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Abstract When faced with a database containing millions
of tuples, a user may be only interested in a (typically much)
smaller representative subset. Recently, a query called the
regret minimization querywas proposed towards this pur-
pose to create such a subset for users. Specifically, this query
finds a set of tuples that minimizes the user regret (measured
by how far the user’s favorite tuple in the selected set is from
his/her favorite tuple in the whole database). The regret min-
imization query was shown to be very useful in bridging the
best worlds between two existing well-known queries, top-k
queries and skyline queries: like top-kqueries, the total num-
ber of tuples returned in this new query is controllable, and
like skyline queries, this new query does not require a user
to specify any preference function. Thus, it has attracted a
lot of attention from researchers in the database community.

Various methods were proposed for regret minimization.
However, despite the abundant research effort, there is no
systematic comparison among the existing methods. This
paper surveys this interesting and evolving research topicby
broadly reviewing and comparing the state-of-the-art meth-
ods for regret minimization. Moreover, we study different
variants of the regret minimization query that has garnered
considerable attention in recent years and present some in-
teresting problems that have not yet been addressed in the
literature. We implemented 12 state-of-the-art methods pub-
lished in top-tier venues such as SIGMOD and VLDB from
2010 to 2018 for obtaining regret minimization sets, and
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give an experimental comparison under various parameter
settings on both synthetic and real datasets. Our evaluation
shows that the optimal choice of methods for regret min-
imization depends on the application demands. This paper
provides an empirical guideline for making such a decision.

1 Introduction

Nowadays, a database system usually contains millions of
tuples and an end user might be interested in finding his/her
favorite tuples in the database. Consider the following sce-
nario for a car database where each car is described by some
attributes. Alice visits the car database and wants to find a
car with high horse power (HP) and high miles per gallon
(MPG) (i.e., HP and MPG are the two attributes picked by
Alice, based on which she makes a decision). Note that the
car database can be very large and it may consist of thou-
sands of cars and thus, it might be impossible for Alice to
go through every car tuple in the database. A possible solu-
tion is that the database system provides some operators to
show a representative subset of cars to Alice. Such opera-
tors can be regarded asmulti-criteria decision-makingtools.
In order to decide which cars to be shown to Alice, we im-
plicitly assume that there is a preference function, calleda
utility function, in Alice’s mind. Based on this function, we
can compute autility for each car in the database. A high
utility indicates that this car is favored by Alice and a car
with the highest utility is afavoritecar of Alice. Depending
on whether the utility function is provided to the database
system, different operators were proposed towards multi-
criteria decision-making. Examples are thetop-k query, the
skyline queryand theregret minimization query.

In the setting of the traditional top-kquery [14,22,23,30,
38], a user is required to provide his/her exact utility func-
tion explicitly to the database system. Then, thek tuples with
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the highest utilities are returned to the user. For example,Al-
ice’s utility function can have weight 70% for HP and weight
30% for MPG. Here, a higher weight indicates that the cor-
responding attribute is more important to Alice. With this
utility function, each car’s utility is computed, and thek cars
with the highest utilities are shown to Alice. Unfortunately,
it is hard for most users to provide their utility functions ex-
plicitly to the database system and even the users themselves
might not know their exact utility functions.

Alternatively, theskylinequery [8,9,24,26,29] could be
used if the utility function (assumed to be monotonic) is not
provided to the database system. In particular, a“domina-
tion” concept is applied. A tuplep is said todominatean-
other tupleq if p is not worse thanq on each attribute andp
is better thanq on at least one attribute. For example, carp
with HP 300 and MPG 30 dominates carq with HP 250 and
MPG 25 since no matter what utility function Alice has, the
utility of car p is always higher than the utility of carq and
thus, carp is more desirable to Alice. The skyline query re-
turns all tuples that are not dominated by any other tuples to
the users and those tuples are also called theskyline tuples.
It is easy to see that the user’s favorite tuple must be a sky-
line tuple. Unfortunately, the output size of a skyline query
is un-controllable. In the worst case, the whole database can
be returned by a skyline query, resulting in its difficulty in
providing a small representative subset to the users.

Recently, a regret minimization query [28] was proposed,
which solves multi-criteria decision-making from a novel
perspective. In particular, it overcomes the deficiencies of
both the top-k query (which requires the user to provide the
exact utility function) and the skyline query (which does not
have a controllable output size). Instead, it maintains the
major advantage of the top-k query (whose output size is
controllable) and the major advantage of the skyline query
(which does not require the user to provide any exact utility
function). Specifically, a regret minimization query finds a
small set of tuples from the database such that the utility of
any user’s favorite among these tuples is guaranteed to be
a small fraction, quantified as theregret ratio, less than the
utility of his/her favorite in the whole database, regardless
of his/her utility function. Intuitively, the regret ratioquan-
tifies the “regret” level of a user if s/he gets the best tuple
in the selected subset, but not the best tuple in the whole
database. For example, a regret minimization query on the
car database returns a set of cars from the database so that
Alice can find some cars in the returned set that she is in-
terested in (since her regret ratio is small) without providing
her utility function. In addition to the car database applica-
tion, the regret minimization query can be applied in many
other scenarios. For example, on an online shopping applica-
tion, each product is usually described by multiple attributes
(e.g., rating and quality). Different users can have different
preferences in their minds. For example, some users might

Fig. 1 Taxonomy of Regret Minimization Queries

think that a higher rating is more important while the other
users might think that higher quality is more important. A
regret minimization query finds a set of products minimiz-
ing the “regret” level of all users. Those products can be
promoted on the home page to attract customers since no
matter what preference a customer has, s/he can always find
a product in the suggested set that s/he is interested in (since
the regret ratio is small). Other applications of regret mini-
mization queries includes Information Retrieval (IR) [35,3,
37] and Recommendation Systems (RS) [19,25,42].

Due to the superiority of regret minimization queries,
extensive efforts [28,31,11,7,4,2,21,44] in the databasecom-
munity have been spent on finding algorithms for computing
regret minimization sets (RMS). However, there lacks a com-
prehensive comparison among them. In this paper, we give
an overview of existing methods for RMS and present some
interesting variants of RMS that receive considerable atten-
tion in the last decade (summarized in Figure 1). Specifi-
cally, we start with an extensive survey that covers 12 exist-
ing methods for RMS. We describe the key idea behind each
method and summarize the main results known for each method.
We also classify the existing methods into three categories:
(1) the exact approaches for RMS when each tuple in the
database is described by 2 attributes, (2) the heuristic ap-
proaches and (3) the theoretical approaches for RMS when
each tuple in the database is described byd attributes (d ≥
2). Then, we present 9 popular variants of RMS studied in
the literature. In particular,kRMS and non-linear RMS are
the two major variants of RMS and we show how some ex-
isting algorithms designed for RMS can be extended to han-
dling these variants (shown in circles and stars in Figure 1).

We performed a comprehensive experimental evaluation
on the 12 existing methods for RMS on synthetic datasets
[6] with different distribution characteristics (e.g., correlated
datasets and anti-correlated datasets) and six commonly used
real-world datasets with up to five million tuples [28,31,
11,7,4,2,21,44]. The experimental results could give an in-
sight to researchers for RMS. According to our experiments,
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there is no single algorithm which dominates the other al-
gorithms in all aspects. Specifically, some algorithms (e.g.,
2d-BISEARCH [7]) solve RMS optimally but it is restricted
when each tuple in the database is described by 2 attributes
while some other algorithms (e.g., GREEDY [28]) are heuristic-
based, but they are executable on datasets of any dimension-
alities. Some algorithms (e.g., CUBE [28]) constructs a solu-
tion for RMS efficiently but the empirical maximum regret
ratios of their solutions are large, which means that the users
can be regretful if they see the solutions, while some other
algorithms (e.g., HITTINGSET [2]) spend more time to re-
turn the solutions but they are good at constructing a small
representative subset of the whole database for the users.
The best choice of algorithms depends on the user demands.

The rest of the paper is organized as follows. The for-
mal definition of regret minimization set (RMS) and some
known properties/theoretical lower bounds on this problem
are described in Section 2. In Section 3, we survey the exist-
ing methods for RMS, summarize the main results for each
method and provide a comprehensive comparison among
them. Different variants of RMS are described in Section 4
and experimental evaluations on both real and synthetic datasets
are presented in Section 5. Some open problems that have
not yet been explored in the literature are summarized in
Section 6 while conclusions are found in Section 7.

2 Problem Definition

The input to our problem is a tuple setD with n tuples (i.e.,
|D| = n) in a d-dimensional space where each dimension
corresponds to an attribute of a tuple. In this paper, we as-
sume that the dimensionalityd is a fixed constant. Note that
each tuple inD could be described by more thand attributes,
but the user will select preciselyd of them that s/he is inter-
ested in, and based on which s/he makes decisions.

2.1 Terminologies

We use the word “tuple” and “point” interchangeably and
use the word “attribute” and “dimension” interchangeably in
the rest of the paper. Denote thei-th value of ad-dimensional
point p∈ D by p[i] wherei ∈ [1,d] and denote the L2-norm
of p by ‖p‖. Without loss of generality, we assume that the
value in each dimension is non-negative and a larger value in
each dimension is preferable to all users. If a smaller valueis
preferable in a dimension (e.g., price), we can modify the di-
mension by subtracting each value from the maximum value
so that it satisfies the above assumption. Recall that in a car
database, each car is associated with 2 attributes, HP and
MPG. Consider the example in Table 1. The car database,
i.e.,D = {p1, p2, p3, p4, p5, p6}, contains six 2-dimensional
points, each of which represents a car in the database.

Car(p) HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)
p1 40 40 40 40 40
p2 120 36 69.6 52.8 94.8
p3 180 24 86.4 55.2 133.2
p4 200 8 84.8 46.4 142.4
p5 70 8 32.8 20.4 51.4
p6 60 24 38.4 31.2 49.2

Regret Ratio of{p1, p4}
1− 86.4

84.8
= 1.85%

1− 46.4
55.2

= 15.9%
1− 142.4

142.4
= 0%

Table 1 Car Database and Car Utilities

Similar to [28,31,27,23,10], the user’s happiness can
be modeled by an unknownutility function, denoted byf ,
which is a mappingf : Rd

+ → R+. Denote theutility of a
point p in D w.r.t. f by f (p). A high utility indicates thatp
is favored by the user and a point with the highest utility is
a favoritepoint of the user. For each user, we define aregret
ratio based on his/her utility functionf .

Definition 1 ([28]) Given a setS⊆ D and a utility function
f , theregret ratioof SoverD w.r.t. f , denoted byrrD(S, f ),

is defined to be
maxp∈D f (p)−maxp∈S f (p)

maxp∈D f (p) = 1−
maxp∈S f (p)
maxp∈D f (p) .

For example, given a utility functionf0.4,0.6 wherefa,b(p)=
a× p[1]+b× p[2]and a pointp4 in Table 1, the utility ofp4

w.r.t. f0.4,0.6 is f0.4,0.6(p4) = 0.4×200+0.6×8= 84.8. The
utilities of remaining points inD w.r.t. f0.4,0.6 are computed
similarly in Table 1. Consider a setS= {p1, p4} (shown
shaded in Table 1). The point with the highest utility inS
w.r.t. f0.4,0.6 is p4 and its utility is equal to 84.8 while the
point with the highest utility inD w.r.t. f0.4,0.6 is p3 and its
utility is equal to 86.4. Then, we can computerrD(S, f0.4,0.6)

to be 1−
maxp∈S f0.4,0.6(p)
maxp∈D f0.4,0.6(p)

= 1− 84.8
86.4 = 1.85%.

Given a setS⊆D, we have maxp∈S f (p)≤maxp∈D f (p)
(sinceS is a subset ofD) and thus, the regret ratio in Def-
inition 1 ranges from 0 to 1. A user ishappy(some papers
use the termnot regretful) with a given setS if his/her regret
ratio is close to 0 since the highest utility inS is close to
the highest utility inD (i.e., the best tuple in the selected set
S is close to his/her favorite tuple in the wholeD). Table 2
summarizes the frequently used notations in the paper.

Unfortunately, in real cases, it is difficult to obtain the
user’s exact utility function. Thus, we assume that the user’s
utility function in a function class, denoted byFC. Examples
of function classes include thelinear [28] andmultiplicative
function class [32]. Then, themaximum regret ratioof a set
S is defined over a function classFC, which can be regarded
as the worst-case regret ratio w.r.t. a utility function inFC.

Definition 2 ([28]) Given a setS⊆ D and a function class
FC, themaximum regret ratioof SoverD w.r.t.FC, denoted
bymrrD(S,FC), is defined to be supf∈FC rrD(S, f ) 1.

1 We define the maximum regret ratio using the supremum instead
of the maximum since the function classFC can consist of an infinite
number of utility functions and a maximum may not exist.
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Notation Meaning

D The set ofd-dimensional points (|D| = n)
f (p) The utility of p w.r.t. a functionf
FC A utility function class
L The linear utility function class

rrD(S, f ) The regret ratio ofSoverD w.r.t. f
mrrD(S,FC) The maximum regret ratio ofSw.r.t.FC

r The maximum output size, i.e.,|S| ≤ r

ε The required maximum regret ratio,
i.e.,mrrD(S,FC)≤ ε

rε
The smallest size of any set

with maximum regret ratio at mostε

εr
The smallest maximum regret ratio of

any set with at mostr points
k-maxp∈D f (p) Thek-th highest utility among points inD

k-rrD(S, f )
(k-mrrD(S,FC))

The (maximum)k-regret ratio ofS

Table 2 Frequently Used Notations

To illustrate, assume thatFC consists of three utility func-
tions f0.4,0.6, f0.2,0.8 and f0.7,0.3 in Table 1. By following a
similar procedure before, we can computerrD(S, f0.4,0.6) =
1.85%,rrD(S, f0.2,0.8)= 15.9% andrrD(S, f0.7,0.3)= 0%. Then,
the maximum regret ratiomrrD(S,FC) is computed to be
supf∈FC rrD(S, f ) = max{1.85%,15.9%,0%}= 15.9%.

