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Abstract—We propose the indistinguishability query for iden-
tifying all of a user’s near-optimal tuples. This query returns
all the tuples that are at most a small fraction away from the
optimal of the user’s unknown utility function. This is motivated
by the idea that users can have a hard time distinguishing very
similar tuples and in fact even tuples that are slightly inferior
in the identified criteria may have additional characteristics that
make them more attractive to the user.

In order to perform this query without knowledge of the user’s
utility function, we use a simple interactive framework that asks
the user to perform a modest number of comparisons to narrow
down their utility function. We show that the indistinguishability
query cannot be approximated solely with real tuples in the
database and thus our algorithms with provable bounds must
present the user with artificial tuples. We also give heuristic
algorithms that show the user only real tuples from the database.

Since the user may make errors while performing comparisons,
we generalize our algorithms to account for user error as well.
Experiments on synthetic and real data sets show that the
indistinguishability query can be performed accurately while
asking the user to compare a small number of tuples.

Index Terms—multi-criteria decision-making, user interaction,
data analytics

I. INTRODUCTION

A central question in multi-criteria decision-making is how
to determine what subset of a large collection of tuples in a
database should be shown to the user. The importance of the
question stems from the fact that people do not have the time
or attention to sift through potentially thousands or millions of
items to determine their favorite option. On the other hand, it
is difficult for the user to know how they value or rank items
since they may not know their utility valuation for different
attributes and it could be expensive to learn this function. In
this paper, we propose an interactive framework for the user
to identify all the tuples in a database that are not far from
their optimal tuple while only considering a small number of
tuples.

Suppose that Alice wants to purchase a car with high fuel
efficiency (MPG) and safety rating (SR) but she doesn’t know
her relative valuation for these two criteria. Furthermore, a car
database for her area has thousands of cars available, too many
for her to go through. The standard approach in the literature
is to assume that Alice has a utility function and to use one of
a variety of methods to help her find her (near-)optimal car.

Some of the earliest work in multi-criteria decision-making
focused on computing the top-k tuples in a large database
(see [1] for a survey). These queries are predicated on the

explicit knowledge of Alice’s utility function and can thus
return the k highest-valued tuples for Alice based on this
function. Note that it is not automatically assumed that the
single highest-valued item will be Alice’s top choice as there
may be other, less significant criteria Alice uses to make her
final decision (color, brand name, etc.). The disadvantage of
the top-k approach is that it is unlikely that Alice knows her
exact utility function and it may be costly to learn it.

An alternative approach that makes no assumption about
Alice’s utility function is the skyline operator [2]. In this
approach, the user is shown the skyline or Pareto-optimal
tuples in the database. These tuples are precisely the ones
that are not dominated by any other. A tuple is dominated by
another if it is no better than the other in all of the attributes of
interest and strictly worse in at least one. While this approach
makes no assumption about Alice’s utility function, it shows
many tuples that are not of interest to Alice. Moreover, it
does not show options that are slightly inferior to the optimal
according to Alice’s utility function.

Another recent approach has been to use regret minimiza-
tion [3] queries to return a set of tuples among which at least
one is guaranteed to be close to the optimal for Alice. Once
again, this approach will show several uninteresting tuples
and miss out on many tuples that are almost as good as the
optimal. The regret query has also been generalized to the
interactive case [4], [5] in which Alice makes several rounds
of selections of her favorite from a small set of tuples in each
round. Even these interactive approaches focus on finding a
near-optimal tuple or even the optimal one, but do not show
the full selection of near-optimal tuples.

This paper builds on these ideas to propose the indistin-
guishability query that aims to find all of Alice’s near-optimal
tuples. This is motivated by the fact that Alice may have a fear
of missing out on tuples that were interesting to her that got
pruned by the database query. The indistinguishability query
can guarantee for her that only tuples that are significantly
worse than her optimal (e.g., less than 90% of her optimal
tuple’s utility) would get pruned out. By using multiple rounds
of interaction, the indistinguishability query is about to quickly
narrow down Alice’s set of viable tuples. Alice could then
perform other filters (e.g., color or brand name) to make her
final decision.

