
The Power of Two: Simplified User Interaction
for the IndistinguishabilityQuery

Lam Do

Denison University

Granville, OH, USA

do_k2@denison.edu

Oghap Kim

Denison University

Granville, OH, USA

kim_o1@denison.edu

Chloe Chai

Denison University

Granville, OH, USA

chai_c1@denison.edu

Ashwin Lall

Denison University

Granville, OH, USA

lalla@denison.edu

Abstract
We propose a simplified user interaction framework for the indistin-

guishability query. The indistinguishability query determines all of

the user’s near optimal tuples without explicit knowledge of their

utility function. This approach uses a simple interactive framework

where the user picks their favorite tuple during rounds of questions.

We propose an alternative interactive framework that is more truth-

ful and focuses on comparing two attributes at a time. This allows

us to use more powerful 2D techniques for higher-dimensional data

while also simplifying the decision-making on the part of the user.

We provide a strongly truthful algorithm that displays the user

with only real tuples from the database. In addition, we give an

algorithm that displays synthetic tuples that are more realistic than

previous work. We introduce a new definition — tolerably truthful

— that guarantees that all tuples have attribute values within the

ranges found within the database. Our tolerably truthful algorithm

has a provable approximation guarantee for the indistinguishable

output set. We also verify the efficacy of our algorithms with ex-

periments on both real and synthetic data sets and through a user

study.

ACM Reference Format:
Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall. 2025. The Power of Two:

Simplified User Interaction for the Indistinguishability Query. In The Inter-
national Conference on Scalable Scientific Data Management 2025 (SSDBM
2025), June 23–25, 2025, Columbus, OH, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3733723.3733725

1 Introduction
Selecting the best option among many can be challenging, espe-

cially when there are numerous attributes. In order to solve this

problem, existing multi-criteria decision-making techniques allow

users to look at a manageable number of options interesting to

them from the database without having to sift through all possible

alternatives, allowing the user to save time and energy. Suppose

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1462-7/25/06

https://doi.org/10.1145/3733723.3733725

that an energy consultant, Erin, wants to choose an energy source

with high energy efficiency (EE) and reliability rating (RR). The

challenge is that she does not know her relative valuation of these

attributes, and it may also be time-consuming to look at all the

options in a database to find her favorite. Traditional methods as-

sume that Erin has a utility function and utilize various techniques

to assist her in identifying her optimal choice. These traditional

approaches include top-k, skyline, and regret minimization.
Top-k [11], which relies on having Erin’s utility function, com-

putes and returns 𝑘 tuples with the highest utility in the database.

However, requiring an explicit utility function from Erin may be

unreasonable because it is difficult for her to know her exact relative

valuation for each interesting attribute.

Another method of querying which does not rely on having

Erin’s utility function is the skyline operator [3], which displays

the tuples in the database that are not dominated by any other

tuple. A tuple dominates another when its values are at least as

good in all attributes and strictly better than the other in at least

one attribute. The collection of non-dominated tuples is called the

“skyline”. Although this approach displays tuples contained in the

skyline which could be considered the “best” of the database, the

output is not personalized to Erin’s preferences and therefore may

include many tuples that are not interesting to her. Moreover, it is

not possible to control the output size of the skyline operator; thus,

the final result from the query may be too time-consuming for Erin

to look through when the skyline set is large.

The regret minimization technique [20] outputs 𝑘 tuples that aim

to reduce the maximum "regret ratio". The regret ratio indicates

how disappointed the user is with the final result of tuples shown to

them compared to looking at the entire database [21]. Even though

regret minimization includes some near-optimal tuple for the user,

it does not consider all of the near-optimal tuples and may cause

Erin to miss out on tuples that appear interesting to her. Therefore,

Erin may find a near favorite tuple in the final output set but the

rest of the tuples may be unexciting to her. This can lead Erin to

feel like she is missing out on other tuples that would have been a

good choice for her.

In this paper, we adopt the Indistinguishability Query [14] to

address the Fear of Missing Out (FOMO), where users may worry

that the database query might exclude good options, causing them

to miss out on interesting tuples. The Indistinguishability Query

guarantees that all optimal and near-optimal tuples are returned to

https://doi.org/10.1145/3733723.3733725
https://doi.org/10.1145/3733723.3733725

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

the user without the explicit knowledge of their utility function. It

involves an initial interactive phase that learns the user’s implicit

utility function by repeatedly asking them to choose their favorite

out of a number of tuples displayed. The interactive framework

is based on a widely-recognized assumption [14, 20, 32] that it is

easier for the user to choose their favorite from a small selection of

choices than to know their exact utility function. Then, the query

outputs a set of tuples that are 𝜖-indistinguishable from the optimal.

For a pair of tuples to be considered 𝜖-indistinguishable, the utility

of those tuples needs to be within (1 + 𝜖) multiplicative factor of

each other. Since the goal of the Indistinguishability Query is to

find the optimal tuple along with all the near-optimal tuples, Erin

is shown the other near-optimal options even if they are slightly

worse than optimal, for they may have other appealing attributes

to Erin such as land use or availability. For instance, Erin may find

a source with slightly lower EE and RR more enticing if it has low

land use.

Motivated by this novel approach, we propose an alternative

interactive framework that focuses on comparing two attributes at

a time as opposed to all at once. In [32], a halfspace technique was

used to narrow down all of the coefficients of the user’s utility func-

tion after every question. Another previous work [14] attempted

to narrow down the feasible region of the utility function that cap-

tures all coefficients in each round. This paper aims to work with

only two dimensions at a time. This allows us to use geometric 2D

techniques while still allowing us to process data in high dimen-

sions. Moreover, there is a benefit to the user to make head-to-head

comparisons between two attributes, rather than trying to evalu-

ate many different attributes at once. In addition, we follow the

convention of [24] in showing the user only two options at a time,

further simplifying their decision-making.

We argue that presenting Erin with two energy sources at a time

with just two attributes makes her decisions considerably easier. For

example, if Erin is interested in four attributes: Energy Efficiency

(EE), Resource Availability (RA), Price Stability (PS), and Reliability

Rating (RR), previous interactive methods [14, 20, 32] would display

sources along with all of their specs like this:

• Source 1: 22 EE, 34 RA, 200 PS, 5 RR

• Source 2: 20 EE, 28 RA, 220 PS, 3 RR

• Source 3: 25 EE, 36 RA, 180 PS, 4 RR

In contrast, our algorithm focuses on showing only two sources

at a time with two attributes each. For example:

• Source 1: 34 RA, 5 RR

• Source 2: 28 RA, 3 RR

This head-to-head comparison method leverages the simplicity

of binary choices, which are cognitively easier and faster for users

to make [8].

In the performance evaluation section, we demonstrate that

our algorithm delivers excellent performance in finding the user’s

indistinguishability set. Altogether, our algorithm requires less

effort from the user, making the interaction easier and yielding

results comparable to previous methods. We verified this with a

user study.

Our work also aims to improve user satisfaction by being more

truthful than previous works. For an algorithm to be considered

strongly truthful, this means that every tuple that the user sees

throughout the interactive process must exist in the database. In

weakly truthful algorithms, artificial tuples may be used to give

provable performance guarantees, however they may never show

the user a tuple that is better than the user’s optimal in the final

output as this would lead the user to feel that there has been a

bait-and-switch.

A significant deficiency of prior weakly truthful algorithms [14]

is that they may use unrealistic attribute values (e.g. 200 EE and

0 RR) for the sake of extracting the most information from each

question. Seeing impractical tuples may be off-putting to the user,

discouraging them from continuing. Motivated by this deficiency,

we propose a new definition of truthfulness: tolerably truthful. A
tolerably truthful algorithm only displays realistic tuples that are

created with attribute values in the same range as real tuples from

the database. This approach makes artificial tuples more realistic.

Contributions: The main contributions of this paper are:

• We introduce a simplified user interaction framework for

multi-criteria decision-making.

• We define a new concept of truthfulness called tolerably
truthful (TT).

• We give a strongly truthful and a tolerably truthful algorithm

for executing the indistinguishability query.

• We illustrate performance evaluations for all the above algo-

rithms on real and artificial data sets. We also include results

from a small user study.

Organization:We address the related works in the next section.

In Section 3, we provide definitions, including the formal problem

definition. We present the strongly truthful Breakpoint algorithm

that uses real tuples in Section 4 and the tolerably truthful algorithm

for performing the query using realistic artificial tuples in Section 5.

We show the efficacy of our algorithms through experiments on

real and synthetic datasets in Section 6. Conclusions and future

work can be found in Section 7.

2 Related Work
Many efforts have been made to improve methods of multi-

criteria based decision making.

Top-k and Skyline. There has been numerous studies done on the

top-𝑘 query [9, 15, 16, 25, 27]. However, this query becomes difficult

to execute whenever the user does not know their specific utility

function. Therefore, many methods have been made to account for

this downside, including the skyline query [3–5, 10, 15, 17, 18, 22,

28, 29, 31]. By using dominating tuples, the skyline query assures

that it returns the user’s optimal tuple. Yet, the final output includes

numerous tuples from the skyline that may appear uninteresting

to the user and misses out on the user’s near-optimal tuples. Ad-

ditionally, there is no way of controlling the output set, making it

harder for the user to go through the options when there is a large

number of undominated tuples. In contrast, the Indistinguishability

Query includes both optimal and near-optimal tuples.

Regret minimization. Regret Minimization [1, 2, 7, 13, 21, 23, 33]

aims to display a small number of tuples that still guarantee a small

maximum regret ratio. The maximum regret ratio is the percentage

of regret that a user faces on seeing just the small set rather than

looking through all the tuples in the worst case. Unlike the skyline

operator, it allows control over the size of the final output shown

The Power of Two: Simplified User Interaction
for the Indistinguishability Query SSDBM 2025, June 23–25, 2025, Columbus, OH, USA

to the user. However, it does not include all of the near-optimal

tuples.

