated the maximum regret ratio of each alalgorithm in interactive RMS is evaluated using two mea-

gorithm on four non-linear utility function classes defined surements: (1Regret RatioThe regret ratio of an interac-
Sectio 4.2: convex function class, concave function ¢lasgive algorithm (a single round algorithm) is the regretaati
CES function class and multiplicative function (MUF) class(w.r.t. the generated utility vector) of the final point sug-
in Figured 2V and 28. On the anti-correlated datasrEs#  gested (the solution set returned); and Tde maximum
GREEDY and ANGLE perform the best by returning the set number of points displayedror a single round algorithm,
with the smallest maximum regret ratio over most of thethe number of points displayed is the size of the solution set
non-linear function classes. In contrastiNWAR performs  returned. For an interactive algorithm, the number of point
better on NBA where it has the smallest maximum regretlisplayed is at most the number of rounds multipliedsby
ratio over both convex and multiplicative function classes (i.e., the number of points displayed at each round).
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We first constrain the number of points that an algorithmshooting guard and he achieves the highest points. In other
can display in Figure29 (similar to the min-error RMS set-words, the players returned by RMS not only have good sta-
ting). It shows that user interactions are very useful sinceistical performance, but also satisfy different NBA fartsov
they can guarantee a smaller regret ratio compared with there interested in diverse positions and statistics.
single round algorithm, SHERE where no user interaction As another reference on whether the players returned by
is allowed. Specifically, by only displaying 4 points, UH- each query is useful in real world, we compared the players
SIMPLEX can guarantee a O regret ratio while the regret rareturned by each query to the top-10 NBA MVP award can-
tio of SPHEREIs around 0.1. Similarly, consider Figurel 30 didateB, as shown in TablEZ0. 4 out of 5 players returned
where we constrain the regret ratio of each algorithm (simby RMS are among the top-10 candidates (bold in Table 9),
ilar to the min-size RMS setting). Due to the small sky-which is more than those in other queries; e.g., only 1 player
line size in NBA, HTTING SET performs slightly better than returned by distance-skyline appears in the MVP list.
the interactive algorithms on NBA. However, on the anti-
correlated dataset where the skyline size is larger, itsuiut
size is twice more than that of UHARDOM when the re- 5.5 Summary
gret ratio is at most 0.01, which also verifies the usefulness

of interactions in reducing the output size in some scesario We conducted comprehensive experiments in this section
on both real and synthetic datasets, comparing the exist-
ing algorithms for RMS under various parameter settings.

5.4 User Study The ability of existing RMS algorithms on handling differ-
ent variants of RMS and the usefulness of RMS over other

To verify the effectiveness of RMS in real scenarios, we CONYariants of the skyline query are also clearly demonstrated

ducted a user study on .statistics of the 2018-19 NBA regu- Specifically, we make the following observations and
lar season. After removing players who played less than 491ey provide an empirical guideline to users on choosing

games during this season, there were 386 players remai{h-e best algorithm when solving RMS. Firstly, none of the

ing. Six popular atiributes (game played, minutes IOIaye%xisting algorithms dominates others in all aspects. $peci

reboun(_j/a_lssist/steallpoints per game) were used to Uescr'ically, some algorithms might be good in one aspect (e.g.,
the statistical performance of each player. We compared th&ecution time) while being poor in other aspects (e.g.-max

pl_ayers returneq by mln-error_RMS (We_ USAPIGREEDY) _imum regret ratio). Secondly, some RMS algorithms can be
with three existing skyline variants, which are compared in

h f 4 di KViPE 140 extended to handling different variants of RMS. For exam-
[28) where RMS was |r§t proposed. Istance-s Y _[ ]’ple, DMM and HTTINGSET can be extended to solving
MaxDom [24] andr-dominancel[B]. Distance-skyline picks

I hat admit the | . 5 kRMS while QuBE can be extended to solving non-linear
r players that admit theest r-center clusteringvlaxbom RMS. Thirdly, on 2-dimensional datasets where RMS can

picksr pla_yers that dominate the largest ngmb_er of playbe solved optimally, @ GRAPHDP achieves the best per-
ers. l_(-do_mmance_relaxes the concept “dom_|nat|on” o * formance by returning the optimal solution in the shortest
domination” and finds players that best-domlnate_nthers. amount of time. Thus, if the dataset only contains two at-
Each query returns a set of 5 players, as shown in Table 9'tributes and the skyline size is small, it is good to ude 2
Following [41], we conducted a survey on “Amazon Me- GRAPHDP to find the optimal solution for RMS. Fourthly,

Ch‘?m?al Turk”. We asked participants with NBA knowledgell MPGREEDY scales better and requires a shorter execution
to indicate the set of players they prefer among four candi:

q idering thetatistical perf ¢ hol time compared with other heuristic algorithms in most cases
ates consi .ermgt atistical performancet each player. _If the users want a solution for RMS which (1) is fast; (2)
If the statistical performance of a player (e.g., rebound) i

has a good empirical performance; and (3) does not require

a set is better than another in another set, the former set jg . i~ guaranteesybGREEDY is a good option. Fi-
better. In other words, we want a set such that the statfisticg lly, different theoretical algorithms have differenlv;ad—
performahge of each player is as good as possible. We ! ges and they can be applied in different scenarios. Specif
each participant $0.05 and there were 104 responses in tot ally, among min-error algorithms which optimize over the