We say that a pair of tuples are ε-indistinguishable for Alice
if her valuation of them with her (unknown) utility function
is within a (1 + ε)-multiplicative factor of each other. (A



more formal definition will follow shortly.) The goal of the
indistinguishability query then is to output the set of tuples
that Alice finds ε-indistinguishable from the optimal for her
utility function. Similar to the top-k approach, we want to
show Alice a number of near-optimal options (including ones
that are dominated by the optimal for her utility function) in
case she prefers a less optimal tuple that has other attractive
characteristics. For example, Alice might prefer a car with
slightly worse MPG and SR if it is available in green. If the
attributes identified by Alice (MPG and SR) contribute 95%
of her overall utility, then identifying the ε-indistinguishable
set with ε = (1/0.95− 1) ≈ 0.053 guarantees that the overall
optimal must be in the output set.

The above example gives the user guidance on how to select
ε: if the user believes that the identified criteria cover at least
c fraction of their total utility (e.g., c = 0.9 for 90% of their
total utility), then they can select ε = 1/c − 1. Alternatively,
the user can select a large ε (e.g., ε = 0.5) and can decrease
ε repeatedly to rerun the query if the output set is too large.
Importantly, it will be shown later in this paper that when
decreasing ε the output set will always be a subset of the
former and thus the work done so far does not need to be
duplicated.

In order to perform the indistinguishability query, we narrow
down Alice’s utility function by asking her to choose her
favorite among a small set of tuples. While it is unreasonable
for Alice to specify her exact utility function, it is perfectly
reasonable to expect that she can pick her favorite from a
small set (e.g., two cars). Over a small number of rounds of
interaction we show how to rapidly narrow down the tuples for
the indistinguishability query. After a small number of rounds
(e.g., six rounds for a total of twelve cars compared) we can
output a subset that is guaranteed to contain all the cars that
are indistinguishable from Alice’s optimal. There may be extra
cars that are included in the output, but we show that these are
not far off from being in the desired output set. In the above
scenario, Alice is asked to compare a small number of cars
with the payoff that the system will then identify a selection
of cars all of which will be near her optimal and thus of
interest to her. She can then browse this set comfortable in
the knowledge that she is not missing out on any cars that
might be more interesting to her. The goal then is to minimize
the set size (s = 2 in the example above) and the number of
questions asked (q = 6 in the example) while outputting all of
the cars Alice may be interested in and limiting how far off
from being interesting the remaining cars are to her.

While Alice makes her interactive selections from a small
pool of cars, she may encounter cars that are indistinguishable
to her. In such a case, she might erroneously select a car
that has slightly lower utility than another in the pool. We
generalize our algorithms to also account for this source of
error in the user selection of cars during the interactive phase
of the algorithm.

When showing Alice cars during the interactive phase,
we would ideally like to show her only cars that actually
exist in the database. Unfortunately, we are able to show an

impossibility result in which the output set is arbitrarily bad
when constrained in this way. Because of this, we first give
algorithms that show Alice artificially constructed tuples that
can rigorously bound the approximation of the output set.
We also propose two heuristic algorithms that show only real
tuples from the database. Though the heuristics cannot have
any guarantees, we show that they are effective on real world
data sets.

In summary, the indistinguishability query is superior
to many previously proposed multi-criteria decision-making
queries because it retains all the candidate tuples that are
indistinguishable from the optimal; much previous work was
focused on finding a subset that guaranteed at most ε regret
for some tuple in the subset. Also, unlike other prior work we
cannot focus our search on the skyline of the set (potentially
much fewer tuples) as there may be dominated tuples that are
indistinguishable from the optimal. We show how to perform
our query using light-weight interaction with the user, using
both artificial and real tuples. Lastly, we account for user error
in their selections.
Contributions: Our major contributions are:
• We define and motivate the indistinguishability query.
• We show that it is impossible to avoid many false

positives when restricted to real tuples in the database.
• We give an algorithm for approximating the query using

artificial tuples with provable bounds.
• We provide two heuristic algorithms for approximating

the query with real tuples.
• We show how to generalize all the above algorithms

to account for user error (i.e., inability of the user to
distinguish between tuples that they value similarly).

• We present performance evaluation for all the proposed
algorithms and show their efficacy on real and synthetic
data sets.

Organization: We discuss the related work in the next section.
In Section III we give several definitions, formally define the
problem, and show an impossibility result for using real tuples.
We present an algorithm for approximating the query using
artificial tuples in Section IV. We next give two algorithms for
approximating the query using real tuples from the database in
Section V. In Section VI we show how to adapt our algorithms
for the case that the user makes indistinguishability errors
in her selection step of the interactive algorithms. We show
the efficacy of our algorithms in Section VII and conclude in
Section VIII.