User Interaction. Interactive techniques [20, 26, 30, 32] utilize

both artificial and real tuples from the database and outputs some

near-optimal tuples to the user, but not all of them. Compared with

existing methods, our solution aims to output the same indistin-

guishable set, however our user interaction limits the number of

tuples shown to the user in each round to two, motivated by the

idea it is easier for a user to compare two tuples than for them to

compare many tuples at one time [12, 24].

Indistinguishability. Rather than discovering one of the user’s

near-optimal tuples, or even their optimal tuple, the Indistinguisha-

bility Query [14] uses interaction to find all of the user’s near-

optimal tuples so that they do not have to fear missing out on a

good option. The size of the output can be controlled by a parameter

𝜖 that indicates how far from the optimal the output tuples may

lie. The user may prefer one of these tuples to their optimal when

taking into account unconsidered criteria such as land use or avail-

ability. While the query allows for strongly truthful algorithms, a

result [14] demonstrates that showing only real tuples can result in

an arbitrary number of false positives. To get around this, the paper

shows the user artificial tuples; however, these tuples may not be

truthful and could include tuples with unrealistic values (e.g., 0 for

RA or 1000 for EE), which may lead to the user feeling dissatisfied

if they are shown tuples that are not actually available to them, or

that are not plausibly real options.

To resolve this problem, this paper focuses on different ways

and approaches to make the user interaction phase more truthful.

We propose both strongly truthful and tolerably truthful algorithms

that displays realistic tuples to the user.

3 Preliminaries
3.1 Definitions
In this paper, we refer to the set of tuples (sometimes called points)

in the input database as 𝐷 , where the size of 𝐷 is 𝑛 (|𝐷 | = 𝑛), and

each tuple in 𝐷 has 𝑑 attributes or dimensions. The set 𝐷 is a subset

of R𝑑+. The number of attributes of interest selected by the user,

𝑑 , may be less than the total number of attributes in the database.

We assume that higher values are more desirable for each attribute.

If there are attributes where lesser values are considered better,

like carbon footprint or price, we can adjust those attributes by

subtracting their values from the maximum. We do not consider

categorical attributes in this work as there is no standard way to

assign values to categories.

Example: Erin is looking to choose an energy source and selects

three attributes energy efficiency (EE), resource availability (RA),

and reliability rating (RR) (𝑑 = 3) out of a large number of attributes

in a large database.

We can express the user’s unknown utility function as 𝑓 : R𝑑+ →
R+, which when applied calculates the user’s utility of a given point.
The utility function is commonly represented by a linear function

[6, 7, 21, 32] represented as 𝑓 (𝑝) = 𝑢 · 𝑝 , where 𝑢 ∈ R𝑑+.
Example: Erin has an unknown utility such as

𝑓 (𝐸𝐸, 𝑅𝐴, 𝑅𝑅) = 2𝐸𝐸 + 4𝑅𝐴 + 20𝑅𝑅,

with utility vector 𝑢 = (2, 4, 20).

source EE RA RR 2EE + 4RA + 20RR

𝑠1 22 34 4 260

𝑠2 20 28 5 252

𝑠3 29 34 3 254

𝑠4∗ 34 40 2 268

𝑠5 20 25 3 200

Table 1: Example indistinguishability query. The highlighted
tuples are 0.05-indistinguishable from the optimal (𝑐4) for a
user with utility function 2EE + 4RA + 20RR.

One of the contributions of this work is to model what happens

when showing the user only pairs of attributes at a time. In such

circumstances, we assume that the user’s utility for the attributes

shown is computed with the same coefficients but with only the

attributes shown.

Example: If Erin has utility function 𝑓 (𝐸𝐸, 𝑅𝐴, 𝑅𝑅) = 2𝐸𝐸 + 4𝑅𝐴 +
20𝑅𝑅, but is only shown attributes EE and RR for a source, she

will compute the (partial) utility of this option as 𝑓 ′ (𝐸𝐸, 𝑅𝑅) =

2𝐸𝐸 + 20𝑅𝑅.

The idea of 𝜖-indistinguishability was defined in [14].

Definition 3.1. (𝜖-indistinguishability) [14] Given a utility func-

tion 𝑓 and some 𝜖 > 0, we say that two tuples 𝑝1 and 𝑝2 are

𝜖-indistinguishable if

𝑓 (𝑝1) ≤ (1 + 𝜖) 𝑓 (𝑝2)

and

𝑓 (𝑝2) ≤ (1 + 𝜖) 𝑓 (𝑝1) .

This means that for some 𝜖 > 0, the user cannot discern between

two tuples that have a utility within a factor (1 + 𝜖) of each other.

Example: Two sources with attributes 22 EE, 34 RA, 4 RR and 20

EE, 28 RA, 5 RR have utilities 260 and 252 with the above utility

function for Erin. These tuples are 0.05-indistinguishable to Erin as

260 ≤ 252(1 + 0.05).
Our goal is to compute and return the set of points that are 𝜖-

indistinguishable from the optimal point for a user based on their

utility function. This is called the indistinguishability query [14].

Definition 3.2. (Indistinguishability Query) [14] For any data-

base D and 𝜖 > 0 and unknown utility function 𝑓 , for which the

unknown optimal tuple in D is 𝑝∗ = argmax𝑝∈𝐷 𝑓 (𝑝), we define

I𝑓 ,𝜖 = {𝑝 ∈ 𝐷 : 𝑝 𝑎𝑛𝑑 𝑝∗ 𝑎𝑟𝑒 𝜖-indistinguishable}.

We consider I𝑓 ,𝜖 to be the set of tuples from 𝐷 that includes the

user’s optimal point and all points that are 𝜖-indistinguishable from

it. The set I𝑓 ,𝜖 may be abbreviated to I for clarity when 𝑓 and 𝜖

are clear from the context.

Example: Consider the example database in Table 1. If Erin’s utility

function is 2EE + 4RA + 20RR, then the indistinguishability query

with 𝜖 = 0.05 outputs Erin’s optimal source (𝑠4 with utility 268) and

all sources with utility at least 268/1.05 ≈ 255.2, or the set {𝑠1, 𝑠4}.

Definition 3.3. (𝛼-approximation) [14] A set S is an𝛼-approximation

for I if 𝐼 ⊆ 𝑆 and for each 𝑝′ ∈ 𝑆 − I we have that

𝑝∗ · 𝑢 − (1 + 𝜖)𝑝′ · 𝑢 ≤ 𝛼,

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

Notation Meaning

𝐷 set of all tuples, |𝐷 | = 𝑛

𝑑 number of attributes

𝑢 user’s utility vector

𝑝∗ optimal point for 𝑢

𝜖 user’s desired indistinguishability threshold

I𝑢,𝜖 or I 𝜖-indistinguishable optimal points

𝑞 number of rounds of questions asked

𝛼 approximation factor for a non-exact solution

Table 2: Notation used in this paper

where 𝑓 (𝑝) = 𝑢 · 𝑝 is the user’s linear utility function and 𝑝∗ =

argmax𝑝∈𝐷 𝑝 · 𝑢.

While an 𝛼-approximation allows a few tuples that are not 𝜖-

indistinguishable from the optimal to be output, the I ⊆ 𝑆 condi-

tion means that it never omits any elements of I (i.e., there are no

false negatives) so that the user can rest assured that they are not

missing any tuples of interest. This form of approximation guaran-

tees that any additional tuples that are included are very close to

being 𝜖-indistinguishable. As 𝛼 approaches zero, the approximation

approaches the set I.
Example: Suppose Erin’s favorite source has utility 268 and the

query is run with 𝜖 = 0.05. A 2.5-approximation would guarantee

that the utility value 𝑣 of any output tuple would be such that

268 − (1 + .05)𝑣 ≤ 2.5 or 𝑣 ≥ (268 − 2.5)/1.05 ≈ 252.9, rather than

268/1.05 ≈ 255.2 desired by the 0.05-indistinguishability query. For

the example in Table 1, this would mean that this approximation

would also include the source 𝑠3 in the output set.

The notation defined in this section is given in Table 2.

3.2 User Interaction
To find the set of indistinguishably optimal points, we will need to

ask the user questions to narrow down her utility function. Similar

to [14, 20, 32], we model this interaction in the form of rounds

in which the user is shown a small subset of tuples for 𝑞 rounds

(sometimes called questions) and is asked for their favorite tuple

in each round. After the last round, the final set of tuples is output

to the user. Note that in each round the user is only shown the

attributes that they indicated were of interest to them. While it is

unreasonable to expect the user to produce their utility function, it

is reasonable to ask them to compare a pair of tuples and pick their

favorite.

Example: Erin is interested in three attributes of an energy source:

EE, RA, and RR. In an interactive round, the system shows Erin two

sources : Source 1 (24 EE, 34 RA, 4 RR) and Source 2 (20 EE, 28 RA,

5 RR). Erin will select the source that has a higher utility for her.

She will continue this process for a fixed number of rounds 𝑞 or

until she terminates the process. At the conclusion, she is shown a

set of tuples of interest to her based on what was learned during

the interactive rounds.

One of our contributions in this paper is to simplify this inter-

active process to show the user only two attributes at a time. The

advantage for the user is that they can look at fewer values and

make a head-to-head comparison of their tradeoffs between pairs

of attributes. This method also improves the performance of our

algorithms as we can more directly compare pairs of components

of the user’s utility function. We are also able to use 2D geometric

techniques that are infeasible in higher dimensions. In addition, we

restrict the number of tuples shown in each round to two.

Example: In one round, Erin may be asked to compare Source 1

(22 EE, 4 RR) and Source 2 (20 EE, 5 RR). In another round Erin may

be asked to compare Source 1 (34 RA, 4 RR) and Source 2 (28 EE, 5

RR).

3.3 Tolerably Truthful
While the interactive rounds would ideally show the user real tuples

in the database, this may not be amenable to computing the indis-

tinguishability query very accurately. The tuples in the database

may not be suited for estimating the user’s utility function meaning

that we would have no provable bounds on the accuracy of the

output. Moreover, it has been shown [14] that there exist databases

for which any algorithm that outputs all of I may also output an

arbitrary number of false positives, many of which may be very

far from the user’s optimal. For these reasons, we also consider

showing the user artificially constructed tuples.