2.2 Problem Definition

Without knowing which function a user exactly uses inFC

and the distribution of functions inFC, our goal is to find
a regret minimization setS⊆ D, optimizing over the worst
case (maximum regret ratio), so that the worst-case regret
is minimized and the happiness ofeachuser is guaranteed.
Formally, we define the regret minimization query (RMS).

Problem 1 (The Regret Minimization Query (RMS) [28])
Given a setD and a function classFC, we want to find a re-
gret minimization setS⊆ D of at mostr points so that the
maximum regret ratiomrrD(S,FC) is at mostε.

There are two parameters that come into play in RMS,
namely (1) the maximum output sizer and (2) the required
maximum regret ratioε. We assume thatr ≥ d. Otherwise,
the maximum regret ratio might not be bounded [28]. In
traditional RMS, we aim at minimizing (or bounding) the
maximum regret ratio while fixing the output size [28,31].
Recently, however, some existing studies focus on a dual
version of RMS which aims at minimizing (or bounding)
the output size while fixing the maximum regret ratio [7,2].
Moreover, some recent methods relax both the maximum re-
gret ratio and the output size simultaneously [21,4]. For the
ease of illustration, we do not distinguish these variants ex-
plicitly but describe them in a unified manner in Problem 1.

In general, any function classFC can be applied in RMS
and the utility functions inFC can have an arbitrary distribu-
tion. For the ease of illustration, we first focus on the class

Results Related Materials

RMS

Scale-invariance Theorem 1
Stability Theorem 2

Lower bound (Ω(r−
2

d−1 )) Theorem 3
NP-hardness Theorem 4

Table 3 Known Results about RMS

of linear utility functions, denoted byL, which is very pop-
ular in modeling user preferences [28,31,11,27,23,10]. We
relax this assumption in Section 4 by considering other vari-
ants of RMS. Specifically, a utility functionf is linear if
f (p) = u · p whereu is autility vector. The utility vectoru
is ad-dimensional non-negative vector whereu[i] measures
the importance of thei-th dimensional value in the user pref-
erence. In the rest of this paper, we refer to a utility function
f by its utility vectoru whenFC= L is clear in the context.

2.3 Properties

In this section, we introduce thescale-invarianceand the
stabilityof RMS, which are two important properties of RMS.

Scale-Invariance.Intuitively, RMS is said to bescale-invariant
if the maximum regret ratio of a given solution set is the
same even when the attribute value of each point inD is
scaled by a certain factor. Specifically, we consider a scaled
datasetD′ = {p′1, . . . , p

′
n} of D wherep′i [ j] = λ j pi [ j], λ j ≥

0 for each j ∈ [1,d]. For example, we can create a scaled
datasetD′ for the car database in Table 1 by converting HP
to watts and MPG to kilometers per liter by settingλ1 = 750
andλ2 = 0.425 since 1 HP = 750 watts and 1 MPG = 0.425
kilometers per liter. The following theorem shows that the
definition, maximum regret ratio, is independent of the scale
of each attribute and thus, RMS is scale-invariant.

Theorem 1 (Scale-Invariance [28])Let S= {pi1, . . . , pik}
be any subset of D and S′ = {p′i1, . . . , p

′
ik
} be the correspond-

ing subset of D′ where D′ is a scaled dataset of D (i.e., for
each pi in D and each p′i in D′, p′i [ j] = λ j pi [ j] whereλ j ≥ 0
and j∈ [1,d]). We havemrrD(S,L) =mrrD′(S′,L).

Stability. RMS is said to bestableif the maximum regret
ratio of any setS is independent of thejunk points being in-
serted into or deleted from the database. Specifically, a point
in D is said to be ajunk point if it does not have the highest
utility w.r.t. any utility function inL. Intuitively, a junk point
is the point not favored byanyuser. According to the defini-
tions above, stability is a desirable property since a database
system is not allowed to manipulate the solution by strategi-
cally inserting/deleting a number of junk points not favored
by any user. The stability of RMS is summarized below.

Theorem 2 (Stability [28]) Given a set S⊆ D and a junk
point p,mrrD(S,L) =mrrD/{p}(S,L) =mrrD∪{p}(S,L).
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2.4 Lower Bound and NP-hardness

In this section, we summarize the best-known lower bounds
on RMS [44,27]. Informally, we show that by returning a
set of at mostr points from the database, it is not possible to

guarantee a maximum regret ratio better thanΩ(r−
2

d−1 ).

Theorem 3 (Lower Bound [44])For any dimensionality d,
there is a d-dimensional database such that the maximum re-
gret ratio of any set of at most r points is at least1

8(2r)−
2

d−1 .

Corollary 1 ([27]) For any dimensionality d andε ∈ (0,1],
there is a d-dimensional database such that any RMS al-

gorithm needs to return at least12(
1
8ε )

d−1
2 points from the

database to guarantee a maximum regret ratio at mostε.

Finding an optimal solution for RMS (i.e., finding a min-
imum size set guaranteeing a certain regret ratioε or find-
ing the minimum regret set with at mostr points) was first
proven to be an NP-hard problem in general by Chester et al.
[11]. Formally, we formulate the decision version of RMS
below, whose NP-hardness is shown in Theorem 4.

Problem 2 (Decision-RMS)Given a setD, a function class
FC, an integerr and a real valueε, we want to determine
whether there exists a solution setS⊆ D of at mostr points
so that the maximum regret ratiomrrD(S,FC) is at mostε.

Theorem 4 (NP-Hardness [11])Decision-RMS is NP-hard.

Unfortunately, the NP-hardness proof in [11] required
both the size and the dimensionality of the dataset to be ar-
bitrarily large. In particular, it was left open whether this
problem is NP-hard for small dimensionalities. Cao et al.
[7] and Agarwal et al. [2] resolved this issue independently
by showing that RMS is NP-hard for alld≥ 3. Table 3 sum-
marizes all the aforementioned known results about RMS.

2.5 Computing Maximum Regret Ratio

Given a setS⊆D, it is difficult to compute the maximum re-
gret ratiomrrD(S,L) directly according to Definition 2 since
there are an infinite number of linear utility functions inL.
In practice, we can approximatemrrD(S,L) by sampling a
finite number of utility functions (e.g., 100,000 utility func-
tions [2]) in L, based on which we compute their regret ra-
tios. Then,mrrD(S,L) can be estimated to be the largest re-
gret ratio among them. Alternatively, we can also compute
the exactmrrD(S,L). This is done by dividing the computa-
tion of mrrD(S,L) into a finite number of smaller problems.
Formally, we have the following lemma from [28].

Lemma 1 ([28])mrrD(S,L) = maxp∈DmrrS∪{p}(S,L).

According to Lemma 1, we can obtainmrrD(S,L) by
computingnalternative maximum regret ratiosmrrS∪{p}(S,L)
for eachp in D (which are easier to be computed). Specifi-
cally, given a pointp in D, we compute itsmrrS∪{p}(S,L) by
formulating it as a linear programming (LP) problem [28]:

max x

s.t. (p−q) ·u ≥ x ∀q∈ S

p ·u = 1 (1)

u[ j] ≥ 0 ∀1≤ j ≤ d

where the optimal objectivex∗ is the desired maximum re-
gret ratiomrrS∪{p}(S,L) for the givenp and, by Lemma 1,
mrrD(S,L) is the maximum suchx∗ value over all points inD.

2.6 SQL Extensions

Similar to the SQL extension for the skyline query (i.e., the
SKYLINE OF clause in [6]), SQL’sSELECT statement can
be extended by an optionalREGRET-SET OF... WITH...

clause for the regret minimization query (RMS) as follows.

SELECT ... FROM ... WHERE ...

GROUP BY ... HAVING ...

REGRET-SET OF A1 [MIN|MAX], ..., Ad [MIN|MAX]

WITH [SIZE r | ERROR ε]
ORDER BY ...

whereA1, . . . ,Ad denote thed attributes selected by the user,
e.g., HP, MPG and price.MIN andMAX specify whether a
smaller or a larger value is preferable in the corresponding
dimension. For example, a larger HP is preferred (MAX anno-
tation) whereas a lower price is preferred (MIN annotation).
Besides,r andε are the parameters we constrain in RMS
(see Problem 1), which represent the output size and the re-
quired maximum regret ratio, respectively. The query below
is a SQL query for RMS, which finds at mostr cars from a
car databaseCARS with high HP, high MPG and low price.

SELECT * FROM CARS

REGRET-SET OF HP MAX, MPG MAX, price MIN

WITH SIZE r

The semantics ofREGRET-SET OF clause are very straight-
forward. The implementation ofREGRET-SET OF clause can
be encapsulated by a new logical operator in a database sys-
tem, say theregretoperator, which is typically executed after
SELECT... FROM... WHERE... GROUP BY... HAVING...

but before theORDER BY clause. In other words, the imple-
mentation of existing logical operators (e.g.,scanandjoin)
of a database system does not need to be changed and we
can easily integrate theregretoperator into a traditional SQL
query processor with some minor modifications on the exist-
ing parser and query optimizer. Same as most of other logi-
cal operators of a database system (e.g.,scanandjoin), the
regret operator can be implemented in different (physical)
ways, which will be discussed shortly in Section 3.
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3 RMS Algorithms

In this section, we survey the existing algorithms for RMS
and they can be classified into three categories according
to the dimensionality and whether they provide theoretical
guarantees on the solutions, as summarized in Table 4. Specif-
ically, whend = 2, RMS can be solved optimally in poly-
nomial time. The 2-dimensional exact RMS algorithms are
presented in Section 3.1. The heuristic-based algorithms and
the algorithms with theoretical guarantees ind-dimensional
spaces are discussed in Section 3.2 and Section 3.3, respec-
tively. Finally, a theoretical comparison among all existing
RMS algorithms is provided in Section 3.4 while the exper-
imental comparison appears later in Section 5.

Recall that an algorithm can control either the maximum
output sizer or the required maximum regret ratioε (or
both) for solving RMS. Letrε denote the smallest size of
any solution set in the dataset whose maximum regret ratio
is at mostε andεr denote the smallest maximum regret ratio
of any solution set in the dataset with at mostr points.

3.1 2-dimensional Approaches

In this section, we present the algorithms, which solve RMS
optimally in 2-dimensional spaces (i.e.,d = 2). Some exist-
ing algorithms are properly renamed to avoid confusion.

2d-SweepDP(denoted as 2d-kRMS in [11]). Chester et al.
[11] offered the first exact algorithm for RMS in 2-dimensional
spaces. Specifically, they worked on adualspace where each
point inD is represented by a line and then, they showed that
solving RMS in the original space is equivalent to finding a
subset of lines in the dual space whoselower envelopeis
closeto the lower envelope of the dual lines of all points in
D. Note that thelower envelopeof a set of lines in the dual
space is a piecewise linear convex chain, which is a sequence
of line segments with decreasing slopes where any two con-
secutive line segments have a common end point. Thus, the
proximity between two lower envelopes can be computed by
evaluating the endpoints of each line segments in lower en-
velopes. They proposed a plane sweeping algorithm, which
computes the desired lower envelope by rotating a lineL
from the positivex-axis to positivey-axis. WhenL encoun-
ters a new intersection point (of two lines in the dual space),
it checks whether the lower envelope of the current selection
set of lines can be improved using dynamic programming.
The optimality of 2d-SWEEPDP is shown as follows.

Theorem 5 ([11])Given an integer r, the 2d-SWEEPDPal-
gorithm returns an optimal solution set of at most r points
for RMS (d= 2) in O(rn2) time.

For example, given a datasetD with 3 dual lines(a, f ),
(b,e) and(c,d) in Figure 2, their lower envelope is(a, j,h,d)

(shown in red). Assume that initially, the solution set has a
single line(a, f ) (whose lower envelope is(a, f ) itself) and
the rotating lineL encounters the intersection point, namely
j, between(a, f ) and(b,e). If we include(b,e) into the so-
lution set, the lower envelope of the updated solution set be-
comes(a, j,e), which is closer to the target lower envelope
(a, j,h,d). Then, the dynamic programming data structure
in 2d-SWEEPDP will be updated by adding the line(b,e).
Similar process continues untilL reaches the positivey-axis.

2d-BiSearch (denoted as E-GREEDY-1 in [7]). Cao et al.
proposed the 2d-BISEARCH algorithm [7] for solving RMS
optimally, which improves the efficiency of 2d-SWEEPDP.

2d-BISEARCH is a randomized binary search algorithm
and it uses the solutions of Decision-RMS (i.e., Problem 2)
as subroutines. Specifically, given the maximum output size
r, it maintains a finite number of candidate values of the op-
timal ε and determines the smallest possible value ofε such
that there is a solution whose size is at mostr and maximum
regret ratio is at mostε (which is a Decision-RMS problem)
by performing a binary search on different values ofε.

To solve a Decision-RMS problem, Cao et al. also trans-
formed the datasetD into a set of lines in a dual space and
solved it in a geometric way. Specifically, given a pointp in
D, they defined a dual line in the parametric formfp(λ ) =
p[1]λ + p[2](1−λ ) with λ ∈ [0,1]. Given a setS⊆ D, the
upper envelopeof S in the dual space can be expressed as
maxp∈S fp(λ ) for λ ∈ [0,1]. Then, given a real valueε and
an integerr, it solves the Decision-RMS problem by com-
puting a setS of at mostr points such that the upper en-
velop of S lies entirelyabovethe scaledupper envelop of
D in the dual space where the scaling factor is 1− ε (i.e.,
maxp∈S fp(λ ) ≥ maxp∈D(1− ε) fp(λ ) for λ ∈ [0,1]). The
main result of 2d-BISEARCH is shown in the following.

Theorem 6 ([7]) Given an integer r, the 2d-BISEARCH al-
gorithm returns an optimal solution set of at most r points
for RMS (d= 2) in O(nlogn) time.