II. RELATED WORK

There is a large body of work focused on the topic of multi-
criteria decision-making.
Top-k and skyline. As mentioned earlier, the top-k [6], [7],
[8], [9], [10] query has been extensively studied. Since it is
often infeasible to be aware of the user’s utility function, the
skyline query and a number of extensions has been studied
in the literature [2], [11], [12], [13], [14], [15], [16], [9],
[17], [18], [19]. While the skyline is guaranteed to display the
optimal tuple for any utility function, it has two shortcomings.



One is that there is no way to keep it from showing tuples that
are uninteresting to the user. The second is that the skyline
necessarily removes tuples that are dominated by the user’s
optimal but that may still be of interest. There have also been a
number of efforts to control the size of the output set [20], [21],
[22]. Unlike these queries, the goal of the indisinguishability
query is not to control the output size but to ensure that all
the interesting tuples for the user are included in the output
set.

The skyline query has been generalized in the past to
account for approximate domination [23], [24]. In this setting,
a tuple is on the skyline if it is undominated after being scaled
up by a (1 + ε) constant. This is connected to our query in
that this definition implies ours, but the converse is not true.
Moreover, we are interested in tuples that are specifically of
interest to our user and discover them via user interaction.
Learning user preference. Previous work [25], [26] has
attempted to learn the user’s favorite by asking them to parti-
tion tuples into desirable and undesirable groups. This takes
considerably more effort on the part of the user over simply
picking their favorite from a small set. In [27] the skyline
query is personalized to the user by asking about preferences
between different attributes. Other work [28] attempts to learn
preferences in a manner similar to ours, also using hyperplane
pruning, by asking users their preferences between pairs of
tuples. However, their goal is to find a preference order over
all the tuples rather than to interactively find the near-optimal
tuples for a given utility function.
Machine learning. Learning user preference has been studied
in the machine learning community [29], including various
bandit approaches [30], [31], [32]. These approaches however
do not exploit the dominance structure of tuples and hence
require a lot more user interaction.
Regret. Regret minimization [3], [33], [34], [35], [36], [37],
[38], [39], [5] has been studied extensively to help the user find
at least one tuple that it is close in value to their favorite, where
closeness is measured by the maximum regret ratio—the worst
case percentage loss in value over all utility functions. Similar
to the skyline query, it is guaranteed to find a tuple close to
the user’s optimal while at the same time controlling the size
of the output. However, it also ends up displaying many tuples
that are not of interest to the user since it has to cover a broad
swathe of possible utility functions.
Interactive methods. Interactive regret minimization methods
present users with artificial [4] and real tuples already present
in the database [5]. We follow these works in giving algorithms
for both cases. Whereas in these works the goal is to find
either the optimal tuple or at least one tuple that it is near-
optimal (i.e., with low regret), the goal of this work is to
interactively find all the tuples that are close to being near-
optimal. Recently, [40] queries the user for pair-wise feedback
on tuples and interactively discovers one of their top-k. Even
more recently, [41] uses interactivity to discover and rank
tuples. By way of contrast, we aim to find all of the user’s
top-k tuples within a predefined threshold.

Compared with existing methods, our solution aims to

display all the near-optimal tuples for the user. The user can
rest assured that all their near-favorite tuples are output and
do not have to worry about missing out on some potential
optimal. This is in contrast to skyline and regret approaches
that only show some near-optimal tuple and that can focus on
far smaller sets of tuples by pre-processing the input to just
the skyline tuples. After the interactive stage of our algorithms,
all the tuples output to the user are going to be of interest as
they are near-optimal for the user’s utility function. The cost of
guaranteeing the above is a modest amount of user interaction.
Unlike other interactive work, though, we guarantee that no
interesting tuples are ever omitted in the output set.

III. DEFINITIONS

We represent the input set of tuples (sometimes referred to
as points) by D where |D| = n and each tuple has d attributes
or dimensions. That is, D can be considered a subset of Rd+.
The specific attributes are selected by the user and can be a
subset of a much larger set in the database. For example, a car
database may have dozens of attributes for the cars in it and
Alice selects d = 2 attributes (e.g., MPG and safety rating)
that she is interested in and is shown only these attributes when
presented with tuples. We assume that Alice prefers attributes
for which bigger is better; if there are ones in which smaller
is better (e.g., price), our algorithm would invert that attribute
by subtracting all values from the maximum, as is standard in
the literature.