In [20], the authors propose the idea of truthful artificial tuples,
defined as tuples that are not superior to the user’s favorite in

the eventual output set. The reason for this definition is that it

would be undesirable to show the user unrealistically good options

to make them excited about continuing to search only to have

inferior options at the end of the search process. The user may

feel as though a bait-and-switch scheme has been perpetrated. By

guaranteeing that the artificial tuples are no better than the user’s

ultimate optimal, we avoid any such issues.

A weakness of the definition of truthful is that it allows for

highly unrealistic values in the artificial tuples. For example, it

allows an algorithm to show impossible values such as 0 reliability

rating or 250 energy efficiency when constructing artificial tuples.

These might be unsettling to the user and cause them to stop using

the interactive process. To get around this issue, we propose the

following definition.

Definition 3.4. (Tolerably Truthful) An algorithm is tolerably

truthful if it is truthful and it only displays tuples 𝑝 with the fol-

lowing property for all dimensions 1 ≤ 𝑖 ≤ 𝑑 :

𝑚𝑖𝑛𝑖 ≤ 𝑝 [𝑖] ≤ 𝑚𝑎𝑥𝑖 ,

where𝑚𝑖𝑛𝑖 and𝑚𝑎𝑥𝑖 are the minimum and maximum values for

dimension 𝑖 in the database, respectively.

First, a tolerably truthful algorithm is truthful. According to [20],

an algorithm is considered truthful if the tuples shown during in-

teraction are no better for the user than the user’s eventual favorite

tuple from the final output set. Second, a tolerably truthful algo-

rithm displays tuples with values bounded by the minimum and

maximum values of real points in the database.

Example: If the min/max values in that database of attributes EE

and RR are 15/50 and 2/5, respectively, then a tolerably truthful

algorithm may show Erin a source with EE of 25 and RR of 4, even

if no such source exists in the database as long as this hypothetical

source is not better than Erin’s favorite source in the final output

set.

The Power of Two: Simplified User Interaction
for the Indistinguishability Query SSDBM 2025, June 23–25, 2025, Columbus, OH, USA

3.4 Breakpoints
As mentioned earlier, we will show users only two attributes at a

time to learn their utility function. Recall that the utility of a tuple

is defined by a utility vector𝑢 so that the utility of a point 𝑝 is given

by 𝑢 · 𝑝 . When showing only a pair of attributes, we assume that

the user’s utility is given by the same utility vector coefficients. For

example, when shown only attributes 𝑖 and 𝑗 , the user’s utility on

these two attributes will be computed as 𝑢 [𝑖] · 𝑝 [𝑖] + 𝑢 [𝑗] · 𝑝 [𝑗].
This gives us a way to bound the ratio of the components of the

user’s utility function. For each dimension 𝑖 , we will aim to find

each ratio
𝑢 [𝑖]
𝑢 [𝑎] with respect to a chosen anchor dimension 𝑎. If the

user prefers point 𝑝 to point 𝑞 when only dimensions 𝑖 and 𝑎 are

shown to them, we have:

𝑢 [𝑎] · 𝑝 [𝑎] + 𝑢 [𝑖] · 𝑝 [𝑖] ≥ 𝑢 [𝑎] · 𝑞 [𝑎] + 𝑢 [𝑖] · 𝑞 [𝑖]

or

𝑢 [𝑖]
𝑢 [𝑎] ≥ 𝑞 [𝑎] − 𝑝 [𝑎]

𝑝 [𝑖] − 𝑞 [𝑖] ,

if 𝑝 [𝑖] − 𝑞 [𝑖] > 0 and otherwise

𝑢 [𝑖]
𝑢 [𝑎] ≤ 𝑞 [𝑎] − 𝑝 [𝑎]

𝑝 [𝑖] − 𝑞 [𝑖] .

Example: Suppose Erin chooses Source 1 (4 RR, 24 EE) over Source

2 (5 RR, 20 EE). Then we know that the coefficients of her utility

function for attributes EE and RR (with anchor RR), given by 𝑢 [𝐸𝐸]
and 𝑢 [𝑅𝑅], are such that

𝑢 [𝐸𝐸]
𝑢 [𝑅𝑅] ≥ 5 − 4

24 − 20

=
1

4

.

We call the value
𝑞 [𝑎]−𝑝 [𝑎]
𝑝 [𝑖]−𝑞 [𝑖] a breakpoint and note that it can

be related to the slopes of the points 𝑝 and 𝑞 when restricted to

dimensions 𝑎 and 𝑖:

𝑞 [𝑎] − 𝑝 [𝑎]
𝑝 [𝑖] − 𝑞 [𝑖] =

−1
𝑠𝑙𝑜𝑝𝑒𝑎,𝑖 (𝑝, 𝑞)

,

where the slope of two points 𝑝 and𝑞 when restricted to dimensions

𝑎, 𝑖 is:

𝑠𝑙𝑜𝑝𝑒𝑎,𝑖 (𝑝, 𝑞) =
𝑞 [𝑖] − 𝑝 [𝑖]
𝑞 [𝑎] − 𝑝 [𝑎] .

Example: In the previous example with Source 1 (4 RR, 24 EE)

over Source 2 (5 RR, 20 EE), the slope of these two points is (24 −
20)/(4 − 5) = −4. We can verify from the previous example that

the breakpoint is −1/𝑠𝑙𝑜𝑝𝑒 = 1/4.
By using this breakpoint method to narrow down these ratios,

we can reconstruct the user’s utility function normalized to the

anchor attribute’s coefficient 𝑢 [𝑎]:
𝑢 [1]
𝑢 [𝑎] 𝑝 [1] +

𝑢 [2]
𝑢 [𝑎] 𝑝 [2] + . . . + 𝑢 [𝑎]

𝑢 [𝑎] 𝑝 [𝑎] + · · · + 𝑢 [𝑑]
𝑢 [𝑎] 𝑝 [𝑑] =

𝑢 · 𝑝
𝑢 [𝑎] .

Since normalizing the utility function by a constant doesn’t change

the relative evaluation of tuples (e.g., the optimal tuple remains the

same), this method allows us to estimate the user’s utility function.

Example: Suppose Erin has a utility function 𝑓 (𝐸𝐸, 𝑅𝐴, 𝑅𝑅) =

2𝐸𝐸 + 4𝑅𝐴 + 20𝑅𝑅 or utility vector 𝑢 = (2, 4, 20) and we choose

RR as the anchor dimension, then we estimate the re-normalized

utility vector (2/20, 4/20, 20/20).

3.5 Problem Definition
We are now ready to formally define the problem solved in this

paper:

Problem definition: Given a database of 𝑛 tuples 𝐷 ⊆ R𝑑+ and

indistinguishability parameter 𝜖 > 0, approximately compute a

user’s 𝜖-indistinguishable set I by interactively asking the user to

pick their favorite tuple out of two tuples while showing only two

attributes at a time.

4 Strongly Truthful Algorithm
In this section, we present a strongly truthful heuristic algorithm

designed to estimate a user’s utility through interaction and out-

put an approximate indistinguishability set. The algorithm works

by choosing an anchor dimension 𝑎 and then estimating each of

the values 𝑢 [𝑖]/𝑢 [𝑎] (1 ≤ 𝑖 ≤ 𝑑) as accurately as possible. These

estimates are used to then prune out tuples that are not in I given

what we know about the estimated utility function.

Our algorithm uses as a subroutine an algorithm [19] (that we

call CountSlopes) that takes as input a set of 𝑛 2D points and a

range [𝑙, ℎ] and outputs the number of pairs of points that have

slope within this range. The algorithm cleverly reduces the problem

of counting slopes to that of counting inversions in a list, which

can then be solved in 𝑂 (𝑛 log𝑛) time by using an algorithm based

on Merge Sort.

Our algorithm is given in Algorithm 1. It begins by selecting

an anchor dimension (Lines 1-2). The anchor dimension is chosen

as the one with the highest minimum number of breakpoints (i.e.

number of slopes between [−∞, 0]) with all other dimensions. This

ensures that the chosen dimension has the most breakpoints avail-

able for further interaction, which helps refine utility estimates.

After determining the anchor dimension 𝑎, the algorithm pro-

ceeds to estimate utility ratios
𝑢 [𝑖]
𝑢 [𝑎] for all dimensions 1 ≤ 𝑖 ≤ 𝑑, 𝑖 ≠

𝑎. This is done by bounding the possible ranges for these ratios,

with 𝐿𝑖 = 0 as the lower bounds and 𝐻𝑖 = ∞ as the upper bounds

initially. The algorithmmaintains the invariant 𝐿𝑖 ≤ 𝑢 [𝑖]
𝑢 [𝑎] ≤ 𝐻𝑖 . For

the anchor dimension, the ratio
𝑢 [𝑎]
𝑢 [𝑎] is always 1, thus 𝐿𝑎 = 𝐻𝑎 = 1.

The main loop (lines 5-18) updates the 𝐿𝑖 and𝐻𝑖 values based on

rounds of user interaction. In each round, the algorithm prioritizes

the dimension with the widest range of utility ratios [𝐿𝑖 , 𝐻𝑖] (i.e.,
largest 𝐻𝑖 − 𝐿𝑖). To refine the bounds, the algorithm counts the

number of slopes within the range

[
−1
𝐿𝑖
, −1
𝐻𝑖

]
with the CountSlope

algorithm and attempts to find the median slope that divides the

number of breakpoints in half. Instead of calculating all slopes be-

tween every point in the database (which would be computationally

expensive), the algorithm uses a heuristic approach of sampling

points 𝑇 times and selecting the pair that best approximates the

desired median. After the user chooses the point they prefer out

of the two displayed, the algorithm updates the bounds for 𝐿𝑖 or

𝐻𝑖 appropriately. The process then repeats for the next dimension

with the widest range.