To illustrate, assume that there are four dual lines of
D in Figure 3. The upper envelope ofD is shown in solid
red while the(1− ε)-scaled upper envelop ofD is drawn in
dashed red, which lies entirely below the line(a,b) in Fig-
ure 4. If p is the corresponding point of(a,b) in the original
space,S= {p} is a valid solution for this Decision-RMS.

2d-GraphDP (denoted as 2d-RRMS in [4]). Asudeh et al.
[4] transformed RMS in a 2-dimensional dataset into a path
search problem in a weighted complete graphG = (V,E)
whereV is the set of all skyline pointsp1, p2, . . . , ps−1, ps in
D and two dummy pointsp0 andps+1, sorted in the “clock-
wise” order andE is the set of edges between every pair of
points inV. In particular, for each edgeei j betweenpi andp j

in E, the edge weight, denoted bywi, j , is defined to be the
regret ratio of removing all skyline points betweenpi and
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Algorithm Output Size
Maximum

Regret Ratio
Time Complexity Remark

Related
Material

2-Dimen-
sional
Exact

Algorithms

2d-SWEEPDP [11]
r εr

O(rn2) Theorem 5
2d-BISEARCH [7] O(nlogn) Theorem 6

2d-GRAPHDP [4] O(rslogslogc)
s is # of skyline points,c
is # of convex hull points

Theorem 7

d-Dimen-
sional

Heuristic
Algorithms

GREEDY [28]

|S|= r or mrrD(S,L)≤ ε

O(nr2)
IMPGREEDY [44] O(nr2) support pruning Lemma 2&3
GEOGREEDY [31] O(nrO(d)) Lemma 4
STOREDL IST [31] O(r) require pre-processing

d-Dimen-
sional

Theoretical
Algorithms

CUBE [28] r O(r−1/(d−1)) O(n) Theorem 8

ε -KERNEL [2,7]
O( 1

ε(d−1)/2 ) ε O(n+ 1
εd ) there is a large hidden

constant in big-O notations
Theorem 9

r O(r−2/(d−1)) O(n+ r2d/(d−1))

SPHERE[44] r O(r−2/(d−1)) O(nr2) Theorem 10

HITTINGSET

[2,21]

O(rε ) for d ≤ 3 and
O(rε logrε ) for d ≥ 4

(1− γ)ε + γ O(n+ 1
γd−1 +

log2 1
γ

γ3(d−1)/2 ) γ is a user controlled
parameter (0≤ γ ≤ 1)

Theorem 11
O(r) for d ≤ 3 and
O(r logr) for d ≥ 4

(1− γ)εr + γ O(n+ 1
γd−1 +

log3 1
γ

γ3(d−1)/2 )

DMM [4]
r cεr +(1−c)

O(log(nγd) · (nγd

+(2min{2γm,n}γd)))
γ , c are user controlled para-

meters (0≤ c≤ 1, γ ≥ 1)
Theorem 12

rd logγ cεr +(1−c) O(2nγd log(nγd))

Table 4 Summary of Existing RMS Algorithms in terms of (1) Output Size, (2) Maximum Regret Ratio and (3) Time Complexity

p j . Then, given the output sizer, the goal is to find a path
from p0 to ps+1 with at mostr intermediate points whose
subscripts are in an increasing order so that the maximum
of the edge weights is minimized, which can be efficiently
computed based on dynamic programming (see Figure 5).

Formally, letDP(pi , r ′) be the optimal solution of a path
starting frompi to ps+1 with at mostr ′ ≤ r intermediate
points which minimizes the maximum edge weights. Clearly,
DP(p0, r) is the desired solution for RMS. The recursive for-
mula for the dynamic programming is given as follows:

DP(pi , r
′) = min

j>i
{max{wi, j ,DP(p j , r

′−1)}}

whereDP(pi ,0) is initialized to bewi,s+1. Note that the pair-
wise regret ratios (i.e., the edge weights inG = (V,E)) are
efficiently computed in [4] by simply checking the end points
of each edge (instead of solving the LPs in Section 2). The
performance of 2d-GRAPHDP is summarized as follows.

Theorem 7 ([4]) Given an integer r, the 2d-GRAPHDP al-
gorithm returns an optimal set of at most r points for RMS
(d= 2) in O(rslogslogc) time where s is the number of sky-
line points in D and c is the number of points in D, which
are also on the boundary of the convex hull of D (i.e., the
smallest convex set containing D).

3.2 d-dimensional Heuristic Approaches

In this section, we summarize the heuristic-based approaches
for RMS ind-dimensional spaces, including the Linear Pro-
gramming (LP) algorithms, namely GREEDY [28] and IMP-
GREEDY [44], and the geometric algorithms, namely GE-
OGREEDY [31] and STOREDL IST [31]. Note that all heuris-
tic algorithms presented here mainly differ in implementa-
tions and thus, they produce exactly the same solution sets.

Greedy [28]. GREEDY is the first heuristic algorithm for
RMS, which performs well by returning a setSwith a small
maximum regret ratio empirically. Initially,Scan be initial-
ized to be the point with the highest first dimensional value
[28] (or d points where thei-th point has the highesti-th di-
mensional value [31]). Then, GREEDY iteratively adds more
points intoS until |S| = r or mrrD(S,L) ≤ ε (depending on
which parameters we are controlling). At each iteration, the
point in D that realizes the current maximum regret ratio
mrrD(S,L) is included into the current setS. We say that
a point q realizesthe maximum regret ratiomrrD(S,L) if
mrrD(S,L) = mrrS∪{q}(S,L) [28]. Such a pointq is deter-
mined by computingmrrS∪{p}(S,L) using the LP (1) for
eachp∈D and then, we haveq= argmaxp∈DmrrS∪{p}(S,L).
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Itr S
mrrS∪{p}(S,L)

p1 p2 p3 p4 p5 p6

1 {p4} 0.80 0.78 0.67 0 0 0.67
2 {p1, p4} 0 0.20 0.20 0 0 0
3 {p1, p2, p4} 0 0 0.13 0 0 0
4 {p1, p2, p3p4} 0 0 0 0 0 0

Table 5 Greedy & ImpGreedy Example

Example 1Consider our car database in Table 1. Assume
that we want a solution setS⊆ D with mrrD(S,L) = 0. We
illustrate how GREEDY works in Table 5 (where each cell
contains a maximum regret ratiomrrS∪{p}(S,L)). Assume
that S is initialized to be{p4} which is the point with the
highest first dimensional value. Then, in the first iteration,
p1 is the point realizing the current maximum regret ratio
since p1 = argmaxp∈DmrrS∪{p}(S,L) (shown in bold) and
p1 is inserted toS. This process continues until we find that
mrrD(S,L) = 0 after 4 iterations andS= {p1, p2, p3, p4}.

ImpGreedy [44,34]. To determine the point realizing the
current maximum regret ratio, GREEDY solves the LP (1)
for each point inD in every iteration, which is very expen-
sive. IMPGREEDY overcomes this deficiency by identifying
the unnecessary LP computations and thus, speeds up the
overall process. Specifically, it develops the following pun-
ning strategies for reducing the LP computations:

1. Upper bounding: Since we want the point with the largest
mrrS∪{p}(S,L) in every iteration, IMPGREEDY maintains
an upper bound ofmrrS∪{p}(S,L) for eachp during the
computation. If the bound is at most the largest maxi-
mum regret ratio observed so far, we skip the exact com-
putation ofmrrS∪{p}(S,L) sincep cannot be the point to
be included. Formally, given ap in D, the upper bound
of mrrS∪{p}(S,L) is presented in the following lemma.

Lemma 2 ( [44,34])Given a set S and a point p in D,
mrrS∪{p}(S,L)≤mrrS′∪{p}(S

′,L) where S′ = S\{q} and
q is the last point added to S in previous greedy process.

2. Invariant checking: The LP solutions obtained in previ-
ous iterations can be re-used directly for computing the
mrrS∪{p}(S) in the current iteration if certain conditions
are satisfied. Formally, the lemma is shown as follows.

Lemma 3 ( [44]) Given a set S and a point p in D, we
havemrrS∪{p}(S,L) = mrrS′∪{p}(S

′,L) if (p− q) · uq ≥
mrrS′∪{p}(S

′,L) where S′ = S\ {q}, q is the last point
added to S in previous greedy process and uq is the utility
vector such thatrrS′∪{p}(S

′,uq) =mrrS′∪{p}(S
′,L).

Example 2Let Si be the solution set obtained in thei-th it-
eration in Table 5. According to Lemma 2, we know that
mrrSi∪{p}(Si ,L)≤mrrSi−1∪{p}(Si−1,L). It conforms with our

computations in Table 5 where maximum regret ratios in the
same column are non-increasing from top to bottom.

We show how LP computations are reduced in IMPGREEDY.
Assume that points in Table 5 are processed from left to right
in each iteration of IMPGREEDY. In the first iteration, we
computed the maximum regret ratios for all points inD. Just
before we processp5 in the second iteration, we know that
the upper bound ofmrrS2∪{p5}(S2,L) isub=mrrS1∪{p5}(S1,L)=

0 and the largest maximum regret ratio observed so far is
mrr∗ = maxi∈[1,4]mrrS2∪{pi}(S2,L) = 0.2. Sinceub< mrr∗,
we can directly conclude thatp5 cannot be the point with the
largest maximum regret ratio and skip its LP computation.
Similarly, some other LP computations can also be skipped
in IMPGREEDY and they are shown shaded in Table 5.

Note that Qiu et al. [34] also considered a variation of
IMPGREEDY by applying a randomized sampling onD be-
fore performing the greedy selection to further reduce the
number of LP computations. However, they sacrificed the
quality of the solution set (e.g., the maximum regret ratio)
for better efficiency and there is no theoretical guarantee on
the quality of the solution set provided in [34].

GeoGreedy [31].GEOGREEDY follows the same frame-
work as that in GREEDY. However, it differs from GREEDY

by computingmrrS∪{p}(S,L) using thecritical ratio of p
(whose formal definition is given shortly) instead of the LP (1).

Before we introduce the critical ratio, we present some
terminology first. For each pointp ∈ D, we define theor-
thotope setof p [31], denoted byOrth(p), to be a set of 2d

d-dimensional points constructed by{0, p[1]}×{0, p[2]}×
...×{0, p[d]}. That is, for eachi ∈ [1,d], the i-dimensional
value of a point inOrth(p) is equal to either 0 orp[i]. Given
a setS⊆ D, we define the orthotope set ofS, denoted by
Orth(S), to be

⋃

p∈SOrth(p) and we letConv(S) be thecon-
vex hull, the smallest convex set, of the orthotope set ofS.

Definition 3 ([31]) Given a setS⊆ D and a pointp∈D, the
critical ratio ofp w.r.t.S, denoted bycRatio(S, p), is defined

to be min{ ‖p′‖
‖p‖ ,1}, wherep′ is the intersection between the

ray shooting fromO to p and the surface ofConv(S).

The following lemma shows that the definition of crit-
ical ratio cRatio(S, p) is closely related tomrrS∪{p}(S,L)
and thus, we can computemrrS∪{p}(S,L) in a geometric way
(i.e., by computing the critical ratio using a ray intersection).

Lemma 4 ([31])mrrS∪{p}(S,L) = 1− cRatio(S, p).

Example 3Consider our running example in Table 1 where
D= {p1, p2, p3, p4, p5, p6}. For the ease of presentation, we
normalize HP/MPG to (0,1] and visualize the points in Fig-
ure 6 where theX1 and X2 coordinate represent HP and
MPG, respectively. The orthotope setOrth(p2) = {p2, p′2,
p′′2, (0,0)} is shown in Figure 6 wherep′2 = (0, p2[2]) and
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p′′2 = (p2[1],0). Similarly, Orth(p3) is shown in the same
figure. GivenS= {p2, p3}, we defineOrth(S) to beOrth(p2)∪

Orth(p3). The convex hullConv(S) is shown in Figure 7.
Given p1 and S= {p2, p3}, the intersection betweenOp1

and the surface ofConv(S) is denoted byp′1. By Lemma 4,

mrrS∪{p1}(S,L) = 1− cRatio(S, p1) =
‖p′1‖
‖p1‖

= 0.9.

StoredList [31]. STOREDL IST, proposed by Peng et al. [31],
is a materialized version of GEOGREEDY. Specifically, it
pre-computes a set of candidate points for RMS, calledhappy
points, in D, based on which it runs GEOGREEDY and mate-
rializes the results. Then, when the user issues a query, RMS
can be answered efficiently with the materialized results.

3.3 d-dimensional Theoretical Approaches

In this section, we summarize thed-dimensional algorithms
(d≥ 2), namely CUBE [28], ε -KERNEL [2,7], SPHERE[44],
HITTINGSET [2,21] and DMM [4], which provide theoret-
ical guarantees on the solutions returned for RMS.

Cube [28]. CUBE is the first algorithm which provides a
provable theoretical guarantee on solutions returned for RMS.
Specifically, after some initialization steps, CUBE constructs
the solution setSby first, dividing the data space into mul-
tiple hypercubes based on the firstd−1 dimensions of the
data space, and second, picking a point from each hyper-
cube, which has the largestd-dimensional value in that hy-
percube and inserting that point intoS. Since CUBE picks
one point from each hypercube, the number of hypercubes
constructed in CUBE has to be determined appropriately ac-
cording to the maximum output size. For example, in the 3-
dimensional example in Figure 8, the data space is divided
into four hypercubes based on the first two dimensions and
the points, namelys1,s2,s3 ands4, which have the largest
third dimensional value in each hypercube, are inserted to
the solution setS. According to the construction above, no
matter which hypercube the user’s favorite point is in, there
is a pointp in Swhich is in the same hypercube and thus, the
utility of p is close to the utility of the user’s favorite point.
For example, if a user’s favorite point isp∗ as indicated in
Figure 8, there exists a point, says1, which is inSand is in
the same hypercube asp∗. Thus,s1 has its utility close to
the utility of p∗. Sinces1 has been included intoS, the user
will be satisfied withS and we can bound the regret ratio.
Formally, we provide its theoretical guarantee as follows.