Similar to much of the previous work in this area [42],
[18], [4], [33], [37], we assume that users have an unknown
utility function f : Rd+ → R+ that evaluates the utility that
the user places on a given tuple. We leave non-linear utilities
and categorical variables to future work. We next present one
of our central new definitions in this paper.

Definition 1 (ε-indistinguishability). Given a utility function
f and some ε > 0, we say that two points p1 and p2 are
ε-indistinguishable if

f(p1) ≤ (1 + ε)f(p2)

and
f(p2) ≤ (1 + ε)f(p1).

Intuitively, this means that for some small ε > 0 the user is
unable to differentiate two options that have utility within an
ε fraction of each other. Our goal then is to compute the set of
tuples that are indistinguishable from the user’s optimal. We
call this the indistinguishability query.

Definition 2 (Indistinguishability Query). For a database D,
given some ε > 0 and a utility function f for which the optimal
tuple in D is p∗ = argmaxp∈Df(p), we define

If,ε = {p ∈ D : p and p∗ are ε-indistinguishable}.

In other words, If,ε is the set of tuples in the database that
are ε-indistinguishable from the optimal for utility function f .
Whenever f and ε are clear from the context, we abbreviate
If,ε with I.



car MPG SR MPG + 20SR
c1 59 5 159
c2 36 4 116
c3 104 3 164
c4 34 5 134
c5 95 3 158

TABLE I: Example of the indistinguishability query. All the
highlighted tuples are 0.05-indistinguishable from the optimal
(c3) for a user with the given utility function.

Example: Consider the table of cars c1 to c5 in Table I. If
Alice is interested in the attributes of fuel efficiency (MPG)
and safety rating (SR) and has (unknown to her) utility
function f(MPG,SR) = MPG + 20SR, then her favorite
car will be p∗ = p3 as it has the highest utility of 164. With
an indistinguishability parameter of ε = 0.05, Alice will still
be interested in any car that has at least 1/(1 + ε) ≈ 95.24%
of her maximum utility (0.9524× 164 ≈ 156.2) and thus the
indistinguishability query should return the cars {c1, c3, c5}
(highlighted in the table). Note that tuple c1 is very different
from Alice’s optimal c3, but has similar value for Alice
according to her utility function.

We assume that each attribute is normalized to the range
[0, 1] and that the largest value across all dimensions is 1. If
this is not the case, we can easily divide each attribute by
the largest value across all dimensions without affecting our
results. We also assume that the user prefers larger values.
In the case that the user would prefer a smaller value (e.g.,
mileage or price), we can simply invert that attribute by
subtracting each value from 1.

There are a number of useful properties of I that connect
it to previous queries.

Observation 1. If |I| = k then the set I is the same as the
result of the top-k query for the utility function.

Observation 2. The set I consists of the tuples that have at
most ε regret ratio [3] compared with the optimal.

Following a standard assumption made in the literature [42],
[5], [33], [3], we assume in the rest of this paper that the
utility function is a linear function that can be represented as
f(p) = u · p, where u ∈ Rd+. As argued in [28], attributes
can be scaled non-linearly to capture a wider class of utility
functions. We will later assume that maxdi=1 ui = 1 which can
be achieved by normalizing the utility function by its largest
value.

Since it may not be possible to always compute the set If,ε
exactly (to be explained why in Section III-B), or doing so
will require excessive user interaction, we are satisfied with
approximating the set.

Definition 3. We define a set S to be an α-approximation for
I if I ⊆ S and for each p′ ∈ S − I we have that p∗ · u −
(1+ ε)p′ ·u ≤ α, where f(p) = u ·p is the user’s linear utility
function and p∗ = argmaxp∈Dp · u.

While we allow a few tuples that are not ε-indistinguishable
from the optimal to be output, the I ⊆ S condition means

that we never omit any elements of I (i.e., there are no false
negatives) so that the user can rest assured that they are not
missing any tuples of interest. This form of approximation
guarantees that any additional tuples that are included are very
close to being ε-indistinguishable. As α gets close to zero, we
get closer to the set I.