Example: Suppose the database has just four tuples with (EE,

RR) values 𝑠1 (20, 5), 𝑠2 (25, 3), 𝑠3 (30, 4), and 𝑠4 (40, 2). The possible
breakpoints for 𝑢𝐸𝐸/𝑢𝑅𝑅 are (𝑠1 and 𝑠2) (25 − 20)/(5 − 3) = 2.5, (𝑠1
and 𝑠3) (30 − 20)/(5 − 4) = 10, (𝑠1 and 𝑠4) (40 − 20)/(5 − 2) ≈ 6.67,

(𝑠2 and 𝑠4) (40 − 25)/(3 − 2) = 15, and (𝑠3 and 𝑠4) (40 − 30)/(4 −

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

2) = 5. Note that 𝑠2 and 𝑠3 give a negative breakpoint (since 𝑠3
dominates 𝑠2) and so we exclude this case. The algorithm will start

by showing the tuples that give the median breakpoint (𝑠1 and 𝑠4
with breakpoint 6.67) so that it can narrow down the number of

remaining breakpoints by half with each question.

Finally, the algorithm removes points that are (1 + 𝜖)-dominated

by any other points for all utility functions that have 𝑢𝑖 ∈ [𝐿𝑖 , 𝐻𝑖].
We follow the heuristic procedure proposed in [14]. Instead of

comparing the utility of all points 𝑝 to that of all other points 𝑞

in 𝐷 to see if they are (1 + 𝜖)-dominated (which would again be

computationally expensive), we are going to take the lower bound

𝐿𝑖 of all dimensions, apply that on all points in the database and

keep track of highest value utility, 𝑉 = max𝑝∈𝐷 𝑝 · (𝐿1, ..., 𝐿𝑑).
Then, we scale all points 𝑝 up by (1 + 𝜖) and calculate their utility

with (𝐻1, . . . , 𝐻𝑑). If they are lower than 𝑉 , it means that they

cannot possibly be in the indistinguishability set, and we prune

them out. Put another way, we removed all points in the set {𝑝 ∈
𝐷 : (1 + 𝜖) · 𝑝 · (𝐻1, ..., 𝐻𝑑) < 𝑉 }.
Example: Suppose after several rounds of questions we have nar-

rowed down the user’s utility function 𝑢 ∈ [2.25, 2.5] × [0.75, 0.8] ×
[1, 1] (where 𝑢 is normalized to the third dimension as anchor). We

use the lower bound utility function 𝑢𝐿 = (2.25, 0.75, 1) to deter-

mine the largest utility value among all tuples in the database, 𝑉

(i.e.,𝑉 is a lower bound on the utility of the optimal tuple). We then

prune all tuples whose utility with utility function𝑢𝐻 = (2.5, 0.8, 1)
is less than 𝑉 /(1 + 𝜖) since such tuples cannot possibly be in the

final set I.

4.1 Running Time
The running time of the first part of the algorithm (Lines 1-2) is

𝑂 (𝑑2𝑛 log𝑛) since CountSlopes runs in 𝑂 (𝑛 log𝑛) time.

The while loop on Line 5 runs 𝑞 times. We repeat Lines 8-13 𝑇

times. Our goal is to reduce𝑇 to a small number without negatively

impacting the performance of the algorithm. In Section 6, we show

that it is reasonable to pick 𝑇 = 100. In Lines 7 and Line 11, we

use the algorithm CountSlopes that runs in 𝑂 (𝑛 log𝑛) time. This

makes the main while loop take 𝑂 (𝑞𝑇𝑛 log𝑛) time.

The final pruning out step in Lines 19-21 is adapted from [14],

and has a running time of 𝑂 (𝑛𝑑).
Overall, the running time of Breakpoint is𝑂 (𝑑2𝑛 log𝑛+𝑞𝑇𝑛 log𝑛).

4.2 Proof of Correctness
We show that the invariant 𝐿𝑖 ≤ 𝑢 [𝑖]

𝑢 [𝑎] ≤ 𝐻𝑖 is maintained using

the following two lemmas for updating 𝐿𝑖 and 𝐻𝑖 in Lines 15-18 of

Algorithm 1.

Lemma 4.1. If the user prefers point 𝑝1, then
𝑢 [𝑖]
𝑢 [𝑎] ≥ −1

𝜎 .

Proof. If the user prefers point 𝑝1, we know that

𝑢 [𝑖] · 𝑝1 [𝑖] + 𝑢 [𝑎] · 𝑝1 [𝑎] ≥ 𝑢 [𝑖] · 𝑝2 [𝑖] + 𝑢 [𝑎] · 𝑝2 [𝑎], or

𝑢 [𝑖]
𝑢 [𝑎] · (𝑝1 [𝑖] − 𝑝2 [𝑖]) ≥ 𝑝2 [𝑎] − 𝑝1 [𝑎], or

𝑢 [𝑖]
𝑢 [𝑎] ≥ 𝑝2 [𝑎] − 𝑝1 [𝑎]

𝑝1 [𝑖] − 𝑝2 [𝑖]
(as 𝑝1 [𝑖] > 𝑝2 [𝑖])

𝑢 [𝑖]
𝑢 [𝑎] ≥ −1

𝜎
.

Algorithm 1 Breakpoint(𝐷, 𝑠, 𝜖 , 𝑇 , 𝑎)

Input: A database of tuples, 𝐷 ⊂ [0, 1]𝑑 ; anchor dimension 𝑎,

indistinguishability parameter 𝜖 , number of samples 𝑇

Output: A subset of 𝐷

1: For each 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑑 , 𝑖 ≠ 𝑗 , count the number

of slopes between −∞ and 0 for dimension 𝑖 and 𝑗 , denoted as

𝑐𝑜𝑢𝑛𝑡 (𝑖, 𝑗).
2: Set anchor dimension 𝑎 = argmax

1≤𝑖≤𝑑 min𝑗≠𝑖 𝑐𝑜𝑢𝑛𝑡 (𝑖, 𝑗).
3: For each dimension, 1 ≤ 𝑖 ≤ 𝑑 , 𝑖 ≠ 𝑎, let 𝐿𝑖 = 0 and 𝐻𝑖 = ∞.

4: Let 𝐿𝑎 = 1, 𝐻𝑎 = 1.

5: while user is still giving feedback do
6: Find the dimension 𝑖 with the largest 𝐻𝑖 − 𝐿𝑖 .

7: Let 𝜇𝑖 be the number of slopes in range [−1
𝐿𝑖
, −1
𝐻𝑖

].
8: repeat
9: Randomly select 2 tuples 𝑝1, 𝑝2 from 𝐷 such that

𝑝1 [𝑖] > 𝑝2 [𝑖] and compute their slope 𝜎 .

10: if −1
𝐿𝑖

≤ 𝜎 ≤ −1
𝐻𝑖

then
11: Define𝑚𝑖𝑑 as the number of slopes in range [−1

𝐿𝑖
, 𝜎].

12: Store 𝑝1 and 𝑝2 and their slope 𝜎 if the value | 𝜇𝑖
2
−

𝑚𝑖𝑑 | is minimized.

13: until 𝑇 attempts have been made.

14: Display 𝑝1, 𝑝2 to the user.

15: if the user chooses 𝑝1 then
16: Update 𝐿𝑖 =

−1
𝜎 .

17: else
18: Update 𝐻𝑖 =

−1
𝜎 .

19: Initialize subset 𝐶 = 𝐷 .

20: for all 𝑝 ∈ 𝐷 do
21: Remove all points from 𝐶 that are (1+ 𝜖)-dominated by 𝑝

for all utility functions in [𝐿𝑖 , 𝐻𝑖].
22: return 𝐶 .

Thus, the new lower bound of the ratio
𝑢 [𝑖]
𝑢 [𝑎] is

−1
𝜎 . If the user

prefers point 𝑝1, we update 𝐿𝑖 =
−1
𝜎 .

□

Lemma 4.2. If the user prefers point 𝑝2, then
𝑢 [𝑖]
𝑢 [𝑎] ≤ −1

𝜎 .

Proof. If the user prefers point 𝑝2, we know that

𝑢 [𝑖] · 𝑝1 [𝑖] + 𝑢 [𝑎] · 𝑝1 [𝑎] ≤ 𝑢 [𝑖] · 𝑝2 [𝑖] + 𝑢 [𝑎] · 𝑝2 [𝑎], or

𝑢 [𝑖]
𝑢 [𝑎] · (𝑝1 [𝑖] − 𝑝2 [𝑖]) ≤ 𝑝2 [𝑎] − 𝑝1 [𝑎], or

𝑢 [𝑖]
𝑢 [𝑎] ≤ 𝑝2 [𝑎] − 𝑝1 [𝑎]

𝑝1 [𝑖] − 𝑝2 [𝑖]
(as 𝑝1 [𝑖] > 𝑝2 [𝑖])

𝑢 [𝑖]
𝑢 [𝑎] ≤ −1

𝜎
.

Thus, the upper bound of the ratio
𝑢 [𝑖]
𝑢 [𝑎] is

−1
𝜎 . If the user prefers

point 𝑝2, we update 𝐻𝑖 =
−1
𝜎 .

□

Theorem 4.3. The invariant 𝐿𝑖 ≤ 𝑢 [𝑖]
𝑢 [𝑎] ≤ 𝐻𝑖 is maintained

throughout interaction.

The Power of Two: Simplified User Interaction
for the Indistinguishability Query SSDBM 2025, June 23–25, 2025, Columbus, OH, USA

i*

Real Tuples
Tolerably
Truthful Tuples

mi*

qi [i]

mi

i

qi [i*]
q*i* [i*]

qi = q*i* [i*] + q* i [i*]
2

q*i* [i] + q* i [i]
,()

2
Tolerably Truthful Field

q*i [i]

p2

p1

Figure 1: TT - Breakpoint Algorithm Depiction

Proof. 𝐿𝑖 and 𝐻𝑖 is initialized to 0 and ∞ before the loop starts,

with the exception of 𝐿𝑎 = 𝐻𝑎 = 1. We know that 𝐿𝑖 ≤ 𝑢 [𝑖]
𝑢 [𝑎] ≤ 𝐻𝑖 ,

thus, the invariant holds during initialization.