Theorem 8 ([28])Given an integer r,CUBE returns a set S
of at most r points such thatmrrD(S,L)≤ d−1

⌊r−d+1⌋
1

d−1+d−1
.

Specifically, for a fixed dimensionality,mrrD(S,L)=O(r−
1

d−1 ).

ε-Kernel [2,7]. ε -KERNEL improves the upper bound in
CUBE by utilizing the concept of “ε-kernel”, which was first

introduced by Agarwal et al. in [1]. Specifically, a setS⊆ D

is said to be anε-kernel ofD if
maxp∈Sv·p−minp∈Sv·p
maxp∈D v·p−minp∈D v·p ≥ 1− ε

for each non-zero vectorv. Intuitively, anε-kernel ofD pre-
serves the “width” ofD for each direction; e.g., Figure 9
shows a setD (dot points), itsε-kernelS(points enclosed by
circles), the width ofD (denoted byw) and the width ofS
(which is(1− ε)w) along one particular directionv.

It was shown in [2,7] that the definition ofε-kernel is
closely related to RMS. Specifically, ifS is anε-kernel of
D, mrrD(S,L) ≤ ε, which indicates thatS can be returned
as a solution for RMS. Moreover, it is well-known that one
can compute anε-kernel of sizeO(ε−

d−1
2 ) according to the

procedure in [1,45]. The following theorem follows directly.

Theorem 9 ([2,7])Given a real valueε > 0, one can com-
pute a set S⊆ D of size O(ε−

d−1
2 ) with mrrD(S)≤ ε.

Cao et al. [7] translated Theorem 9 to an approximate
algorithm for RMS for obtaining anε-kernel of at mostr
points. This is done by setting a proper value ofε in Theo-
rem 9. The result is summarized in the following corollary.

Corollary 2 ([7]) Given an integer r, one can compute a set

S⊆ D of at most r points withmrrD(S) = O(r−
2

d−1 ).

Combining the results above with the lower bounds pre-
sented in Section 2,ε -KERNEL is the firstasymptotical op-
timal algorithm for RMS. Another advantage ofε -KERNEL

is that it allows for maintaining the solution efficiently when
the dataset is changed by point insertions and deletions with-
out building the entire solution from scratch. However, the
hidden constant behind the big-O notations ofε -KERNEL

is extremely large (see a more detailed discussion in [44]),
making it difficult to be applied in real scenarios.

Sphere [44].Recently, SPHERE, which is also an asymptot-
ical optimal algorithm for RMS, was proposed by Xie et al.
[44] to reduce the hidden constant inε -KERNEL. The core
of SPHEREconstructs a small set of “representative” utility
functions inL and then, includes the points inD with high
utilities w.r.t. those utility functions into the solutionset.

Formally, SPHEREcomputes a small setU of utility vec-
tors such that for each utility vectoru in L, there is a util-
ity vector in U, denoted byu′, anddist(u,u′) ≤ δ where
dist(u,u′) denotes the Euclidean distance betweenu andu′,
andδ is a non-negative similarity threshold (i.e.,u is similar
to u′). Intuitively, U can be regarded as a representative set
of utility vectors that areuniformlydistributed in the utility
space such that foranyutility vector u in L, there is a util-
ity vector inU, which u is similar to. Then, for each utility
vectoru′ in U, SPHEREsearches itsD-basis(to be defined
shortly) inD, which is then included into the solution setS.

GivenB⊆ D and a vectoru′ in U, we define the distance
betweenB andu′, denoted bydist(B,u′), to be the minimum
distance between the endpoint of vectoru′ and a point in the
convex hullof B. Then, we define the “D-basis” as follows.



10 Min Xie et al.

O X1

X
2

p
3

p
4

p
1

p
2

p
6

p
5

p
1
’

Fig. 7 Critical Ratio

X1

X
2

X
3 p*

Fig. 8 Cube Example

v

The width of S

(= (1-ε) w)

The width of D (= w)

Fig. 9 ε-Kernel Example

O X1

X
2

p
1

p
2

p
3

p
4

p
6

p
5

The endpoint of u′

q

dist(D, u′)

Fig. 10 Sphere Example

p1

p
2

pn

…

… …

f

min{… … }m��

Fig. 11 DMM Example

Definition 4 ([44]) Given a setB ⊆ D and a utility vector
u′ in U, B is said to be aD-basis ofu′ if (1) for each proper
subsetB′ of B (i.e.,B′ ⊂B), we havedist(B,u′)< dist(B′,u′)
and (2) we havedist(B,u′) = dist(D,u′).

Intuitively, the D-basis ofu′ is a minimal subset ofD
whose distance tou′ is equal to the distance betweenD
andu′. For example, consider the car database in Figure 10
where the endpoint of a vectoru′ in U is indicated. The
distance betweenD andu′, dist(D,u′), is drawn in dashed,
which is the minimum distance between the endpoint ofu′

and a point in theconvex hullof D (drawn in solid lines).
Point q, represented by a cross point, is the point in the
convex hull ofD achieving such minimum distance. TheD-
basis ofu′ is B= {p2, p3} sincedist(B,u′) = dist(D,u′) =
dist({q},u′) and, for eachB′ ⊂ B, dist(B,u′) < dist(B′,u′)
(i.e.,dist(B,u′)< dist({p2},u′) anddist(B,u′)< dist({p3},u′)).

It was shown in [44] that, given au′ in U, the points in
theD-basis ofu′ has high utilities w.r.t.u′. For each utility
vectoru in L, since theD-basis ofu′ has been included into
the solution setS andu andu′ are similar, the points inS
also have high utilities w.r.t.u and thus, the regret ratio can
be bounded. Formally, we have the following theorem.

Theorem 10 ([44])Given an integer r,SPHERE returns a
set S of at most r points such thatmrrD(S,L)≤

min























1−
1
d
,

(d−1)d

max

{

1/4,

⌊

(

r−d
d2

) 1
d−1

⌋2
}

+(d−1)d























Specifically, for a fixed dimensionality,mrrD(S,L)=O(r−
2

d−1 ).

HittingSet [2,21]. RMS was first formulated as a hitting set
problem in [2]. Specifically, given the setD, [2] constructs
a set system (or a range system)∑ = (D,R) whereR is a
family of subsets ofD. Each subsetR in R is created based
on a particular utility functionf in L andR is defined to be
{q ∈ D | f (q) ≥ (1− ε)maxp∈D f (p)}. That is, the utility
of any point inR is at least(1− ε) of the utility of user’s
(whose utility function isf ) favorite point in the wholeD.

To illustrate, assume thatε is set to be 0.1 and we con-
struct the set system∑ = (D,R) based on the datasetD and

three particular functionsf0.4,0.6, f0.2,0.8 and f0.7,0.3 shown
in Table 1. Take the utility functionf0.4,0.6 as an example.
We define the setR0.4,0.6 to be{q ∈ D | f0.4,0.6(q) ≥ (1−
ε)maxp∈D f0.4,0.6(p)} = {q∈ D | f0.4,0.6(q)≥ 0.9×86.4=
77.76} = {p3, p4}. Similarly, we haveR0.2,0.8 = {p2, p3},
R0.7,0.3 = {p3, p4} and thus,R= {R0.4,0.6,R0.2,0.8,R0.7,0.3}.

According to the way we define∑, it can be easily ver-
ified that a setS⊆ D is a hitting set of ∑ (i.e., S∩ R 6=

/0 for all R∈ R) if and only if mrrD(S,L) ≤ ε. For exam-
ple, givenε = 0.1, the setS= {p3} is a hitting set of∑ =

(D,R) whereR= {R0.4,0.6,R0.2,0.8,R0.7,0.3} (defined above)
and thus,mrrD(S,{ f0.4,0.6, f0.2,0.8, f0.7,0.3}) ≤ ε = 0.1. By
utilizing the well-known approximate algorithm for the hit-
ting set problem [20] and allowing approximations on both
the maximum regret ratio and the output size simultane-
ously, HITTINGSET solves RMS by (1) sampling a finite
number of utility functions inL, (2) constructing the corre-
sponding set system and (3) solving the resulting hitting set
problem. Formally, the result is summarized as follows.

Theorem 11 ([2])Givenε and a user-controlled parameter
0≤ γ ≤ 1, HITTINGSET returns a set S such thatmrrD(S,L)≤
(1− γ)ε + γ and |S|= O(rε ) for d ≤ 3 and |S|= (rε logrε)

for d ≥ 4 where rε is the smallest size of any solution set in
the dataset whose maximum regret ratio is at mostε.

Note that the bound(1− γ)ε + γ on the maximum re-
gret ratio in Theorem 11 can be made arbitrarily close toε
by increasing the execution time (i.e., sampling more utility
functions). Kumar et al. [21] improved the execution time
of HITTINGSET by applying it on a pre-computedε-kernel
of D. Besides, Agarwal et al. [2] extended the HITTINGSET

algorithm to find a solution set for RMS with size at most
cr logr (for a given output size constraintr) wherec is an ap-
propriate constant by running HITTINGSET multiple times
in a binary search manner on different values of maximum
regret ratios. Formally, the result is summarized below.

Corollary 3 ([2]) Given r and a user controlled parameter
0≤ γ ≤ 1, HITTINGSET returns a set S of points such that
mrrD(S,L) ≤ (1− γ)εr + γ and |S| = O(r) for d ≤ 3 and
|S| = (r logr) for d ≥ 4 whereεr is the smallest maximum
regret ratio of any set in the dataset with at most r points.

DMM [4]. DMM works similarly as HITTINGSET by dis-
cretizing the utility space based on a user-controlled param-
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eter and formulating RMS as amatrix min-maxproblem
[36]. Specifically, consider a matrixM where each row cor-
responds to a point inD and each column corresponds to a
utility function in L (see Figure 11 as an example). Each cell
M[p, f ] of the matrix is the regret ratio ofp w.r.t. f . Given
a setS of r points and a utility functionf , the regret ratio
rrD(S, f ) can be computed to be the minimum value (among
the selectedr rows of points inS, shown in shaded in Fig-
ure 11) on the corresponding column off , and the maxi-
mum regret ratiomrrD(S,L) is estimated to be the maximum
assigned regret ratio among all columns inM. Then, RMS
is transformed to a min-max problem onM, which can be
solved as a number of set-cover problems in a binary search
manner. Its theoretical performance is shown as follows.

Theorem 12 ([4])Given r and a user-controlled parameter
α ∈ [0, π

2 ], DMM returns a set S of at most r points such that
mrrD(S,L)≤ cεr +(1−c)whereεr is the smallest maximum
regret ratio of any solution set in the dataset with at most r

points, c= cos(α ′/2)cos(π/4)
cos(π/4−α ′/2) andα ′ = 2arcsin(

√

1−cosd−1α
2 ).

While DMM runs inO(nlogn) time in theory, its depen-
dence on the parameterα is exponential. To improve its ef-
ficiency, we can solve the matrix min-max problem approxi-
mately by solving set-cover problems using the well-known
greedy strategy, which, however, adds another level of ap-
proximation and increases the output size by a log-factor.

3.4 Theoretical Comparison

After surveying different RMS algorithms, we provide a brief
theoretical comparison among them. In particular, in addi-
tion to the complexity analysis shown in Table 4, we also
consider the following aspects which were considered in the
literature [7,44] for evaluating the theoretical performance
of an algorithmA for RMS (see the summary in Table 6):

– Deterministic?AlgorithmA is a deterministic algorithm.
– Has Bounds?Algorithm A provides theoretical bounds

on the size/maximum regret ratio of the returned set.
– Restriction-free MRR bound?The definition of restriction-

free MRR bound was first proposed in [44]. Specifically,
it means that when there is a bound on the maximum re-
gret ratio, there is no restriction on the bound. Recall that
the maximum regret ratio is a real value between 0 and
1. If the bound of the maximum regret ratio of the so-
lution set returned byA is in the range between 0 and 1
for anysetting, we say that algorithmA has a restriction-
free MRR bound. Otherwise, the bound is in the range
between 0 and 1 in somerestrictedcases and thus, we
say thatA does not have a restriction-free MRR bound.

– Asymptotically Optimal?AlgorithmA returns an asymp-
totically optimal solution for RMS.

– Optimal?Algorithm A returns an optimal solution.
– Arbitrary Dimensionality?Algorithm A could be exe-

cuted on datasets with an arbitrary dimensionality.
– Parameter-free?Algorithm A does not require users to

specify additional parameters for executing the algorithm.

All aspects are important to RMS since (1) a determin-
istic algorithm could be more desirable than a randomized
algorithm in some applications since it returns stable solu-
tions; (2) an algorithm which returns a solution with theo-
retical bounds is more useful than an algorithm which does
not. In particular, the tighter the bound, the more desirable
the algorithm. For example, an optimal algorithm is better
than an asymptotically optimal one, which is then better than
a theoretically bounded (but not asymptotically optimal) al-
gorithm; (3) an algorithm which does not have a restriction-
free MRR bound may give aninvalid bound (e.g., a bound
greater than 1) on the maximum regret ratio, which implies
that this algorithm does not have a useful bound since the
maximum regret ratio itself is a real number from 0 to 1;
(4) an algorithm which could not be executed on datasets
of some dimensionalities could have limited generality; and
(5) a parameter-free algorithm is user-friendly since setting
appropriate parameters requires additional user effort.