We next give a necessary condition for points in I that can
be used to speed up computation.

Definition 4. For any c ≥ 1, we say that a tuple a c-dominates
another tuple b if a dominates cb = (cb1, . . . , cbd).

Definition 5. The c-skyline of a set P is the set of points in
P that are not c-dominated by any other tuples in P .

We now use these definitions to make the following claim:

Observation 3. If a tuple p′ is not in the (1 + ε)-skyline, then
it is not in I.

Proof. Let p′ be a tuple not in the (1+ε)-skyline, meaning that
it is (1+ε)-dominated by some p ∈ D. Thus, we have that for
any user utility vector u, (1 + ε)p′ ·u < p ·u ≤ maxx∈D x ·u.
Thus, p′ /∈ I.

As a result, for all our algorithms, we perform a pre-
processing step in which we remove all the (1 + ε)-dominated
tuples and give each algorithm the (1 + ε)-skyline.

Since for any ε′ < ε it is clear that ε′-indistinguishability
implies ε-indistinguishability, we have the following fact.

Observation 4. For any utility f and ε′ < ε, If,ε′ ⊆ If,ε.

Thus, if the query has to be re-computed for a smaller value
of ε, we can always start with the previous solution and prune
down from it.

A. User Interaction

To find the set of indistinguishably optimal points, we will
need to ask the user questions to narrow down their utility
function. Similar to [4], [5], we model this interaction in the
form of rounds in which the user is shown s tuples for q
rounds (sometimes called questions) and is asked for their
favorite tuple in each round. Note that the user is only shown
the attributes that they indicated were of interest to them.
While it is unreasonable to expect the user to produce their
utility function, it is reasonable to ask them to compare a small
number of tuples and pick their favorite. We also later consider
the possibility that they make errors in their selections.

B. Impossibility Result for Real Points

Unfortunately, it is possible to show that if we are restricted
to only real tuples in the database, there are cases in which we
cannot eliminate an arbitrary number of tuples in the output
of the query.

Theorem 1. For every integer f > 1 and ε > 0, there exists
a database such that any deterministic algorithm that shows
only real tuples and outputs all tuples in I must also output
f false positive tuples for some utility function.



Proof. Fix any f > 1 and ε > 0. Let m = d(1 + ε)fe and
define the database D of size m+ 1 as follows:

D = {pi ≡ (i/m, 1− i/m) : 0 ≤ i ≤ m}.

Consider a pair of users who have utility vectors u = (1, 0)

and u′ =
(

1, 1
1+ε

)
. We first show that both users have

identical relative valuation for any pair of tuples in D. For
any i, j where 0 ≤ i < j ≤ m, let pi = (i/m, 1 − i/m) and
pj = (j/m, 1− j/m). Then

u · pi = i/m < j/m = u · pj .

Similarly,

u′ · pi =
i

m
+

1

(1 + ε)

(
1− i

m

)
=

i

m

(
1− 1

1 + ε

)
+

1

1 + ε

<
j

m

(
1− 1

1 + ε

)
+

1

1 + ε

= u′ · pj .

Consequently, whenever the users with utility vectors u and
u′ are shown any set of tuples from D, they will always make
the same selections and thus be shown the same set of output
tuples by any deterministic algorithm.

We next show that the sets Iu,ε (for user with vector u) and
Iu′,ε (for user with vector u′) are quite different. It is easy to
verify that in both cases the optimal tuple is pm = (1, 0) with
(in both cases) utility 1. For the utility function u, we know
we can omit all the tuples p0, . . . , pf−1 from the output set as
for each i, 0 ≤ i < f ,

(1 + ε)u · pi = (1 + ε)i/m < (1 + ε)f/m ≤ 1,

as m ≥ (1 + ε)f . On the other hand, we cannot omit any
tuples for the utility function u′ as for each 0 ≤ i ≤ m,

(1 + ε)u′ · pi = (1 + ε)

(
i

m
+

(
1− i

m

)(
1

1 + ε

))
=

(1 + ε)i

m
+

(
1− i

m

)
=

εi

m
+ 1 ≥ 1,

so all tuples in D must be output.
In summary, any algorithm that shows only real tuples and

outputs all tuples in Iu′,ε must also output f unnecessary (false
positive) tuples for Iu,ε.