Throughout interaction, the user prefers either 𝑝1 or 𝑝2 in each

round. Since we proved that 𝐿𝑖 and 𝐻𝑖 are updated correctly based

on the user’s implicit utility function in Lemma 4.1 and Lemma 4.2,

we conclude that the invariant 𝐿𝑖 ≤ 𝑢𝑖
𝑢𝑎

≤ 𝐻𝑖 is maintained through-

out interaction. □

While the strongly truthful Breakpoint algorithm does a good job

of narrowing down each
𝑢 [𝑖]
𝑢 [𝑎] value, there is no guarantee for how

well it can approximate the set I. This is because we can make no

assumptions about the dataset and, in the worst case, it may perform

poorly. Still, we are able to show that the Breakpoint algorithm does

reasonably well on some real data sets in Section 6. In order to get

an approximation guarantee on I, we need to introduce artificial

tuples, which we do in the next section.

5 Tolerably Truthful Algorithm
In this section, we present a tolerably truthful algorithm that approx-

imates the indistinguishability set with an asymptotic guarantee.

The algorithm narrows down the range of the unknown user’s

utility function by asking rounds of questions, pruning out tuples

that are significantly far away from being 𝜖-indistinguishable from

the user’s optimal.

In order to remain tolerably truthful, we have to choose the tuples

shown to the user very carefully. For any pair of dimensions 𝑖 and

𝑖∗, we construct what we call a tolerably truthful field, a rectangle
within which we are guaranteed that all tuples help us maintain

the property of remaining tolerably truthful. This is illustrated

in Figure 1. The bottom left of the rectangle is defined to be the

minimum value of the two attributes (𝑚𝑖 and𝑚
∗
𝑖
in the figure) so

that all tuples in the field have values greater than the minimum

attributes. The upper right of the rectangle is defined to be the

midpoint of the tuples with maximum values in the respective

attributes (𝑞𝑖 in the figure). This guarantees that all tuples in the

rectangle are less than the maximum attributes. We will also prove

that the utility of this tuple 𝑞𝑖 is no greater than the utility of the

Algorithm 2 TT-Breakpoint(𝐷, 𝜖)

Input: A database of tuples, 𝐷 ⊂ [0, 1]𝑑 , indistinguishability
parameter 𝜖

Output: A subset of 𝐷

1: For each 1 ≤ 𝑖 ≤ 𝑑 , let 𝑚𝑖 = 𝑚𝑖𝑛𝑒∈𝐷𝑒𝑖 and keep track of

maximum point 𝑞∗
𝑖
= argmax𝑒∈𝐷 𝑒𝑖 .

2: Let 𝑖∗ = 1, 𝑖 = 2.

3: while 𝑖 ≤ 𝑑 do ⊲ Find largest utility coefficient.

4: Let point 𝑞𝑖 be

(
𝑞∗
𝑖∗ [𝑖

∗]+𝑞∗𝑖 [𝑖∗]
2

,
𝑞∗
𝑖∗ [𝑖]+𝑞

∗
𝑖 [𝑖]

2

)
.

5: Display 𝑝1 = (𝑚𝑖∗ , 𝑞𝑖 [𝑖]) and 𝑝2 = (𝑚𝑖∗ +𝑎, 𝑞𝑖 [𝑖] −𝑎) where
𝑎 = min(𝑞𝑖 [𝑖∗] −𝑚𝑖∗ , 𝑞𝑖 [𝑖] −𝑚𝑖)

6: Update 𝑖∗ = 𝑖 if user picks 𝑝1
7: Let 𝑖 = 𝑖 + 1.

8: For each dimension, 1 ≤ 𝑖 ≤ 𝑑, 𝑖 ≠ 𝑖∗, initialize 𝐿𝑖 to 0 and 𝐻𝑖

to 1. Define 𝐿𝑖∗ = 𝐻𝑖∗ = 1.

9: For each 1 ≤ 𝑖 ≤ 𝑑 , let 𝑞𝑖 =

(
𝑞∗
𝑖∗ [𝑖

∗]+𝑞∗𝑖 [𝑖∗]
2

,
𝑞∗
𝑖∗ [𝑖]+𝑞

∗
𝑖 [𝑖]

2

)
.

10: Let 𝑖 = 1.

11: while remain questions to be asked do
12: if 𝑖 = 𝑖∗ then
13: Update 𝑖 = (𝑖 mod 𝑑) + 1.

14: Define 𝑏 =
(𝐿𝑖+𝐻𝑖)

2
as the desired ratio breakpoint.

15: Define
ˆ𝑏 = − 1

𝑏
as the desired slope breakpoint.

16: Let𝑤𝑖𝑑𝑡ℎ = 𝑞𝑖 [𝑖∗] −𝑚𝑖∗ and ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑞𝑖 [𝑖] −𝑚𝑖 .

17: if 𝑞𝑖 [𝑖] + (𝑤𝑖𝑑𝑡ℎ · ˆ𝑏) < 𝑚𝑖 then ⊲ Check if the point

intersects with bottom of TT field

18: Create point 𝑝2 = (𝑚𝑖∗ − ℎ𝑒𝑖𝑔ℎ𝑡

ˆ𝑏
, 𝑞𝑖 [𝑖] − ℎ𝑒𝑖𝑔ℎ𝑡).

19: else
20: Create point 𝑝2 = (𝑚𝑖∗ +𝑤𝑖𝑑𝑡ℎ, 𝑞𝑖 [𝑖] +𝑤𝑖𝑑𝑡ℎ · ˆ𝑏).
21: Display 𝑝1 = (𝑚𝑖∗ , 𝑞𝑖 [𝑖]) and 𝑝2 to user.

22: if user chooses 𝑝1 then
23: Update 𝐿𝑖 = 𝑏.

24: else
25: Update 𝐻𝑖 = 𝑏.

26: Update 𝑖 = (𝑖 mod 𝑑) + 1.

27: Initialize subset 𝐶 = 𝐷 .

28: for all 𝑒 ∈ 𝐷 do
29: Remove all points from 𝐶 that are (1+ 𝜖)-dominated by 𝑒

for all utility functions in [𝐿1, 𝐻1], [𝐿2, 𝐻2], ..., [𝐿𝑑 , 𝐻𝑑]
30: return 𝐶 .

user’s optimal tuple in the output set , thus preserving the property

of being truthful.

Our tolerably truthful algorithm, TT-Breakpoint, is given in Al-

gorithm 2. At the beginning of the algorithm, it loops through the

database dimensions to find the minimum value𝑚𝑖 and maximum

point 𝑞∗
𝑖
for each dimension 𝑖 in Line 1. Then, the algorithm com-

putes the anchor dimension 𝑖∗, representing the dimension with

the largest coefficient in the utility vector as follows in Lines 2 -

7. As described earlier, the artificial point 𝑞𝑖 is chosen to be the

midpoint between the maximum points of each dimension. In Line

5, the algorithm builds two points using 𝑞: 𝑝1 = (𝑚𝑖∗ , 𝑞𝑖 [𝑖]) and
𝑝2 = (𝑚𝑖∗ + 𝑎, 𝑞𝑖 [𝑖] − 𝑎) where 𝑎 = 𝑚𝑖𝑛(𝑞𝑖 [𝑖∗] −𝑚𝑖∗ , 𝑞𝑖 [𝑖] −𝑚𝑖).
By using point 𝑞𝑖 and the minimum value of each dimension, the

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

i*

Real Tuples
Tolerably
Truthful Tuples

1

qi [i] = 28

20

i

qi [i*] = 3 5

qi = (3, 28)
Tolerably Truthful Field

34

p2

p1 = (1, 28)

EE

RR

(1, 34)

(5, 22)

Figure 2: TT-Breakpoint Algorithm Example

algorithm generates two points dominated by this point 𝑞𝑖 that

generate slope of -1 as shown in Figure 1. Since the breakpoint can

be computed to be
−1

𝑠𝑙𝑜𝑝𝑒
(see Section 3.4), whenever the slope is -1,

the
𝑢𝑖
𝑢𝑖∗

breakpoint is 1. This method demonstrates that selecting

one of the two points indicates the user’s preference for the corre-

sponding dimension. Therefore, when the user chooses a tuple, the

algorithm can update whichever attribute the user prefers to find

the larger coefficient. This can be illustrated directly where if the

user picks 𝑝2 = (𝑚𝑖∗ + 𝑎, 𝑞𝑖 [𝑖] − 𝑎), then

𝑢 [𝑖∗] (𝑚𝑖∗ + 𝑎) + 𝑢 [𝑖] (𝑞𝑖 [𝑖] − 𝑎) ≥ 𝑢 [𝑖∗]𝑚𝑖∗ + 𝑢 [𝑖]𝑞𝑖 [𝑖]
𝑢 [𝑖∗] ((𝑚𝑖∗ + 𝑎) −𝑚𝑖∗) ≥ 𝑢 [𝑖] (𝑞𝑖 [𝑖] − (𝑞𝑖 [𝑖] − 𝑎))

𝑢 [𝑖∗]𝑎 ≥ 𝑢 [𝑖]𝑎
𝑢 [𝑖∗] ≥ 𝑢 [𝑖] .

We can similarly show that 𝑢 [𝑖∗] ≤ 𝑢 [𝑖] if the user picks 𝑝1. Using
this technique, the algorithm loops through all the dimensions to

find the dimension with the greatest 𝑢 [𝑖]. This process allows us
to bound

𝑢 [𝑖]
𝑢 [𝑖∗] of all remaining dimensions to between [0, 1] and

set lower and higher bounds of the anchor dimension 𝑖∗ to 1. The

algorithm also keeps track of each midpoint 𝑞𝑖 for every dimension

in Line 9.

Example:An example of the tuple construction is given in Figure 2.