Consider the comparison summarized in Table 4 and Ta-
ble 6. Due to the NP-harness of the problem, only the 2-
dimensional exact algorithms returns optimal solutions for
RMS. Among them, 2d-BISEARCH has a clearly better time
complexity (O(nlogn)) than 2d-SWEEPDP (O(rn2)) while
2d-GRAPHDP is the best algorithm when the number of
skyline/convex hull points in the dataset is much smaller
than the dataset size. Unfortunately, the 2-dimensional ex-
act algorithms are restricted when the datasets have two at-
tributes only. In contrast, the heuristic algorithms can be
executed on datasets of any dimensionality. However, they
fail to provide any theoretical guarantee on the solutions.
Among them, GREEDY and IMPGREEDY scale better than
GEOGREEDY, whose performance degrades when the di-
mensionality is large due to its exponential dependency ond.
Finally, among alld-dimensional theoretical algorithms, CUBE

has the smallest time complexity since it constructs the solu-
tion set by scanning the database once while the time com-
plexities of most of the other theoretical algorithms expo-
nentially depend ond. Meanwhile, CUBE is the first the-
oretically bounded algorithm for RMS, whose bound is im-
proved later by SPHEREandε -KERNEL. Although both SPHERE

andε -KERNEL provide asymptotically optimal guarantees
on the solutions, the large hidden constant in the bound of
ε -KERNEL prohibits it from being a restriction-free algo-
rithm. Moreover, in practice,ε -KERNEL and HITTINGSET

are usually implemented in a randomized manner. HITTINGSET

and DMM are not parameter-free algorithms since they re-
quire additional parameters from users and they relax both
the output size and maximum regret ratio simultaneously.
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Algorithm
Determin-

istic?
Has Theoretical Guarantees? Arbitrary

Dimen-
sionality?

Parameter-
freeHas

Bounds?
Restriction-free
MRR Bound?

Asymptotically
Optimal?

Optimal?

2-Dimen-
sional Exact
Algorithms

2d-SWEEPDP [11] X X X X X X

2d-BISEARCH [7] X X X X X X

2d-GRAPHDP [4] X X X X X X

d-Dimen-
sional

Heuristic
Algorithms

GREEDY [28] X X X

IMPGREEDY [44] X X X

GEOGREEDY [31] X X X

STOREDL IST [31] X X X

d-Dimen-
sional

Theoretical
Algorithms

CUBE [28] X X X X X

ε -KERNEL [2,7] X X X X

SPHERE[44] X X X X X X

HITTINGSET [2,21] X X X

DMM [4] X X X X

Table 6 Theoretical Comparison among Existing RMS Algorithms

4 Variants

In this section, we summarize the variants of RMS studied
in the literature. In particular, we present the generalized
kRMS problem in Section 4.1 and RMS over non-linear util-
ity function class in Section 4.2, which are two major vari-
ants of RMS. Other variants are shown in Section 4.3.

4.1 The kRMS Problem

A major variant of RMS is thekRMS problem proposed by
Chester et al. [11], which can be regarded as a generalization
of the traditional RMS problem. Denote thek-th highest util-
ity among points inD by k-maxp∈D f (p). In this variant, the
“regret ratio” (“maximum regret ratio”) is generalized to the
“k-regret ratio” (“maximumk-regret ratio”).

Definition 5 ([11]) Given a setS⊆ D, an integerk and a
utility function f , thek-regret ratioof SoverD w.r.t. f , de-

noted byk-rrD(S, f ), is defined to be max{0,1−
maxp∈S f (p)

k-maxp∈D f (p)}.

Definition 6 ([11]) Given a setS⊆ D and a function class
FC, the maximum k-regret ratioof S over D w.r.t. FC, de-
noted byk-mrrD(S,FC), is defined to be supf∈FC k-rrD(S, f ).

Different from RMS where a user is happy withS if the
highest utility inS is close to the highest utility inD, a user
will be happy withS in kRMS and his/herk-regret ratio is
0 if the highest utility inS is at least thek-th highest utility
in D. Similar to RMS, the goal ofkRMS is to optimize the
worst-casek-regret ratio, i.e., we want a setS⊆ D such that
the maximumk-regret ratiok-mrrD(S,L) is minimized.

Whenk is set to be 1,kRMS is reduced to the original
RMS problem. Besides, ifS is a solution of RMS, it is also
a solution ofkRMS. However, there can be another solution
for kRMS whose size and maximumk-regret ratio are much
smaller. Next, we show how to extend some algorithms orig-
inally designed for RMS to find a better solution forkRMS.

2d-kRMS [11,4].2d-SWEEPDP [11] and 2d-BISEARCH [4]
can be extended to handlingkRMS in 2-dimensional spaces.
Specifically, 2d-SWEEPDP can be modified to solvekRMS
by finding a setS of lines in the dual space whose lower
envelope (which corresponds to the top-ranked points inS)
is close tothe top-k rank contourof the dual lines of all
points inD (which corresponds to thek-ranked points inD).
Similarly, 2d-BISEARCH can solvekRMS optimally by de-
termining the candidate values of the optimalε (here,ε is
the maximumk-regret ratio rather than the maximum regret
ratio in RMS) implicitly based on a line sweeping algorithm
since there are much more such values than those in RMS.

kRMS-Greedy [11]. Chester et al. extended GREEDY to a
randomized algorithm for the more generalkRMS problem.
Intuitively, it decomposes each iteration in the greedy pro-
cess, which identifies the point realizing the current maxi-
mumk-regret ratio, into a set of 2RMS problems and looks
for a common solution. Specifically, given a utility function
f , if p is thek-ranked point inD w.r.t. f , D must be able
to be divided intok−1 partitions, namelyD1, . . . ,Dk−1, so
that p is the 2-ranked point on each of thesek−1 partitions
(i.e., there is exactly one point in each partition with a higher
utility than p). However, it is difficult to find such a partition
without the knowledge off . They used a random partition-
ing approach to construct candidate partitions. In particular,
they modified the LP (1) to tell whether the partitioning is
successful and whether they need to try new partitions.

kRMS-HittingSet [2,21]. HITTINGSET [2,21] can be eas-
ily extended to handling thekRMS problem by re-defining
the set system∑ = (D,R) where each setR in R is defined to
be{q∈ D | f (q)≥ (1− ε)k-maxp∈D f (p)}. In other words,
the utility of any point in the redefined setR is at least(1−ε)
of thek-th highest utility among all points inD. The remain-
ing procedure ofkRMS-HITTINGSET is kept unchanged.

Whenk is large, Kumar et al. [21] further improved the
efficiency by sampling a smaller subsetD′ of D. It was proven
in [21] that, given any functionf in L, we can approximate
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thek-ranked point inD by thek′-ranked point inD′ with a
high probability wherek′ ≪ k and|D′| ≪ |D| so that we can
solve the originalkRMS problem by solving an alternative
k′RMS problem with a smaller input size in a shorter time.

kRMS-DMM. Similar to HITTINGSET [2,21], DMM [4]
can also be extended to supportkRMS with a minor modifi-
cation. This is done by re-defining each cellM[p, f ] of M to
be thek-regret ratio ofp w.r.t. f (instead of the regret ratio).
The remaining steps ofkRMS-DMM are kept unchanged.

Remark. kRMS can be further generalized to the top-kRMS
problem [21] where we want a setSsuch that thei-th highest
utility in S is close to thei-th highest utility inD for every
i ∈ [1,k]. Intuitively, the goal of top-k RMS is to find a set
S approximating the top-k query well. A multi-hitting set
based algorithm was proposed in [21] to solve top-k RMS.

4.2 RMS over Non-Linear Utility Functions

In Section 3, we focus on RMS whereFC = L, the class of
linear utility functions. Now, we relax this assumption by
considering different types of non-linear utility functions.

Definition 7 (Convex Function)A function f is said to be
convex overR+ if for all x1,x2 ≥ 0 andλ ∈ [0,1], we have
f (λx1+(1−λ )x2)≤ λ f (x1)+ (1−λ ) f (x2).

Definition 8 (Concave Function)A function f is said to be
concave overR+ if − f is a convex function.

Definition 9 (CES Function) A function f is said to be a
Constant Elasticity of Substitution (CES) function overR

d
+

if f is in the formf (p) = (∑d
i=1ai p[i]b)

1
b whereb> 0,ai > 0.

Definition 10 (MUF) A function f is said to be a Multi-
plicative function (MUF) overRd

+ if f is in the form f (p) =
∏d

i=1 p[i]αi where eachαi ≥ 0 and∑d
i=1 αi ≤ 1.

Given a functionf , consider themarginal gainon its
utility f (p) caused by every unit increment on a particu-
lar dimensional value of pointp. If f is a linear function
where f (p) = u · p= ∑u[i]p[i], it corresponds to aconstant
marginal gain sincef (p) always increasesu[i] units for ev-
ery unit increment on thei-th dimensional value ofp (i.e.,
p[i]). In comparison, non-linear functions correspond to other
types of marginal gains; e.g., a convex (concave) function
corresponds to an increasing (decreasing) marginal gain.

Based on the definitions above, we summarize the non-
linear function classes commonly studied in the literature:

– Convex Function Class.FC is said to be a convex func-
tion class ifFC = { f | f (p) = ∑d

i=1 fi(p[i]) where each
fi is aconvexfunction overR+}. For the purpose of il-
lustration, we stick to a particular convex function class
FC = { f | f (p) = ∑d

i=1ai p[i]b whereai ≥ 0 andb≥ 1};
e.g., f (p) = ∑d

i=1 p[i]2 is in the convex function class.

FC
Lower Upper Bound
Bound M INWIDTH [13] M INVAR [32]

Convex Ω(1/r2b) O(1/r
1

d−1 ) -

Concave Ω(1/r2) O(1/r
1

d−1 ) -

CES (b< 1) Ω(1/br2) O(1/br
b

d−1 ) O(1/r
1

d−1 )

CES (b≥ 1) Ω(1/br2) O(1/r
1

b(d−1) ) -

MUF Ω(1/r2) - O(ln(1+1/r
1

d−1 ))

Table 7 RMS over Non-linear Utility Function Classes

– Concave Function Class.FC is a concave function class
if FC= { f | f (p) = ∑d

i=1 fi(p[i]) where eachfi is acon-
cavefunction overR+}. For the purpose of illustration,
we stick to a particular concave function classFC =

{ f | f (p) = ∑d
i=1ai p[i]b whereai ≥ 0 and 0< b < 1};

e.g., f (p) = ∑d
i=1

√

p[i] is in the concave function class.
– CES Function Class.FC is said to be a CES function

class ifFC= { f | f is a CES function}. The CES func-
tion class is a popular function class in Economics.

– Multiplicative Function (MUF) Class. FC is said to be
a MUF class ifFC = { f | f is a MUF}. The MUF class
is a function class that has more expressive power in
modeling thediminishing marginal rate of substitution
(DMRS)[41] (a popular economic concept).

Note that according to [13,32], the scale-invariance of
RMS is preserved under all non-linear utility function classes
defined above. In the following, we summarize the known
lower bounds on RMS when considering non-linear utility
function classes and the best-known algorithms proposed
(both theoretical and heuristic) for solving non-linear RMS.

Lower bound. Assume that the maximum output size is
fixed to ber. The authors in [13,32] derived the lower bounds
on the maximum regret ratio over each of the non-linear
function classes described above in 2-dimensional spaces
and their main results are summarized in Table 7.

Theoretical Algorithms. CUBE [28] was extended to han-
dling non-linear function classes with provable guarantees
in [13,32]. Specifically, Kessler Faulkner et al. [13] pro-
posed MINWIDTH, which omits empty hypercubes in CUBE

so that sparse datasets can be better handled. Qi et al. [32]
proposed MINVAR, which performs well even when the dataset
is skewed. Their corresponding bounds on the maximum re-
gret ratio for a fixed output sizer are shown in Table 7.

Heuristic Algorithms. Algorithms were also proposed for
solving non-linear RMS heuristically. Specifically, AREA-
GREEDY [13] constructs a solution iteratively by includ-
ing the point that greatest increases theareaunder the cur-
rent set at each iteration. ANGLE [13] computes a set of di-
rections discretizing the polar space and identifies the far-
thest point in each direction, which is added to the solution.
MAX DIF [32] greedily selects points according to an upper
bound on the maximum regret ratio for each point inD.
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4.3 Other Variants

Many other variants of RMS were also studied in the litera-
ture and they are summarized in this section.

Interactive RMS. Nanongkai et al. [27] enhanced traditional
RMS with user interactions.Intuitively, instead of asking
the user for the exact utility functions directly, they implic-
itly learned the user’s utility function by asking the user to
provide some “hints”. Specifically, at each interaction, a user
is presented with a short list of points and s/he is asked to in-
dicate the point s/he favors the most among them. Based on
the user feedback, the utility function is learned implicitly
and finally, the user’s favorite point can be identified. User
interactions are shown to be very useful in [27]: they reduce
both the user regret and the output sizeexponentially. The
main result known for interactive RMS is shown as follows.

Theorem 13 ([27])Given a real valueε > 0, one can guar-
antee anε regret ratio by displaying O(slogs

1
ε ) points to the

user where s is the number of points displayed at each inter-
action (i.e., the number of rounds of interactions is O(logs

1
ε )).

In most cases,s is small and it can be regarded as a
fixed constant. Compared with the traditional RMS algo-
rithms presented in Section 3 (e.g., Theorem 9), Theorem 13
shows an exponential improvement in the output size when
user interactions are allowed. Moreover, by combining The-
orem 13 with the following lower bound on interactive RMS,
we know that the algorithm in [27] is almost optimal.

Theorem 14 (Lower Bound on Interactive RMS[27])For
any dimensionality d andε ∈ (0,1], there is a d-dimensional
database such that any algorithm needs to presentΩ(slogs

1
ε )

points from the database (i.e., to interact with the user for
Ω(logs

1
ε ) rounds) to guarantee a regret ratio at mostε.

However, [27] has two major disadvantages. Firstly, it
performs poorly in the number of rounds of interactions when
a user wants to find the point with a 0 regret ratio (i.e.,
ε = 0). Secondly, during interaction, it presents users with
some fake/artifical points (i.e., points not in the database).
Fortunately, Xie et al. [43] proposed algorithms which over-
come these deficiencies. Specifically, they used a concept,
called theutility hyperplane, to model the user preference
and two effective pruning strategies to locate the user’s fa-
vorite tuple in the database. Moreover, the algorithms in [43]
always display true tuples in the database during interaction,
and thus, they are said to bestrongly truthfulalgorithms.