C. User Error

Since our underlying assumption in this paper is that users
may not be able to distinguish between some of their top
choices, it stands to reason that they may also make errors
when selecting their favorite choice from a list of options.
In our model, we assume that users have an unknown utility
function that captures their true valuation of each tuple, but
they make small errors in their selections (e.g., due to making

Notation Meaning
D The set of all points, |D| = n
d The number of attributes
u The user’s optimal utility vector
p∗ The optimal point for u, i.e., argmaxp∈P u · p
ε The user’s desired indistinguishability threshold
δ The user’s error parameter

Iu,ε or I The ε-indistinguishable optimal points
s The number of tuples displayed at each round
q The number of rounds of questions asked
α The approximation factor for a non-exact solution

TABLE II: Frequently used notation

a hasty decision) and thus may not select their optimal tuple
each time, negatively affecting the algorithms.

We account for user error by introducing a parameter δ > 0
that denotes the amount of error that a user can have when
making a selection. In other words, we will assume that the
user may not be able to distinguish a pair of tuples p and q if
they are δ-indistinguishable and as a result may even pick an
option that is slightly worse than another according to their
underlying utility function.

The parameter δ can be selected to be large in cases where
the user doesn’t want to spend a lot of time examining all the
options and makes a lower-cost/higher-error selection. In most
cases, though, to keep things simple, we will usually assume
that δ = ε to simplify the parameter selection step.

D. Problem Definition

We are now ready to formally define the problem solved in
this paper.
Problem: Given a database of tuples D ⊆ Rd+ and parameters
ε > 0 and 0 ≤ δ < 1, approximately compute a user’s ε-
indistinguishable set I by interactively asking the user to pick
their favorite point from a series of small sets, assuming that
the user may err on δ-indistinguishable points.

For convenience, some of the most frequently used notation
is given in Table II.

IV. ALGORITHMS WITH ARTIFICIAL TUPLES (NO ERROR)

For ease of presentation, we start with algorithms with
no user error (i.e., δ = 0). Our first algorithm, Squeeze-
u (Algorithm 1), uses artificial tuples to approximate I. It does
this by narrowing down the parameters of the user’s utility
function similarly to the UtilityMax algorithm [4]. Then armed
with bounds for the utility function, it eliminates all the tuples
that cannot possibly be ε-indistinguishable from the optimal
in such a way as to give a faithful approximation for I.

More specifically, the first part of the algorithm (Lines 1-
17) first determines i∗ = arg maxi∈{1,...,d} ui, the largest
coefficient in the utility vector u by asking d(d− 1)/(s− 1)e
questions of the user, where s is the number of points shown
at a time. The attributes are chosen in such a way that the user
will prefer tuple ei over ej precisely when ui ≥ uj .

By normalizing to make the i∗ attribute equal to one, we
next bound the range of the remaining coefficients to the range
[0, 1]. We then maintain the invariant Li ≤ ui ≤ Hi for all



Algorithm 1 Squeeze-u(D, s, ε)

Input: A database of tuples, D ⊂ [0, 1]d; Number of tuples
that can be showed to the user at a time, s; the
indistinguishability parameter, ε.

Output: A subset of D.
1: Remove all points from D that are (1 + ε)-dominated by

another point in D. . Use Obs. 3 to prune some tuples
. Discover i∗ such that ui∗ = max1≤i≤d ui

2: For each 1 ≤ i ≤ d, let mi = minp∈D pi and
Mi = maxp∈D pi.

3: For each 1 ≤ i ≤ d, define ei as the point with
ei[i] = mi + (Mi −mi)/2 and ei[j] = mj for all j 6= i.

4: Let i∗ = 1, i = 2.
5: while i < d do
6: Display ei∗ , ei, . . . , ei+s−2 and say that the user

chooses ei′ .
7: Let i∗ = i′.
8: Let i = i+ s− 1.

. Bound each uj using the invariant Lj ≤ uj ≤ Hj

9: For each 1 ≤ j ≤ d, j 6= i∗ , define Lj = 0 and Hj = 1.
Define Li∗ = Hi∗ = 1

10: Let i = 1.
11: while the user does not terminate do
12: if i = i∗ then
13: Let i = (i mod d) + 1.
14: For each 0 ≤ j ≤ s, let χj = Li + j(Hi − Li)/s.
15: Let p1, p2, p3, . . . , ps be defined as follows. For each

j /∈ {i, i∗} and 1 ≤ k ≤ s, let pk[j] = 0. For each
1 ≤ k ≤ s, let pk[i∗] =

∑s−1
l=k

χl

s and let pk[i] = k/s.
16: Display p1, p2, p3, . . . , ps and say that the user

chooses pc.
17: Update Li = χc−1 and Hi = χc
18: Let i = (i mod d) + 1.