In this example, the tuples with maximum RR and EE are (5, 22)

and (1, 34), respectively. The tuple 𝑞𝑖 is defined to be the midpoint

of these tuples: (3, 28). The artificial tuples shown to the user (𝑝1
and 𝑝2) are in the tolerably truthful field (the rectangle with (1, 20)

at the lower left and 𝑞𝑖 at the top right).

While there are remaining questions, the algorithm continues to

narrow down the user’s utility function in Lines 10 - 26. Since we

can create any breakpoint we desire within the tolerably truthful

field, we use each round of user interaction to narrow down the

range of one of the 𝑢 [𝑖]’s by half (i.e., halve the width of [𝐿𝑖 , 𝐻𝑖]).
To achieve this, we create pairs of tuples with breakpoint 𝑏 =

𝐿𝑖+𝐻𝑖

2

as follows. We first compute the desired slope
ˆ𝑏 = −1/𝑏 (using the

relationship from Section 3.4). We then create a pair of tuples that

have this desired slope but that still remain in the tolerably truthful

field by choosing the first (𝑝1) to be at the top left of the field and

the second (𝑝2) to be along the bottom (Line 18) or right (Line

20) depending on the steepness of the slope. When the algorithm

displays 𝑝1 and 𝑝2 to the user, it can correctly update the 𝐿𝑖 or 𝐻𝑖

bounds to narrow the range of 𝑢𝑖 by a factor of two.

Example: Suppose the algorithm has so far narrowed down 𝑢𝑖/𝑢𝑎
to a range 𝐿𝑖 = 0.5 and𝐻𝑖 = 0.75. To narrow down the range further,

we set a breakpoint of𝑏 = (0.5+0.75)/2 = 0.625. This corresponds to

a slope of−1/0.625 = −1.6. Continuingwith the example in Figure 2,

we will construct the tuple 𝑝2 = (3, 28 + 2 × −1.6) = (3, 24.8) since
24.8 ≥ 20, the minimum EE value in the database. If this condition

we were not true, we would have placed 𝑝2 on the bottom of the

tolerably truthful field.

Lastly, the algorithm prunes tuples that are (1 + 𝜖)-dominated

by any other points in the database for all utility functions within

the range [𝐿𝑖 , 𝐻𝑖] in Lines 28-29, following the computationally

efficient approach in [14], as with the Breakpoint algorithm.

5.1 Running Time
The running time of TT-Breakpoint is dominated by the computa-

tion of the tuples 𝑞∗
𝑖
, which takes 𝑂 (𝑛𝑑) time, where 𝑛 is the total

number of tuples and 𝑑 is the number of dimensions. The running

time for finding the anchor dimension 𝑖∗ (Lines 2-8) is just 𝑂 (𝑑)
and the time for narrowing down the utility function (Lines 9-26)

is 𝑂 (𝑞), where 𝑞 is the total number of questions asked. The final

pruning step (Lines 27-29) takes 𝑂 (𝑛𝑑) time. Thus, the overall run-

ning time of the algorithm is 𝑂 (𝑛𝑑 + 𝑞), which is only linear in the

number of tuples, 𝑛.

5.2 Proofs of Correctness
Lemma 5.1. After 𝑞 questions, for each 1 ≤ 𝑖 ≤ 𝑑 ,

𝐻𝑖 − 𝐿𝑖 ≤ 1/2⌊ (𝑞−𝑑+1)/(𝑑−1) ⌋ .

Proof. In lines 2 - 7 of Algorithm 2, we ask the user 𝑑 − 1 ques-

tions to determine 𝑖∗. Of the remaining (𝑞 − 𝑑 + 1) questions, each
one is used to halve thewidth of one of the𝐻𝑖−𝐿𝑖 values. Since there
are (𝑑 − 1) such values and each one starts at 1, after 𝑞 questions

we will halve each of them at least ⌊(𝑞−𝑑 +1)/(𝑑 −1)⌋ times. Thus,

after 𝑞 questions we have each 𝐻𝑖 − 𝐿𝑖 ≤ 1/2⌊ (𝑞−𝑑+1)/(𝑑−1) ⌋ . □

Example: If 𝑑 = 3, by asking just 16 questions we guarantee that

each 𝐻𝑖 − 𝐿𝑖 ≤ 1/27 < 0.01.

Theorem 5.2. After 𝑞 questions, TT-Breakpoint outputs a set that
is a 𝑂 (𝑑/2⌊ (𝑞−𝑑+1)/(𝑑−1) ⌋)-approximation of I.

Proof. Following the same reasoning as [14, Theorem 2], if we

bound𝐻𝑖 −𝐿𝑖 ≤ 𝜏 for each 𝑖 , then we get a 𝜏𝑑 (1+𝜖)-approximation

for I. The theorem follows by substituting 𝜏 = 1/2⌊ (𝑞−𝑑+1)/(𝑑−1) ⌋
from Lemma 5.1. □

Example: If 𝑑 = 3, by asking just 16 questions we guarantee a

0.05-approximation of I.

Theorem 5.3. TT-Breakpoint is a truthful algorithm.

Proof. Recall that an algorithm is truthful if the tuples shown

during interaction are no better than the user’s eventual favorite

tuple from the final output set. Since the optimal tuple in the entire

The Power of Two: Simplified User Interaction
for the Indistinguishability Query SSDBM 2025, June 23–25, 2025, Columbus, OH, USA

database is output in the approximation of I, it suffices to show

that any output tuples have lower value for the user than some
tuple in the database.

In each round of TT-Breakpoint, we show tuples 𝑝1 and 𝑝2 from

the tolerably truthful field to the user. Each of these tuples is chosen

so as to be dominated by the tuple 𝑞𝑖 since 𝑞𝑖 is at the top right of

the tolerably truthful field (see Figure 1). The utility of 𝑞𝑖 on just

dimensions 𝑖 and 𝑖∗ (call this function 𝑓) can be bounded

𝑓 (𝑞𝑖) = 𝑢 [𝑖∗]𝑞𝑖 [𝑖∗] + 𝑢 [𝑖]𝑞𝑖 [𝑖]

= 𝑢 [𝑖∗]
(
𝑞∗
𝑖∗ [𝑖

∗] + 𝑞∗
𝑖
[𝑖∗]

2

)
+ 𝑢 [𝑖]

(
𝑞∗
𝑖∗ [𝑖] + 𝑞

∗
𝑖
[𝑖]

2

)
=

(
𝑢 [𝑖∗]

𝑞∗
𝑖∗ [𝑖

∗]
2

+ 𝑢 [𝑖]
𝑞∗
𝑖∗ [𝑖]
2

)
+
(
𝑢 [𝑖∗]

𝑞∗
𝑖
[𝑖∗]
2

+ 𝑢 [𝑖]
𝑞∗
𝑖
[𝑖]
2

)
=

𝑓 (𝑞∗
𝑖∗)
2

+
𝑓 (𝑞∗

𝑖
)

2

≤ max(𝑓 (𝑞∗𝑖∗), 𝑓 (𝑞
∗
𝑖))

≤ 𝑓 (𝑝∗),

where 𝑝∗ is the tuple with optimal utility in just dimensions 𝑖 and

𝑖∗. The penultimate inequality follows from the fact that the mean

of two numbers is at most the maximum of the two. The last line

follows from the fact that the utility of the real tuples 𝑞∗
𝑖∗ and 𝑞

∗
𝑖

must be at most the utility of the optimal tuple 𝑝∗.
In conclusion, the utility of each displayed tuple is at most the

utility of tuple 𝑞𝑖 which in turn is at most the utility of the optimal

tuple output by the TT-Breakpoint algorithm, so TT-Breakpoint is

truthful. □

Theorem 5.4. TT-Breakpoint is a tolerably truthful algorithm.

Proof. We proved that TT-Breakpoint is a truthful algorithm

in Theorem 5.3. We now show that each tuple 𝑝 displayed by TT-

Breakpoint has the property that, 1 ≤ 𝑖 ≤ 𝑑 ,𝑚𝑖𝑛𝑖 ≤ 𝑝𝑖 ≤ 𝑚𝑎𝑥𝑖 ,

where𝑚𝑖𝑛𝑖 and𝑚𝑎𝑥𝑖 are the minimum and maximum values in

dimension 𝑖 among all the tuples in the database.

The tuple 𝑝1 = (𝑚𝑖∗ , 𝑞𝑖 [𝑖]) has the property since𝑚𝑖𝑛𝑖∗ =𝑚𝑖∗ ≤
𝑚𝑎𝑥𝑖∗ and 𝑞𝑖 [𝑖] is the mean of the 𝑖 dimensions of two tuples in

the database and we know that the mean is always greater than the

smaller of the two values and smaller than the greater of the two

values. More precisely,

𝑞𝑖 [𝑖] =
𝑞∗
𝑖∗ [𝑖] + 𝑞

∗
𝑖
[𝑖]

2

≥ min (𝑞∗𝑖∗ [𝑖], 𝑞
∗
𝑖 [𝑖]) ≥ 𝑚𝑖𝑛𝑖 ,

and

𝑞𝑖 [𝑖] =
𝑞∗
𝑖∗ [𝑖] + 𝑞

∗
𝑖
[𝑖]

2

≤ max (𝑞∗𝑖∗ [𝑖], 𝑞
∗
𝑖 [𝑖]) ≤ 𝑚𝑎𝑥𝑖 ,

and similarly for 𝑞𝑖 [𝑖∗].
For the tuple 𝑝2 = (𝑚𝑖∗ + 𝑎, 𝑞𝑖 [𝑖] − 𝑎) displayed in Line 5, we

have that𝑚𝑖𝑛𝑖∗ ≤ 𝑚𝑖𝑛𝑖∗ +𝑎 =𝑚𝑖∗ +𝑎 and𝑚𝑖∗ +𝑎 ≤ 𝑚𝑖∗ + (𝑞𝑖 [𝑖∗] −
𝑚𝑖∗) = 𝑞𝑖 [𝑖∗] ≤ 𝑚𝑎𝑥𝑖∗ (since 𝑎 = min(𝑞𝑖 [𝑖∗] −𝑚𝑖∗ , 𝑞𝑖 [𝑖] −𝑚𝑖)).
Also, 𝑞𝑖 [𝑖] − 𝑎 ≥ 𝑞𝑖 [𝑖] − (𝑞𝑖 [𝑖] − 𝑚𝑖) = 𝑚𝑖 = 𝑚𝑖𝑛𝑖 (since 𝑎 =

min(𝑞𝑖 [𝑖∗] −𝑚𝑖∗ , 𝑞𝑖 [𝑖] −𝑚𝑖)) and 𝑞𝑖 [𝑖] − 𝑎 ≤ 𝑞𝑖 [𝑖] ≤ 𝑚𝑎𝑥𝑖 . Thus

𝑝2 satisfies the desired property.