Average RMS. [46,47,33] studied the regret ratios in the
average case, rather than the worst case. In this setting, itis
assumed that the probability distribution of utility functions
in FC is given. Then, the average regret ratio is defined to be
the integral of regret ratios over this probability distribution,

which is also known as the expected regret ratio. To improve
the computational efficiency, they used sampling to estimate
the average regret ratio, which is within an additive distance
to its true value with a high probability. It was proven in
[46,47,33] that the average regret ratio is a monotonically
non-increasing supermodular set function. Thus, they find
a set with small average regret ratio using the well-known
greedy algorithm for minimizing a supermodular set func-
tion [18]. Specifically, the solutionS is initialized to be the
whole databaseD and then they iteratively remove points
from Suntil there are at mostr points inS. At each iteration,
the point which minimizes the average regret ratio ofS is
removed. Unfortunately, the above algorithm is very ineffi-
cient and it has a cubic execution time in the dataset size.

Various techniques were proposed to improve its em-
pirical performance. For example, lazy evaluations, which
maintain a list of lower bounds on the average regret ratios,
were considered in [33] to remove unnecessary computa-
tions. Pre-computations and re-used computations were also
utilized in [47] to improve the efficiency. In particular, when
only considering linear utility functions on a 2-dimensional
dataset, a dynamic programming based algorithm was pro-
posed in [47] to solve the average RMS problem optimally.

Diversified RMS. Hussain et al. [17] examined how user
regret can be minimized while maximizing thediversityof
the solution set. In their context, diversity is measured asthe
average distance (e.g., Euclidean distance) between every
pairs of points in the returned set. They aimed at optimizing
an objective function which is a linear combination of ap-
propriately scaled diversity and regret metrics. Specifically,
they proposed a greedy-based algorithm, which incremen-
tally constructs the solution by adding one point at a time,
and a swap-based algorithm, which iteratively updates the
solution by swapping points to improve the objective value.

RMS in Multi-Objective Submodular Function Maximiza-
tion (Multi-RMS). Instead of optimizing over a single util-
ity function in RMS, it is assumed in [39] that there are
multiple submodular objective functions in the user’s mind
and they studied the regret minimization in the context of
multi-objective submodular function maximization (Multi-
RMS). In this setting, the approximate algorithm for each
single objective function maximization is taken as an input.
To solve Multi-RMS, a coordinate-wise maximum method
[39] was proposed to output a fixed size solution and a poly-
tope method [39] was presented to enable users to control
the output size. In particular, in the biobjective case, the
polytope method provides a provable guarantee on the re-
gret ratio which can not be improved significantly according
to the lower boundΩ(1/r2) proven for Multi-RMS in [39].

Rank RMS. While RMS measures the user regret based
on the utility difference between the points in the selected
set and in the whole database, Asudeh et al. [5] measured
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the user regret based on their rank difference, which is also
known as rank RMS. In a 2-dimensional space, they pro-
posed a 2-approximation algorithm based on angular sweep-
ing. In ad-dimensional space, they modeled rank RMS by
a geometric hitting set problem based on thek-set enumera-
tion (a well-known concept in computational geometry) and
solve it with a logarithmic approximation factor. A function
space partition based algorithm was also proposed in [5],
which provides a fixed approximation on rank RMS.

Candidate Set for RMS.A problem, which is orthogonal to
RMS, was raised in [31], which aims at reducing the set of
candidate points that we need to consider for RMS. It it well-
known [32] that when we are constructing a solution setS
for RMS, it suffices to consider the set of all skyline points
in D, denoted byDsky, since the maximum regret ratio ofS
will not be larger if we replace any non-skyline pointp in
S with a skyline point that dominatesp in Dsky. Peng and
Wong [31] further reduced the candidate set to be the set of
happy points, denoted byDhappy. In particular, they proved
that Dhappy⊆ Dsky ⊆ D and the optimal solution of RMS
must be a subset ofDhappy, which is summarized below.

Lemma 5 ([31])Given an integer r, Dhappy⊆Dsky⊆D and
there exists a set S⊆Dhappysuch thatmrrD(S,L)=mrrD(S∗,L)
and|S|= |S∗| ≤ r where S∗ is the optimal solution of RMS.

Apart from [31], [15,16] computed the candidate set for
RMS by considering skyline points with highpriority and
frequency. However, these approaches are heuristic-based,
and there is no known guarantees on their effectiveness.

RMS with Binary Constraints. [12] augmented traditional
RMS withbinary constraints. Examples of binary constraints
include “the HP of this car is among top 10% in the database”
and “it is a limousine”. Heuristic algorithms were proposed
in [12] to find a set with a small maximum regret ratio while
maximizing the number of binary constraints it satisfies.

5 Experiments

We conducted experiments on a machine with 1.60GHz CPU
and 8GB RAM. All programs were implemented in C/C++.
Most of the experimental settings follow those in [28,4,44].
Bothsyntheticandreal datasetsare used in our experiments.

Synthetic datasets were generated using a dataset gen-
erator developed for skyline queries in [6]. Three types of
synthetic datasets with diverse characteristics were consid-
ered: (1) anti-correlated datasets (points which are good in
one attribute are bad in some of other attributes); (2) corre-
lated datasets (points which are good in one attribute are also
good in other attributes); and (3) independent datasets (all
attributes are generated independently). Unless stated ex-
plicitly, for each synthetic dataset, the number of tuples is set
to be 100,000 (i.e.,n = 100,000). Note that anti-correlated

Dataset d |D| |Dsky|

AL 2 5,810,462 37
IL 2 63,383 206
EN 5 178,080 483

NBA 6 16,916 130
HH 7 1,048,578 57
CL 9 68,040 3,460

Table 8 Real Datasets

d=2
d=3

d=4
d=5

102

103

104

105

1k 10k 50k 100k 500k 1M 5M 10M

sk
yl

in
e 

si
ze

dataset size (n)

Fig. 12 Preprocessed Anti-Correlated Datasets

datasets are the most interesting synthetic datasets where
the skyline set is large and cannot be returned as a whole.
Thus, we used anti-correlated datasets as our default syn-
thetic datasets. Real datasets contain six datasets commonly
used in existing studies [28,4,44,11,27].Airline (AL) [4]
andIsland (IL) [28] are 2-dimensional datasets, containing
the information of 5,810,462 flights and 63,383 geographic
locations, respectively, and they are used for evaluating 2-
dimensional algorithms.EL Nino (EN)[11] consists of 178,080
tuples with five oceanographic attributes taken at the Pacific
Ocean.NBA[44] contains 16,916 tuples for each player/season
combination from 1946 to 2009. Six attributes are selected
to represent the performance of each player.Household (HH)
[44] contains 1,048,576 family tuples with 7 attributes, show-
ing economic characteristics of each family.Color (CL) [28,
27] contains the color histograms of 68,040 images. The
statistics about real datasets are summarized in Table 8.

For all datasets, each attribute is normalized to (0, 1]. We
preprocessed each dataset such that the preprocessed dataset
contains skyline points only. The sizes of preprocessed anti-
correlated datasets are shown in Figure 12. Note that some
RMS algorithms constrain the output size and some other
RMS algorithms constrain the maximum regret ratio during
execution. Unless specified explicitly, the default outputsize
is set to be 30 (i.e.,r = 30) if we constrain the output size,
and the default maximum regret ratio is set to be 0.05 (i.e.,
ε = 0.05) if we constrain the maximum regret ratio. The per-
formance of each algorithm is measured by itsquery time,
output sizeandmaximum regret ratio. The query time of an
algorithm is the execution time of the algorithm. The output
size of an algorithm is the number of points returned by the
algorithm. The maximum regret ratio of an algorithm is the
maximum regret ratio of the set returned by the algorithm.
Some results are plotted in log-scale for better visualization.

We compared the following three sets of algorithms. Firstly,
we compared the 2-dimensional algorithms 2d-SWEEPDP
[11], 2d-BISEARCH [7] and 2d-GRAPHDP [4], which solve
RMS optimally. Secondly, we evaluated thed-dimensional
heuristic algorithms GREEDY [28], IMPGREEDY [44] and
GEOGREEDY [31]. Note that STOREDL IST [31] is a ma-
terialized version of GEOGREEDY and thus, it is excluded.
Thirdly, we studied the performance ofd-dimensional the-
oretical algorithms, which can be further divided into two
sub-categories according to their primary purposes: (1)min-
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Fig. 13 2-dimensional Algorithms on Anti-Correlated Datasets

error algorithms which minimizes the maximum regret ra-
tio while fixing the output size (i.e., CUBE [28], SPHERE

[44] and DMM [4]) and (2)min-sizealgorithms which min-
imizes the output size while fixing the maximum regret ra-
tio (i.e., HITTINGSET [2,21] andε -KERNEL [2,7]). Note
that some algorithms (e.g., HITTINGSET) could be applied
in both cases (with some modifications). We postpone the
detailed description of these variations to later sections. We
optimize the performance of each algorithm and the parame-
ters are set following the setting reported in existing studies.

We proceed with the experiments on synthetic and real
datasets in Section 5.1 and Section 5.2. In Section 5.3, we
evaluated some existing algorithms when they are extended
to handling different variants of RMS. A user study about
RMS can be found in Section 5.4. Finally, we summarize our
findings and the empirical guideline for RMS in Section 5.5.

5.1 Results on Synthetic Datasets

5.1.1 2-Dimensional Exact Algorithms

We start with the performance evaluation of 2-dimensional
algorithms (2d-SWEEPDP, 2d-BISEARCH and 2d-GRAPHDP)
and the results are summarized in Figure 13. Since RMS can
be solved optimally in 2-dimensional spaces, all 2-dimensional
algorithms produce the same solutions and thus, we only re-
port their query times. Figure 13(a) depicts the query time
by varying the output sizer. All algorithms are fast and they
take only a few milliseconds to return the optimal solutions.
However, 2d-SWEEPDP and 2d-BISEARCH are slightly slower
than 2d-GRAPHDP, which is consistent with the results re-
ported in [4]. This is because both 2d-SWEEPDP and 2d-
BISEARCH have to compute the lower/upper envelope of a
given set of lines while 2d-GRAPHDP avoids the envelope
computation and solves RMS from a graph perspective. We
also show the query time of each 2-dimensional algorithm
by varying the dataset sizen in Figure 13(b). Since each
point is only described by 2 attributes, all algorithms are fast
and not very sensitive to the dataset sizen. Similar to the
result in Figure 13(a), 2d-GRAPHDP achieves the smallest
running time in all cases due to its efficient computations on
the regret ratios and its concise graph representation.

5.1.2 d-Dimensional Heuristic Algorithms

We studied the performance ofd-dimensional heuristic al-
gorithms in Figure 14 on 5-dimensional anti-correlated datasets.
Note that all heuristic algorithms differ in implementation
and they produce the same solutions. Thus, we only com-
pared their query times (their output sizes and maximum re-
gret ratios will be shown later). Firstly, we varied the output
size r in Figure 14(a). In general, IMPGREEDY runs faster
than GREEDY since IMPGREEDY avoids the unnecessary
LP computations in GREEDY while guaranteeing the cor-
rectness. Whenr is small, GEOGREEDY is the fastest algo-
rithm. However, whenr is larger, its performance degrades
and becomes slower than IMPGREEDY. This is because GE-
OGREEDY heavily relies on the convex hull computation to
obtain the critical ratios and the next point to be included
in the greedy process. Unfortunately, computing the con-
vex hull of r points in GEOGREEDY takesO(rO(d)) time,
which is expensive for larger, while other algorithms are
quadratic inr. Secondly, we proceed with the experiments
by varying the maximum regret ratioε in Figure 14(b). In
most cases, when a user specifies a smallerε, the problem
becomes more challenging and an RMS algorithm needs to
return more points to guarantee the required maximum re-
gret ratio. Thus, whenε is smaller, the running times of all
heuristic algorithms increase. Among all algorithms, IMP-
GREEDY achieves the best performance by being faster and
less sensitive toε. Thirdly, in Figure 14(c), we evaluated the
scalability of the heuristic algorithms by varying the dataset
size n. When there are more points in the database, both
LP-based algorithms and geometric-based algorithms spend
more time to execute, which conforms with human intu-
ition. However, when considering the scalability by varying
the dimensionalityd in Figure 14(d), LP-based approaches
(GREEDYand IMPGREEDY) scale better than the geometric-
based approach, GEOGREEDY, since the time of comput-
ing convex hulls in GEOGREEDY exponentially depends on
d. According to the experiments above, we obtain the fol-
lowing useful observations. Firstly, the geometric-basedap-
proach, i.e., GEOGREEDY does not scale well with large di-
mensionality and large output size since its operation is ex-
pensive in these cases. Secondly, IMPGREEDY achieves a
superior performance among all heuristic algorithms with a
shorter query time and better scalability in most cases since
it avoids a large number of redundant computations. Moti-
vated by this, in the rest experiments, we only compare IMP-
GREEDY and omit the results of other heuristic algorithms.

5.1.3 d-Dimensional Theoretical Algorithms

In the following, we conducted two sets of experiments for
evaluating thed-dimensional theoretical algorithms. Specif-
ically, we experimentally compared the min-error algorithms
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Fig. 16 Min-Error - Scalability Test on Anti-Correlated Datasets

CUBE, SPHERE and DMM (Figures 15 and 16) , and the
min-size algorithms, HITTINGSET andε -KERNEL (Figures 17
and 18). For completeness, we also compared the best heuris-
tic algorithm, IMPGREEDY, in the experiments.