According to the responses, 44.55% of participants thou%rximum regretratio, GBE is the fastest one whileFHERE
that the set returned by RMS has better overall performanci

hile 22.72%. 13.63% and 19.09% fer th uarantees a small maximum regret ratio in most cases; among
while 22. 0 =3 oan ) o prefer the sets returne in-size algorithms which optimize over the output size,

by dllg,tance—skglme, '\:Ija;](DOE] an’r:&ommance, :jezpectlvselyl. HITTING SET returns a small number of points in most cases
.Bej,'ﬁ €s, we observe t r?tt € players r(;aturne"f yRMd Pia¥hile guaranteeing the maximum regret ratio and thus, it
In different positions such as point guard, small forward an provides a good representative subset of the database. The

shooting guard and they enjoy diverse statistical perieraa best choice of algorithms depends on application needs.
For example, Andre Drummond plays in the center position

and he has high rebounds while James Harden plays as & https://www.basketball-reference.com/friv/imvp.html
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| RMS | Distance-Skyline[[40]] MaxDom [24] | k-Dominancel[8] | | Top1to5 | Top6t010 |
James Harden James Harden Nikola Jokic Bradley Beal Giannis Antetokounmpg Joel Embiid
Andre Drummond DeAndre Jordan Bradley Beal Andre Drummond James Harden Damian Lillard
Russell Westbrook P.J. Tucker Russell Westbrook Paul George Nikola Jokic Stephen Curry
Joel Embiid Chris Paul James Harden James Harden Kawhi Leonard Paul George
Paul George Karl-Anthony Towns Rudy Gobert Russell Westbrook Kevin Durant Russell Westbrook|

Table 9 Five NBA Players Returned by Different Queries (MVP Cantkdare in Bold) Table 10 Top 10 Candidates for MVP Award

6 Open Problems come in a sequential manner. Most existing RMS algorithms
implicitly assume that the entire dataset can be loaded into
In this section, we highlight the open problems and somehe main memory. Unfortunately, this assumption hardlgbol

possible future directions for RMS according to our discusin real-world applications. Besides, data nowadays is dis-
sion and experimental observations in previous sections. tributed over different data centers. Computing a solution

Optimal Algorithms. While there is an asymptotically tight for RMS across distributed databases so that the communi-

bound proven on RMS [44)2, 7] (e.g., Theorldm 9), the questation cost is minimized (i.e., do not need to send all the
tion of an exact (non-asymptotic) bound remains open. Dedatasets to a single location) remains open.

veloping an algorithm that computes an optimal bound effiRMS with Dynamic Updates. Nowadays, the database is
ciently is an open algorithmic problem in this area. updated frequently with point insertions and deletionsvHo
Monotonically Decreasing Utility Functions. We assume to extend the existing methods when the dataset is changed
that a larger value is preferable to all users and only mongdynamically is an interesting problem. OrdyK ERNEL has
tonically increasing utility functions are considered fret this ability, but the results of other methods are unknown.
existing studies. However, it could happen in reality that aDecremental RMS. According to the experimental obser-
smaller value in some dimensions is better. For example, gations, most existing algorithms construct solutionse-
lower price is better. Although we can use the trick of sub-mentally (i.e., start with an empty set and gradually add
tracting each value from the maximum value in those dimenpoints). In particular, to return more points or to guaran-
sions (so that the “larger is better” assumption is satisfied tee smaller regret, it takes more time for them to execute.
Sectior2), it changes the value of those attributes and it islowever, in reality, users are interested in small maximum
no longer clear if the notation of regret still applies. Nafie regret ratios (e.g., Alice wants a car which is as close to her
the results so far can be extended easily to this case. favorite car as possible) and in some scenarios, a larger out

Arbitrary Monotonic Utility Functions. While results on ~ PUt size is desirable (e.g., the job recommendation example
RMS are known for some particular function classes, e.gin SectiorL’). Motivated by this, it is interesting to dewlo
the convex and CES function classes presented in S&ction pSomedecrementaRMS algorithms (i.e., start with the entire

it remains unknown whether we can get a general result thg{2tabase and gradually delete points) so that we can outputa
applies for any monotonic utility function class. large number of points or guarantee small regféitiently

High Dimensional RMS. According to our experimental
evaluation, some existing algorithms (e.gE @&>REEDY, &-
KERNEL, HITTINGSET) do not scale well w.r.t. to the di-
mensionality. Specifically, it takes them a very long time tojn this survey, we comprehensively review existing methods
execute and the maximum regret ratios / the output sizes @br RMS. Specifically, various methods were proposed for
the solution sets they return are quite large even when théplving RMS optimally, but they are restricted in 2-dimemsil
dimensionality is of a medium value (edj= 8). Giventhe  spaces. Ird-dimensional spaces, RMS was proven to be
known lower bounds on RMS (e.g., Theorglm 3), computingan NP-hard problem. Heuristic algorithms were proposed to
a small set with a small regret on high dimensional datasetgbtain solutions with small regret/output sizes and thieore
is a hard problem. Some additional assumptions would havigal algorithms were also studied to provide bounded guar-
to be made on the data. Besides, when handling datase{ftees on the solutions. Different variants of RMS were also
with very large dimensionalities, it is also important t;mha  reviewed and experimented in this paper. We conducted a
dle them very efficiently. Unfortunately, the executionésn  comprehensive experimental evaluation of all state-ef-th
of many existing algorithms exponentially depend on the diart RMS algorithms on both synthetic datasets and real el@tas
mensionality. It remains open whether some dimension regemonstrating the advantages of different RMS algorithms
duction techniques could help in high dimensional RMS.  under various parameter settings. A user study comparing
Large Size RMS.In the era of big data, the size of datasetRMS with other skyline variants was also conducted, veri-
is increasing in an unprecedented speed and the data miditnd the usefulness of RMS in real-world scenarios.

7 Conclusion
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