For the tuple 𝑝2 displayed on Line 21 of the algorithm there are

two cases:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400 450 500

al
ph

a

T

Breakpoint

Figure 3: Results for Breakpoint when varying 𝑇 on NBA
(𝑞 = 20, 𝜖 = 0.05)

Case 1: 𝑞𝑖 [𝑖] + (𝑤𝑖𝑑𝑡ℎ · ˆ𝑏) < 𝑚𝑖 : Here, 𝑝2 = (𝑚𝑖∗ − ℎ𝑒𝑖𝑔ℎ𝑡

ˆ𝑏
, 𝑞𝑖 [𝑖] −

ℎ𝑒𝑖𝑔ℎ𝑡). We can bound𝑚𝑖∗− ℎ𝑒𝑖𝑔ℎ𝑡

ˆ𝑏
=𝑚𝑖∗ +ℎ𝑒𝑖𝑔ℎ𝑡 ·𝑏 ≥ 𝑚𝑖∗ =𝑚𝑖𝑛𝑖∗

and

𝑚∗
𝑖 −

ℎ𝑒𝑖𝑔ℎ𝑡

ˆ𝑏
= 𝑚𝑖∗ −

𝑞𝑖 [𝑖] −𝑚𝑖

ˆ𝑏

< 𝑚𝑖∗ +𝑤𝑖𝑑𝑡ℎ
= 𝑚𝑖∗ + (𝑞𝑖 [𝑖] −𝑚𝑖∗)
= 𝑞𝑖 [𝑖]
≤ 𝑚𝑎𝑥𝑖 .

Also, 𝑞𝑖 [𝑖] − ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑞𝑖 [𝑖] − (𝑞𝑖 [𝑖] −𝑚𝑖) = 𝑚𝑖 = 𝑚𝑖𝑛𝑖 and

𝑞𝑖 [𝑖] − ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑞𝑖 [𝑖] ≤ 𝑚𝑎𝑥𝑖 . Thus, in this case 𝑝2 preserves the

property.

Case 2: 𝑞𝑖 [𝑖] + (𝑤𝑖𝑑𝑡ℎ · ˆ𝑏) ≥ 𝑚𝑖 : Here, 𝑝2 = (𝑚𝑖∗ + 𝑤𝑖𝑑𝑡ℎ, 𝑞𝑖 [𝑖] +
𝑤𝑖𝑑𝑡ℎ · ˆ𝑏). We can bound𝑚𝑖∗ + 𝑤𝑖𝑑𝑡ℎ ≥ 𝑚𝑖∗ = 𝑚𝑖𝑛𝑖∗ and 𝑚𝑖∗ +
𝑤𝑖𝑑𝑡ℎ =𝑚𝑖∗ + (𝑞𝑖 [𝑖∗] −𝑚𝑖∗) = 𝑞𝑖 [𝑖∗] ≤ 𝑚𝑎𝑥𝑖∗ . Also, 𝑞𝑖 [𝑖] +𝑤𝑖𝑑𝑡ℎ ·
ˆ𝑏 ≥ 𝑚𝑖 = 𝑚𝑖𝑛𝑖 and 𝑞𝑖 [𝑖] + 𝑤𝑖𝑑𝑡ℎ · ˆ𝑏 ≤ 𝑞𝑖 [𝑖] ≤ 𝑚𝑎𝑥𝑖 (as ˆ𝑏 < 0).
Again, 𝑝2 preserves the property.

In conclusion, all tuples 𝑝 displayed by TT-Breakpoint are such

that𝑚𝑖𝑛𝑖 ≤ 𝑝 [𝑖] ≤ 𝑚𝑎𝑥𝑖 . Combined with the truthfulness of the al-

gorithm from Theorem 5.3, we have that TT-Breakpoint is tolerably

truthful. □

6 Experimental Evaluation
All the following experiments were conducted using a 16-core

(2.5GHz)machinewith 64GBRAM.All of the codewas implemented

in C++ and is available for download
1
.

Datasets: For these experiments, both artificial and real datasets

were used. For synthetic data, we used a data set generator [3] to

create anti-correlated data sets as these have large skylines. We

used three real datasets: “Island" which has 63383 points with 2D

geographical coordinates, “NBA" which has 21961 4D points with

records of players, and “House” which is a 6D dataset with 12793

housing utility values.

Algorithms: We evaluated our strongly truthful algorithm Break-

point and our tolerable truthful algorithm TT-Breakpoint against

Squeeze-u [14] (an algorithm that uses untruthful artificial points),

and several strongly truthful algorithms: UH-Random [32], MinR,

and MinD [14]. The algorithms Squeeze-u, MinR, and MinD are

1
https://github.com/ashlall/Indistinguishability2

https://github.com/ashlall/Indistinguishability2

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 10 20 30 40 50 60 70 80

al
ph

a

q

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(a) Island

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80

al
ph

a

q

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(b) NBA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80

al
ph

a

q

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(c) House

Figure 4: Varying number of questions, 𝑞 (𝜖 = 0.05)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.001 0.01 0.1

al
ph

a

epsilon

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(a) Island

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.001 0.01 0.1

al
ph

a

epsilon

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(b) NBA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.001 0.01 0.1

al
ph

a

epsilon

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(c) House

Figure 5: Varying 𝜖 (𝑞 = 5𝑑), log-scale on 𝑥-axis

the only other algorithms designed specifically for the indistin-

guishability query. The UH-Random was another algorithm that

was found to work well for the query in [14]. It is important to

note that because the artificial algorithms points have more control

over constructing points and therefore can more effectively narrow

down the user’s unknown utility function, it is not fair to directly

compare the algorithms using artificial points with the strongly

truthful algorithms. However, showing the algorithms side by side

still allows us to compare their performances with this caveat in

mind. Note that other non-interactive algorithms cannot be com-

pared because it is not clear what tuples to show in the second

round onwards.

Parameter settings: In all of our experiments, we evaluated the

algorithms on one hundred independently chosen random utility

functions and reported their average performance.Wemeasured the

approximation value 𝛼 (see Section 3.1) for each of the algorithms

with varied parameters. As a reminder, 𝛼 measures the worst case

deviation from being 𝜖-indistinguishable over all the points output

by the algorithm, hence closer to zero is better. Unless otherwise

stated, we used the default values 𝜖 = 0.05 and 𝑞 = 5𝑑 . For the

parameter 𝑇 in TT-Breakpoint (see Section 5), we varied 𝑇 on the

NBA data set (using 500 runs to reduce variance) and got the results

shown in Figure 3. Since the performance starts to level off after

𝑇 = 100, we used this in all our subsequent experiments.

6.1 Real Data
Firstly, we compared the performance of the algorithms as the num-

ber of questions per round asked to the user increased in Figure 4.

In each experiment, we fixed the indistinguishability threshold

𝜖 = 0.05, and varied 𝑞 from 10 to 80 in increments of 10. We see that

Squeeze-u and TT-Breakpoint had identical performance across all

datasets, and they always outperform the strongly truthful algo-

rithms. This result is expected, as both algorithms narrow down the

utility ratio range of one pair of dimensions by half in a single round.

When comparing the strongly truthful algorithms algorithms, we

see Breakpoint usually had the lowest alpha values.

We next studied the effects of varying epsilon, the user’s desired

threshold for indistinguishability in Figure 5. In each experiment,

we fixed the number of questions asked to the user in each round

to be 𝑞 = 5𝑑 , and 𝜖 = 0.05. In our results, we again see that Squeeze-

u and TT-Breakpoint had the best results. Among the strongly

truthful algorithms, Breakpoint did not perform as well for the

Island dataset, was the best in the case of NBA, and among the top

two for House. This variation has to do with what can be learned

from the real tuples in each dataset given how each algorithm

attempts to narrow down the user’s utility function.

Table 3 shows the runtimes for the algorithms on each of the

real datasets. The two artificial tuple algorithms (Squeeze-u and TT-

Breakpoint) ran very fast since most of their computation doesn’t

involve the actual tuples in the database. Among the strongly truth-

ful algorithms, Breakpoint was consistently the fastest, taking less

than one second to run in each instance.

The Power of Two: Simplified User Interaction
for the Indistinguishability Query SSDBM 2025, June 23–25, 2025, Columbus, OH, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1000 10000 100000 1x106

al
ph

a

n

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(a) alpha

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

10.0000000

100.0000000

1000.0000000

 1000 10000 100000 1x106

Squeeze-U
TT-Breakpoint
UH-Random

MinD
MinR

Breakpoint

tim
e
(s
)

(b) time (s)

Figure 6: Varying number of tuples in synthetic data with fixed dimensionality (𝑑 = 3, 𝑞 = 9, 𝜖 = 0.05)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 3 4 5 6

al
ph

a

d

Squeeze-U
TT-Breakpoint

UH-Random
MinD
MinR

Breakpoint

(a) alpha

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6

Squeeze-U
TT-Breakpoint
UH-Random

MinD
MinR

Breakpoint

tim
e
(s
)

d

(b) time (s)

Figure 7: Varying number of dimensions in synthetic data with fixed number of tuples (𝑛 = 10000, 𝑞 = 20, 𝜖 = 0.05)

Algorithm Island NBA House

Squeeze-u 0.00 0.00 0.00

TT-Breakpoint 0.00 0.00 0.00

UH-Random 15.69 0.00 7.01

MinD 2.61 0.06 49.18

MinR 2.33 0.06 47.54

Breakpoint 0.39 0.00 0.29

Table 3: Running times (s.) (𝜖 = 0.05, 𝑞 = 5𝑑)

6.2 Scalability Test
We next studied the behavior of the algorithms when we increase

the number of tuples in the database and the number of dimensions.