Min-Error. In Figure 15, we show the performance of the
min-error algorithms by varying the output sizesr on a 5-
dimensional anti-correlated dataset. Note that although HIT-
TINGSET andε -KERNEL, which are primarily designed as
min-size algorithms, can be modified to answer min-error
RMS in theory, their empirical performances on solving min-
error RMS are poor due to the large running time (e.g.,O(nd)
in HITTINGSET) and the large maximum regret ratio (e.g.,
ε -KERNEL). Thus, we did not include these two variations
in the figure for better visualization. We measured the max-
imum regret ratio in Figure 15(a). CUBE produces the worst
maximum regret ratio while other algorithms return solu-
tions with smaller maximum regret ratios. For example, when
r = 30, the maximum regret ratio of CUBE is around 0.4,
which is 4 times larger than the maximum regret ratios of
other algorithms. Moreover, according to our results in Fig-
ure 15(a), none of the algorithms dominates the others in
terms of maximum regret ratio. Specifically, whenr is smaller,
the maximum regret ratio of DMM is smaller while whenr
is larger, the maximum regret ratios of SPHERE and IMP-
GREEDY are smaller. Similarly, we plotted the running time
in Figure 15(b). Although the maximum regret ratio of CUBE

is large, it is extremely fast compared with other algorithms
since it constructs the solution by simply scanning the database
once, which can be efficiently implemented. Apart from CUBE,
SPHERE is the most efficient algorithm and it is faster than
both IMPGREEDY and DMM in all values ofr. However,
unlike CUBE which performs poorly in maximum regret ra-
tio, the maximum regret ratio of SPHEREis not only asymp-
totically optimal, but also small empirically. Another inter-
esting phenomenon that we can observe from the experi-
ments is that it takes more time for SPHEREand IMPGREEDY

to construct a solution with a larger size while the execution
time of DMM is less sensitive to the output size. Specifi-
cally, SPHERE and IMPGREEDY construct solutionsincre-
mentally: they start with an empty solution set and construct
the solution set by gradually adding more points to it. In par-
ticular, when a larger output size is required, an incremental
algorithm takes more time to execute. In comparison, DMM
solves RMS by solving a number of set cover problems in
a binary search manner and thus, its performance is less de-
pendent on the output size (but it is slower than SPHERE
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and IMPGREEDY). Note that in some scenarios, a user might
want a large output size. For example, when a job seeker is
looking for a job in a job recommendation system, s/he is
willing to be recommended with a sufficient number of po-
sitions to increase his/her chance to get some jobs finally
since each job position will only hire one or a few people
from a large number of candidates. The existing min-error
algorithms are not efficient in these scenarios. It is not clear
whether RMS can be solveddecrementallywith theoretical
guarantees; that is, it starts with the entire dataset as theso-
lution and constructs the solution set by gradually removing
points from it. In particular, when a larger output size is re-
quired, it takeslesstime to construct the solution.

Min-Error (Scalability Test). We studied the scalability of
the min-error algorithms in Figure 16 wherer is fixed to be
30. When the dataset sizen (Figure 16 (a)) or the skyline size
(Figure 16 (b)) increases, the maximum regret ratios of all
algorithms are stable and are not sensitive to the increasing
dataset/skyline size. It conforms with the lower bounds in
Section 2, which is independent of the dataset/skyline size.
In particular, SPHEREand IMPGREEDY return the set with
the smallest maximum regret ratios in most cases. Differ-
ent from the stable performance in maximum regret ratio,
all algorithms take longer execution times when the dataset
contains more points. CUBE is still the fastest one while
DMM and IMPGREEDY are slower. For example, when the
dataset contains 1 million points, DMM is 0.5∼10 times
slower than other algorithms. The increasing trend of exe-
cution time w.r.t. the dataset size is very intuitive. However,
in the era of big data, the sizes of datasets are increasing
at an unprecedented rate (e.g., the whole dataset cannot be
loaded into the main memory). Moreover, data nowadays is
distributed over different data centers and thus, it is impor-
tant to design RMS algorithms in a distributed environment
so that large datasets can be handled more efficiently. How-
ever, these issues are not considered in existing RMS algo-
rithms, limiting their applicability in real applications.

Similarly, when the dimensionalityd increases (Figure 16
(c)), the maximum regret ratios of most algorithms increase
slightly. This conforms with the lower bounds in Section 2
and it is intuitive since it is more difficult to guarantee the
same regret with the same number of points on datasets with
larger dimensionalities where each point is described by more
attributes. On datasets with large dimensionalities, all algo-
rithms spend more time to execute. In particular, the running
time of DMM increases rapidly whend ≥ 7. For example,
whend = 7, DMM takes more than 300 seconds to deter-
mine a solution while other algorithms finish in seconds.
This is because the operations of DMM are exponentially
dependent ond and thus, its execution time is sensitive tod.
For better visualization, we omit its results whend ≥ 7.

Min-Size. We evaluated the min-size algorithms by varying
ε on a 3-dimensional anti-correlated dataset in Figure 17.
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Note that it is possible to modify DMM [4] to be a min-size
algorithm by solving a so calledMinimum Rows Satisfying
the given Threshold (MRST) problem[4]. However, due to
its large output size, we did not plot its result for better vi-
sualization. Figure 17(a) depicts the output size of each al-
gorithm. When the user requires a smaller maximum regret
ratio, all algorithms tend to return more points to the user.In
particular,ε -KERNEL has the largest output size in all cases,
while the output size of IMPGREEDY and HITTINGSET are
comparably smaller. For example, IMPGREEDY and HIT-
TINGSET returns less than 30 points, which is half of the
points needed byε -KERNEL to guarantee a 0.01 regret ratio.
This also justifies that the notion of maximum regret ratio is
useful in giving a “big picture” of the database and helping
users to find the points that they are interested in: instead
of asking the user to examine the entire dataset containing
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Fig. 19 Min-Error - Vary r on Other Synthetic Datasets

100,000 points, a user only needs to examine as few as 30
options to get a “good” point (only with 0.01 regret), without
providing his/her exact utility function. Figure 17(b) shows
the execution time of each algorithm. Both HITTINGSET

andε -KERNEL have comparable execution times, but they
are slower than the heuristic algorithm, IMPGREEDY.

Min-Size (Scalability Test).The scalability test of the min-
size algorithms is provided in Figure 18 whereε is fixed to
be 0.05. According to the results, the output size of HIT-
TINGSET is smaller thanε -KERNEL and IMPGREEDY in
most of the cases while its running time is comparable to
ε -KERNEL, but slower than that of IMPGREEDY. In par-
ticular, compared with IMPGREEDY, the running times of
HITTINGSET andε -KERNEL are more sensitive to the di-
mensionalityd since their operations are exponentially de-
pendent ond. This indicates the insufficiencies of the ex-
isting RMS algorithms (especially, the min-size RMS al-
gorithms) in handling datasets with large dimensionalities,
which might be the case in real scenarios. This claim also
conforms with our theoretical results summarized in Table 4
where the execution times of HITTINGSET andε -KERNEL

are exponentially dependent on the dataset dimensionality.

Theoretical Algorithms on Other Synthetic Datasets.Fi-
nally, we studied the performance of the RMS algorithms on
other synthetic datasets with different characteristics,(i.e.,
independent datasets and correlated datasets) in Figures 19
and 20 (results on the anti-correlated datasets have been pre-
sented in Figures 16 and 18). Each algorithm follows a sim-
ilar trend as it behaves on anti-correlated datasets. How-
ever, the maximum regret ratios / output size of each algo-
rithm on correlated datasets is smaller than those on inde-
pendent datasets, which is then smaller that those on anti-
correlated datasets. For example, to guarantee a 0.01 regret
ratio, IMPGREEDY has to return more than 20 points on anti-
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Fig. 21 2D Algorithms on Real Datasets

correlated datasets, while on independent and correlated datasets,
it needs as few as 8 and 4 points, respectively, to guaran-
tee the same regret ratio. This observation is consistent with
dataset characteristics. For example, correlated datasets con-
tain points with high values in all attributes and thus, onlya
small number of points is needed to guarantee a small maxi-
mum regret ratio. Similar phenomenon can also be observed
in the running time of each algorithm. For example, points in
anti-correlated datasets which have high values in some di-
mensions might have low values in other dimensions, mak-
ing the trade-off among dimensions more difficult and mak-
ing it more time-consuming to construct the final solution.

5.2 Results on Real Datasets

On 2-dimensional real datasets, Airline and Island, in Fig-
ure 21, we evaluated the performance of the 2-dimensional
algorithms by varying the output sizer. Similar to the results
observed on synthetic datasets, 2d-SWEEPDP is the slowest
algorithm and 2d-GRAPHDP is consistently faster than both
2d-SWEEPDP and 2d-BISEARCH while being not sensitive
to r. This is because 2d-GRAPHDP avoids the expensive en-
velope computation and it computes regret ratios (i.e., the
edge weights in the graph representation) efficiently.



20 Min Xie et al.

ImpGreedy
Cube

Sphere
DMM

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 10  20  30  40  50
tim

e 
(s

)
output size (r)

 0

 0.1

 0.2

 0.3

 10  20  30  40  50

m
ax

im
um

 r
eg

re
t r

at
io

output size (r)

ImpGreedy
Cube

Sphere
DMM

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 10  20  30  40  50

tim
e 

(s
)

output size (r)

 0

 0.05

 0.1

 0.15

 0.2

 10  20  30  40  50

m
ax

im
um

 r
eg

re
t r

at
io

output size (r)

(a) El Nino (Varyr) (b) NBA (Vary r)
ImpGreedy

Cube
Sphere

DMM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10  20  30  40  50  60

tim
e 

(s
)

output size (r)

 0

 0.1

 0.2

 0.3

 0.4

 10  20  30  40  50  60

m
ax

im
um

 r
eg

re
t r

at
io

output size (r)

ImpGreedy
Cube

Sphere
DMM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  20  30  40  50

tim
e 

(s
)

output size (r)

 0

 0.1

 0.2

 0.3

 10  20  30  40  50

m
ax

im
um

 r
eg

re
t r

at
io

output size (r)

(c) Household (Varyr) (d) Color (Varyr)
Fig. 22 Min-Error Algorithms on Real Datasets

ImpGreedy ε-Kernel HittingSet

 0.1

 1

 10

 0.02 0.04 0.06 0.08 0.1

tim
e 

(s
)

maximum regret ratio (ε)

 0

 5

 10

 15

 20

 25

 0.02 0.04 0.06 0.08 0.1

ou
tp

ut
 s

iz
e

maximum regret ratio (ε)

ImpGreedy ε-Kernel HittingSet

 0.1

 1

 10

 100

 0.02 0.04 0.06 0.08 0.1

tim
e 

(s
)

maximum regret ratio (ε)

 0

 5

 10

 15

 20

 25

 0.02 0.04 0.06 0.08 0.1

ou
tp

ut
 s

iz
e

maximum regret ratio (ε)

(a) El Nino (Varyε) (b) NBA (Vary ε)
ImpGreedy ε-Kernel HittingSet

 0.1

 1

 10

 0.02 0.04 0.06 0.08 0.1

tim
e 

(s
)

maximum regret ratio (ε)

 0

 10

 20

 30

 40

 50

 0.02 0.04 0.06 0.08 0.1

ou
tp

ut
 s

iz
e

maximum regret ratio (ε)

ImpGreedy ε-Kernel HittingSet

 0.1

 1

 10

 100

 1000

 0.02 0.04 0.06 0.08 0.1

tim
e 

(s
)

maximum regret ratio (ε)

 0

 50

 100

 150

 200

 0.02 0.04 0.06 0.08 0.1

ou
tp

ut
 s

iz
e

maximum regret ratio (ε)

(c) Household (Varyε) (d) Color (Varyε)
Fig. 23 Min-Size Algorithms on Real Datasets

In Figures 22 and 23, we evaluated the performance of
eachd-dimensional algorithm on the El Nino, NBA, House-
hold and Color datasets. In particular, we studied min-error
algorithms and min-size algorithms in Figure 22 and Fig-
ure 23, respectively. Firstly, consider the results of min-error
algorithms in Figure 22 where we varied the output sizer.
Similar to what we observed on synthetic datasets, DMM
does not scale well w.r.t. the dimensionality and thus, its re-
sults on Color are omitted due to the large execution time.
Except forr ≥ 40 on El Nino, DMM has the largest execu-
tion time and its maximum regret ratio is much worse than
those of SPHERE and IMPGREEDY; e.g., whenr = 50 on
NBA and El Nino, both SPHEREand IMPGREEDY achieve
0 regret while the maximum regret ratio of DMM is greater
than 0.1. In addition, though SPHEREand IMPGREEDY have
comparably small running times, SPHERE gives a smaller

empirical maximum regret ratio than IMPGREEDY, which is
also observed in [44]. For example, whenr = 12 on NBA,
the maximum regret ratio of IMPGREEDY is 0.075 while the
maximum regret ratio of SPHERE is 0.05, which is a 30%
improvement over IMPGREEDY. Secondly, consider the re-
sults of min-size algorithms in 23 where we varied the maxi-
mum regret ratioε. HITTINGSET andε -KERNEL take more
time to execute compared with IMPGREEDY. Nevertheless,
HITTINGSET consistently returns the smallest solution set
in all setting and thus, it is suitable in providing a small
representative set of the database in multi-criteria decision
making. Note that the evaluation on real datasets is consis-
tent with our observations on synthetic datasets and it sup-
ports the claims we make in Section 5.1. In Section 5.5, we
will formally summarize those claims/observations, which
also motivates the open problems introduced in Section 6.
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5.3 Results on Variants of RMS

In this section, we demonstrate the experimental performance
of some existing RMS algorithms when they are extended to
solving different variants of RMS. In particular, two major
variants of RMS, namelykRMS and non-linear RMS, are
studied in Section 5.3.1 and Section 5.3.2, respectively. Be-
sides, although none of the existing RMS algorithms can be
directly extended to handling interactive RMS where user
interaction is involved, we also conducted experiments in
Section 5.3.3 comparing the best performing RMS algorithms
against those interactive RMS algorithms, demonstrating the
effectiveness of user interactions in reducing the user regret
and the output size. Due to the limited space, we only re-
port the experimental results of each RMS variant on the
anti-correlated dataset and the NBA dataset in this section.
Results on other datasets are similar and thus are omitted.

5.3.1 Results on kRMS

We evaluated the performance of DMM [7] and HITTINGSET

[2,21] when they are extended to handlingkRMS for min-
error RMS and min-size RMS, respectively. Although GREEDY

[28] is extended to solvingkRMS in [11] askRMS-GREEDY,
its execution time is much worse than those of DMM and
HITTINGSET since the number of LPs and the size of each
LP in kRMS-GREEDY are very large. For the ease of pre-
sentation, results ofkRMS-GREEDY are not reported.

Results on the anti-correlated and NBA dataset are shown
in Figures 24 and 25. In general, when the parameterk in
kRMS increases from 1 to 5, the running time of each algo-
rithm increases. Meanwhile, we also observe that the maxi-
mumk-regret ratio and the size of the solution set returned
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Fig. 26 Running times on Non-Linear RMS

for largek tend to be smaller than those returned for smallk.
This conforms with our intuition that we can guarantee the
samek-regret ratio with a smaller set whenk is larger since
kRMS can regarded as a relaxation of traditional RMS.

5.3.2 Results on Non-linear RMS

We performed the experimental evaluation on non-linear RMS
by comparing the following algorithms: (1) the original CUBE

algorithm [28] and its extensions for non-linear RMS, MIN-
WIDTH [13] and MINVAR [32]; and (2) the heuristic algo-
rithms for non-linear RMS, AREAGREEDY [13], ANGLE

[13] and MAX DIF [32]. Both MINWIDTH and MINVAR

provide guarantees on non-linear RMS (see Table 7).
In Figure 26, we plotted the running time of each al-

gorithm by varying the output sizer on the anti-correlated
dataset and the NBA dataset. According to the results, AREA-
GREEDY is the most time-consuming non-linear RMS algo-
rithm since it requires expensive area computation. MAX DIF

is faster than AREAGREEDY, but is slower than ANGLE and
cube-based algorithms, which only scans the database once.
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We also evaluated the maximum regret ratio of each al-
gorithm on four non-linear utility function classes definedin
Section 4.2: convex function class, concave function class,
CES function class and multiplicative function (MUF) class
in Figures 27 and 28. On the anti-correlated dataset, AREA-
GREEDY and ANGLE perform the best by returning the set
with the smallest maximum regret ratio over most of the
non-linear function classes. In contrast, MINVAR performs
better on NBA where it has the smallest maximum regret
ratio over both convex and multiplicative function classes.

5.3.3 Results on Interactive RMS

We proceed with the experiments on interactive RMS. Re-
call that in interactive RMS, a user interacts with the database
system forrounds. At each round, the system displayss
points and the user is asked to select the point that s/he favors
the most among them. Based on the feedback, the system
learns the user’s preference implicitly and finally, identifies
the user’s favorite point and returns that point to the user.

We implemented the best-known algorithms for inter-
active RMS: UH-SIMPLEX [43], UH-RANDOM [43] and
UTILITYAPPROX [27]. We sets (i.e., the number of points
displayed at each round) to be 2. Then, we compared the
above algorithms against the single round algorithms, SPHERE

[44] and HITTINGSET [2,21] to demonstrate the effective-
ness of user interactions in reducing the regret ratio and the
output size, respectively. Since user feedback is requiredin
interactive algorithms, we modeled the users’ behavior by
randomly generating their utility vectors. The exact utility
vectors we generated were not disclosed to any algorithms.
Different from traditional RMS, the performance of each
algorithm in interactive RMS is evaluated using two mea-
surements: (1)Regret Ratio.The regret ratio of an interac-
tive algorithm (a single round algorithm) is the regret ratio
(w.r.t. the generated utility vector) of the final point sug-
gested (the solution set returned); and (2)The maximum
number of points displayed.For a single round algorithm,
the number of points displayed is the size of the solution set
returned. For an interactive algorithm, the number of points
displayed is at most the number of rounds multiplied bys
(i.e., the number of points displayed at each round).
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We first constrain the number of points that an algorithm
can display in Figure 29 (similar to the min-error RMS set-
ting). It shows that user interactions are very useful since
they can guarantee a smaller regret ratio compared with the
single round algorithm, SPHERE, where no user interaction
is allowed. Specifically, by only displaying 4 points, UH-
SIMPLEX can guarantee a 0 regret ratio while the regret ra-
tio of SPHERE is around 0.1. Similarly, consider Figure 30
where we constrain the regret ratio of each algorithm (sim-
ilar to the min-size RMS setting). Due to the small sky-
line size in NBA, HITTINGSET performs slightly better than
the interactive algorithms on NBA. However, on the anti-
correlated dataset where the skyline size is larger, its output
size is twice more than that of UH-RANDOM when the re-
gret ratio is at most 0.01, which also verifies the usefulness
of interactions in reducing the output size in some scenarios.

5.4 User Study

To verify the effectiveness of RMS in real scenarios, we con-
ducted a user study on statistics of the 2018-19 NBA regu-
lar season. After removing players who played less than 40
games during this season, there were 386 players remain-
ing. Six popular attributes (game played, minutes played,
rebound/assist/steal/points per game) were used to describe
the statistical performance of each player. We compared the
players returned by min-error RMS (we used IMPGREEDY)
with three existing skyline variants, which are compared in
[28] where RMS was first proposed: distance-skyline [40],
MaxDom [24] andr-dominance [8]. Distance-skyline picks
r players that admit thebest r-center clustering. MaxDom
picks r players that dominate the largest number of play-
ers.k-dominance relaxes the concept “domination” to “k-
domination” and findsr players that bestk-dominateothers.
Each query returns a set of 5 players, as shown in Table 9.

Following [47], we conducted a survey on “Amazon Me-
chanical Turk”. We asked participants with NBA knowledge
to indicate the set of players they prefer among four candi-
dates considering thestatistical performanceof each player.
If the statistical performance of a player (e.g., rebound) in
a set is better than another in another set, the former set is
better. In other words, we want a set such that the statistical
performance of each player is as good as possible. We paid
each participant $0.05 and there were 104 responses in total.

According to the responses, 44.55% of participants thought
that the set returned by RMS has better overall performance,
while 22.72%, 13.63% and 19.09% prefer the sets returned
by distance-skyline, MaxDom andk-dominance, respectively.
Besides, we observed that the players returned by RMS play
in different positions such as point guard, small forward and
shooting guard and they enjoy diverse statistical performance.
For example, Andre Drummond plays in the center position
and he has high rebounds while James Harden plays as a

shooting guard and he achieves the highest points. In other
words, the players returned by RMS not only have good sta-
tistical performance, but also satisfy different NBA fans who
are interested in diverse positions and statistics.

As another reference on whether the players returned by
each query is useful in real world, we compared the players
returned by each query to the top-10 NBA MVP award can-
didates2, as shown in Table 10. 4 out of 5 players returned
by RMS are among the top-10 candidates (bold in Table 9),
which is more than those in other queries; e.g., only 1 player
returned by distance-skyline appears in the MVP list.

5.5 Summary

We conducted comprehensive experiments in this section
on both real and synthetic datasets, comparing the exist-
ing algorithms for RMS under various parameter settings.
The ability of existing RMS algorithms on handling differ-
ent variants of RMS and the usefulness of RMS over other
variants of the skyline query are also clearly demonstrated.

Specifically, we make the following observations and
they provide an empirical guideline to users on choosing
the best algorithm when solving RMS. Firstly, none of the
existing algorithms dominates others in all aspects. Specif-
ically, some algorithms might be good in one aspect (e.g.,
execution time) while being poor in other aspects (e.g., max-
imum regret ratio). Secondly, some RMS algorithms can be
extended to handling different variants of RMS. For exam-
ple, DMM and HITTINGSET can be extended to solving
kRMS while CUBE can be extended to solving non-linear
RMS. Thirdly, on 2-dimensional datasets where RMS can
be solved optimally, 2d-GRAPHDP achieves the best per-
formance by returning the optimal solution in the shortest
amount of time. Thus, if the dataset only contains two at-
tributes and the skyline size is small, it is good to use 2d-
GRAPHDP to find the optimal solution for RMS. Fourthly,
IMPGREEDY scales better and requires a shorter execution
time compared with other heuristic algorithms in most cases.
If the users want a solution for RMS which (1) is fast; (2)
has a good empirical performance; and (3) does not require
theoretical guarantees, IMPGREEDY is a good option. Fi-
nally, different theoretical algorithms have different advan-
tages and they can be applied in different scenarios. Specif-
ically, among min-error algorithms which optimize over the
maximum regret ratio, CUBE is the fastest one while SPHERE

guarantees a small maximum regret ratio in most cases; among
min-size algorithms which optimize over the output size,
HITTINGSET returns a small number of points in most cases
while guaranteeing the maximum regret ratio and thus, it
provides a good representative subset of the database. The
best choice of algorithms depends on application needs.

2 https://www.basketball-reference.com/friv/mvp.html
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RMS Distance-Skyline [40] MaxDom [24] k-Dominance [8]

James Harden James Harden Nikola Jokic Bradley Beal
Andre Drummond DeAndre Jordan Bradley Beal Andre Drummond

Russell Westbrook P.J. Tucker Russell Westbrook Paul George
Joel Embiid Chris Paul James Harden James Harden
Paul George Karl-Anthony Towns Rudy Gobert Russell Westbrook

Table 9 Five NBA Players Returned by Different Queries (MVP Candidates are in Bold)

Top 1 to 5 Top 6 to 10

Giannis Antetokounmpo Joel Embiid
James Harden Damian Lillard
Nikola Jokic Stephen Curry

Kawhi Leonard Paul George
Kevin Durant Russell Westbrook

Table 10 Top 10 Candidates for MVP Award

6 Open Problems

In this section, we highlight the open problems and some
possible future directions for RMS according to our discus-
sion and experimental observations in previous sections.

Optimal Algorithms. While there is an asymptotically tight
bound proven on RMS [44,2,7] (e.g., Theorem 9), the ques-
tion of an exact (non-asymptotic) bound remains open. De-
veloping an algorithm that computes an optimal bound effi-
ciently is an open algorithmic problem in this area.

Monotonically Decreasing Utility Functions. We assume
that a larger value is preferable to all users and only mono-
tonically increasing utility functions are considered in the
existing studies. However, it could happen in reality that a
smaller value in some dimensions is better. For example, a
lower price is better. Although we can use the trick of sub-
tracting each value from the maximum value in those dimen-
sions (so that the “larger is better” assumption is satisfiedin
Section 2), it changes the value of those attributes and it is
no longer clear if the notation of regret still applies. Noneof
the results so far can be extended easily to this case.

Arbitrary Monotonic Utility Functions. While results on
RMS are known for some particular function classes, e.g.,
the convex and CES function classes presented in Section 4.2,
it remains unknown whether we can get a general result that
applies for any monotonic utility function class.

High Dimensional RMS. According to our experimental
evaluation, some existing algorithms (e.g., GEOGREEDY, ε -
KERNEL, HITTINGSET) do not scale well w.r.t. to the di-
mensionality. Specifically, it takes them a very long time to
execute and the maximum regret ratios / the output sizes of
the solution sets they return are quite large even when the
dimensionality is of a medium value (e.g.d = 8). Given the
known lower bounds on RMS (e.g., Theorem 3), computing
a small set with a small regret on high dimensional datasets
is a hard problem. Some additional assumptions would have
to be made on the data. Besides, when handling datasets
with very large dimensionalities, it is also important to han-
dle them very efficiently. Unfortunately, the execution times
of many existing algorithms exponentially depend on the di-
mensionality. It remains open whether some dimension re-
duction techniques could help in high dimensional RMS.

Large Size RMS.In the era of big data, the size of dataset
is increasing in an unprecedented speed and the data might

come in a sequential manner. Most existing RMS algorithms
implicitly assume that the entire dataset can be loaded into
the main memory. Unfortunately, this assumption hardly holds
in real-world applications. Besides, data nowadays is dis-
tributed over different data centers. Computing a solution
for RMS across distributed databases so that the communi-
cation cost is minimized (i.e., do not need to send all the
datasets to a single location) remains open.

RMS with Dynamic Updates. Nowadays, the database is
updated frequently with point insertions and deletions. How
to extend the existing methods when the dataset is changed
dynamically is an interesting problem. Onlyε-KERNEL has
this ability, but the results of other methods are unknown.

Decremental RMS.According to the experimental obser-
vations, most existing algorithms construct solutionsincre-
mentally (i.e., start with an empty set and gradually add
points). In particular, to return more points or to guaran-
tee smaller regret, it takes more time for them to execute.
However, in reality, users are interested in small maximum
regret ratios (e.g., Alice wants a car which is as close to her
favorite car as possible) and in some scenarios, a larger out-
put size is desirable (e.g., the job recommendation example
in Section 5). Motivated by this, it is interesting to develop
somedecrementalRMS algorithms (i.e., start with the entire
database and gradually delete points) so that we can output a
large number of points or guarantee small regretefficiently.

7 Conclusion

In this survey, we comprehensively review existing methods
for RMS. Specifically, various methods were proposed for
solving RMS optimally, but they are restricted in 2-dimensional
spaces. Ind-dimensional spaces, RMS was proven to be
an NP-hard problem. Heuristic algorithms were proposed to
obtain solutions with small regret/output sizes and theoret-
ical algorithms were also studied to provide bounded guar-
antees on the solutions. Different variants of RMS were also
reviewed and experimented in this paper. We conducted a
comprehensive experimental evaluation of all state-of-the-
art RMS algorithms on both synthetic datasets and real datasets,
demonstrating the advantages of different RMS algorithms
under various parameter settings. A user study comparing
RMS with other skyline variants was also conducted, veri-
fying the usefulness of RMS in real-world scenarios.
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