Since the real datasets have static sizes, we generated anti-correlated

data using a standard dataset generator [3].

In Figure 6we show the results for varying the number of tuples𝑛.

As before, the artificial tuple algorithms perform the best and all the

algorithms have fairly steady error, except that Breakpoint becomes

large for the case of a million tuples (Figure 6a). The runtimes of

the artificial tuple algorithms is the lowest and Breakpoint runs the

fastest among the strongly truthful algorithms (Figure 6b).

Figure 7 shows the corresponding result when we increase the

dimensionality of the data 𝑑 . We can see that all the algorithms

have worse performance as the number of dimensions increases

(Figure 7a). The runtime of Breakpoint, TT-Breakpoint, and Squeeze-

u are the best, far less than the time used by the other strongly

truthful algorithms (Figure 7b).

6.3 User Study
In order to test our hypothesis that showing the user two attributes

at a time would make decision-making easier for users, we con-

ducted a user study with 40 participants on a US college campus.

We used a laptop database with 896 entries and five attributes: RAM,

SSD, HDD, star rating, and number of ratings. We compared only

strongly truthful algorithms, namely Breakpoint, UH-Random, and

MinD. Each participant answered up to 10 rounds of questions for

each algorithm and we asked the users to rate the amount of effort

(from 1-5) and measured the time spent by users to answer all the

questions. In Figure 8a we see that Breakpoint is rated as taking less

effort moderately more often than the other two algorithms. When

comparing which algorithms had faster response times (Figure 8b),

Breakpoint fared better against both of the comparison algorithms.

6.4 Summary
In summary, we found the TT-Breakpoint algorithm to match

the performance of the state-of-the-art artificial tuple algorithm,

Squeeze-u, in both approximation and time while only showing

tolerably truthful tuples. These algorithms greatly outperformed

the strongly truthful algorithms in both these metrics as well. If the

user is interested in strongly truthful algorithms that only show

real tuples, then the Breakpoint is a strong option, outperforming

the other strongly truthful algorithms in runtime and often being

the best in terms of approximation. In our user study we found that

Breakpoint takes less effort and user time than other algorithms.

SSDBM 2025, June 23–25, 2025, Columbus, OH, USA Lam Do, Oghap Kim, Chloe Chai, and Ashwin Lall

 0

 5

 10

 15

 20

Breakpoint vs. MinD Breakpoint vs. UH-Random

Better
Tie

Worse

N
um
be
r
of

us
er
s

(a) Effort Rating

 0

 5

 10

 15

 20

 25

 30

 35

Breakpoint vs. MinD Breakpoint vs. UH-Random

Better
Tie

Worse

N
um
be
r
of

us
er
s

(b) Response Time

Figure 8: Head-to-head comparison of Breakpoint algorithm
with MinD and UH-Random

7 Conclusion
We propose an interactive framework for the Indistinguishability

Query where users choose between two tuples with two attributes.

We introduce a novel definition of truthfulness — tolerably truthful

— in the context of interactive database queries. We develop a tol-

erably truthful and a strongly truthful algorithm, each effectively

estimating the user’s indistinguishability set with a close approxi-

mation guarantee for the former. Experimental results show that

our tolerably truthful algorithm TT-Breakpoint has comparable

performance to the state-of-the-art algorithm while only showing

realistic tuples. Our strongly truthful algorithm Breakpoint is of-

ten better than other strongly truthful algorithms. Our user study

showed that Breakpoint results in less effort and time for the user.

Several intriguing questions remain open for future research: (1)

conducting further user studies to better understand the algorithms’

performance with real users, (2) investigating the Breakpoint and

TT-Breakpoint algorithms’ performance in the presence of user

errors, and (3) determining if we can get a better approximation

bound while remaining tolerably truthful. We leave these open

questions to future work.

References
[1] Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. 2017. Efficient

Computation of Regret-ratio Minimizing Set: A Compact Maxima Representative.

In Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 821–834.

[2] A. Asudeh, A. Nazi, N. Zhang, and G. Das. 2017. Efficient Computation of Regret-

ratio Minimizing Set: A Compact Maxima Representative. In Proceedings of the
ACM International Conference on Management of Data.

[3] S. Borzsony, D. Kossmann, and K. Stocker. 2001. The skyline operator. In Pro-
ceedings. 17th International Conference on Data Engineering.

[4] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. 2006. Finding k-dominant

skylines in high dimensional space. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data.

[5] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. 2006. On high dimensional

skylines. In Advances in Database Technology-EDBT 2006. Springer, 478–495.
[6] Y. Chang, L. Bergman, V. Castelli, C. Li, M. Lo, and J. Smith. 2000. The Onion

Technique: Indexing for Linear Optimization Queries. In Proceedings of ACM
SIGMOD International Conference on Management of Data.

[7] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. 2014. Computing k-Regret

Minimizing Sets. In Proceedings of the VLDB Endowment.
[8] H. A. David. 1988. The Method of Paired Comparisons. New York: Oxford Univer-

sity Press.

[9] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. 2012. Top-k bounded diversi-

fication. In Proceedings of the 2012 International Conference on Management of
Data.

[10] M. Goncalves and M. Yidal. 2005. Top-k skyline: a unified approach. In On the
Move to Meaningful Internet System 2005.

[11] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A Survey of Top-k

Query Processing Techniques in Relational Database Systems. ACM Comput.
Surv. 40, 4, Article 11 (Oct. 2008), 58 pages.

[12] K. Jamieson and R. Nowak. 2011. Active ranking using pairwise comparisons. In

Advances in Neural Information Processing Systems.
[13] Taylor Kessler Faulkner, Will Brackenbury, and Ashwin Lall. 2015. K-Regret

Queries with Nonlinear Utilities. In Proceedings of the VLDB Endowment.
[14] Ashwin Lall. 2024. The Indistinguishability Query. In Proceedings of the 2024

International Conference on Data Engeneering (ICDE 2024) (Utrecht, Netherlands).
[15] J. Lee, G. won You, and S. won Hwang. 2009. Personalized top-k skyline queries

in high-dimensional space. In Information Systems.
[16] X. Lian and L. Chen. 2009. Top-k dominating queries in uncertain databases.

In Proceedings of International Conference on Extending Database Technology:
Advances in Database Technology.

[17] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. 2007. Selecting stars: The k most

representative skyline operator. In Proceedings of International Conference on
Data Engineering.

[18] Denis Mindolin and Jan Chomicki. 2009. Discovering relative importance of

skyline attributes. Proceedings of the VLDB Endowment 2, 1 (2009), 610–621.
[19] David M. Mount. 2012. CMSC 754: Computational Geometry Lecture Notes.

Dept. of Computer Science, University of Maryland, College Park, MD,

20742. https://www.cs.cmu.edu/afs/cs/academic/class/15456-s14/Handouts/

cmsc754-lects.pdf Pages 6-10.

[20] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino. 2012. Interactive Regret

Minimization. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data.

[21] D. Nanongkai, A.D. Sarma, A. Lall, R.J. Lipton, and J. Xu. 2010. Regret-Minimizing

Representative Databases. In Proceedings of the VLDB Endowment.
[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. 2005. Progressive skyline computation

in database systems. In ACM Transactions on Database Systems (TODS), Vol. 30.
ACM, 41–82.

[23] P. Peng and R.C.W Wong. 2014. Geometry approach for k regret query. In

Proceedings of International Conference on Data Engineering.
[24] L. Qian, J. Gao, and H.V. Jagadish. 2015. Learning user preferences by adaptive

pairwise comparison. In Proceedings of the VLDB Endowment.
[25] L. Qin, J. Yu, and L. Chang. 2012. Diversifying top-k results. In Proceedings of the

VLDB Endowment.
[26] X. Qin, C. Chai, and Y. et al. Luo. 2022. Interactively discovering and ranking

desired tuples by data exploration. VLDB Journal (2022).
[27] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. 2007. Top-k query process-

ing in uncertain databases. In Proceedings of International Conference on Data
Engineering. IEEE, 896–905.

[28] Y. Tao, L. Ding, and J. Pei. 2009. Distance-based representative skyline. In Pro-
ceedings of International Conference on Data Engineering.

[29] Y. Tao, X. Xiao, and J. Pei. 2007. Efficient Skyline and Top-k Retrieval in Subspaces.

In TKDE.
[30] Weicheng Wang, Raymond Chi-Wing Wong, and Min Xie. 2021. Interactive

Search for One of the Top-k. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD/PODS ’21). 1920–1932.

[31] T. Xia, D. Zhang, and Y. Tao. 2008. On skylineing with flexible dominance relation.

In Proceedings of International Conference on Data Engineering.
[32] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2019. Strongly Truthful In-

teractive Regret Minimization. In Proceedings of the 2019 International Conference
on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association
for Computing Machinery, New York, NY, USA, 281–298.

[33] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall. 2018. Efficient k-regret query

algorithm with restriction-free bound for any dimensionality. In Proceedings of
the 2018 ACM International Conference on Management of Data. ACM.

https://www.cs.cmu.edu/afs/cs/academic/class/15456-s14/Handouts/cmsc754-lects.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15456-s14/Handouts/cmsc754-lects.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions
	3.2 User Interaction
	3.3 Tolerably Truthful
	3.4 Breakpoints
	3.5 Problem Definition

	4 Strongly Truthful Algorithm
	4.1 Running Time
	4.2 Proof of Correctness

	5 Tolerably Truthful Algorithm
	5.1 Running Time
	5.2 Proofs of Correctness

	6 Experimental Evaluation
	6.1 Real Data
	6.2 Scalability Test
	6.3 User Study
	6.4 Summary

	7 Conclusion
	References