. Use the ui bounds to prune out tuples not in I
19: C = D
20: for all p ∈ D do
21: Remove all points from C that are (1 + ε)-dominated

by p for all utility functions in
[L1, H1]× [L2, H2]× . . . [Ld, Hd].

22: Return C

1 ≤ i ≤ d, and reduce the difference of one of the Hi−Li by
a factor of s with each question. In this way, we bound Hi−Li
to within an exponentially small factor in terms of the number
of questions asked to the user. We then eliminate the tuples
whose utility is at least (1 + ε) smaller than another tuple for
all feasible utility functions that remain (Lines 18-20).

Before we can prove the guarantee of the algorithm, we need
to prove the following lemma that shows that the algorithm
approximates the true utility function very closely.

Lemma 1. After answering q questions, Algorithm 1 guaran-
tees a 1

s(q−1)/(d−1) additive approximation for each ui.

Proof. We assume that the utility function u is such that

max
1≤i≤d

ui = 1.

If this is not the case, the utility vector can be scaled down
by max1≤i≤d ui without affecting the computation of I.

The first part of the algorithm (Lines 1-6) first identifies
one dimension i∗ for which ui∗ = 1. This is done by creating
artificial tuples such that the user will prefer ei to ej precisely
when ui ≥ uj and then simply finding the maximum ui value.

After this, we know that ui∗ = 1 and that ui ∈ [0, 1] for all
other i. The algorithm next takes turns iterating through each
i 6= i∗ and narrowing down the value of ui by a factor of s.
It does so by displaying a set of very carefully crafted points,
given in Line 14.

If the user chooses pc in Line 15, we can infer that pc is
preferred to pc−1, or that u · pc ≥ u · pc−1. Now, pc and pc−1
are identical for all indexes j /∈ {i, i∗}. Thus, we have that

ui
c

s
+ ui∗

s−1∑
l=c

χl
s
≥ ui

c− 1

s
+ ui∗

s−1∑
l=c−1

χl
s

which is equivalent to ui ≥ χc−1 = Li + (c− 1)(Hi −Li)/s
since ui∗ = 1.

Similarly, since the user chooses pc over pc+1 we have that

ui
c

s
+ ui∗

s−1∑
l=c

χl
s
≥ ui

c+ 1

s
+ ui∗

s−1∑
l=c+1

χl
s

which is equivalent to ui ≤ χc = Li + c(Hi − Li)/s since
ui∗ = 1.

Putting these together, we see that ui has been narrowed
down from [Li, Hi] to [Li + (c− 1)(Hi−Li)/s, Li + c(Hi−
Li)/s]. In other words, we have reduced the range of ui by a
factor of s.

After the user has been asked q rounds of questions, we
have a tight bound on each ui. Since we use the first dd−1s−1 e
questions to identify i∗ and we can narrow down each of the
other d − 1 dimensions only once every d − 1 iterations, we
have that for each 1 ≤ i ≤ d, |Hi−Li| ≤ 1

s
b(q−d d−1

s−1
e)/(d−1)c

≈
1

s(q−1)/(d−1) .

Example: If we have d = 3 and s = 5, then asking just 7
questions gives a 1/125 additive approximation for each ui.

Theorem 2. Algorithm 1 returns a O(d/s(q−1)/(d−1)) approx-
imation of I after asking the user q questions.

Proof. Let u be the user’s true utility function and p∗ be the
user’s favorite point in the database, i.e., p∗ = arg maxp∈D p ·
u. Let R = [L1, H1]×. . .×[Ld, Hd]. Say that for any v1, v2 ∈
R, |v1[i] − v2[i]| ≤ τ for all 1 ≤ i ≤ d. For any tuple p′



output by the algorithm, there must be some v ∈ R such that
(1 + ε)p′ · v ≥ p∗ · v. Thus,

p∗ · u =

d∑
i=1

p∗i ui (1)

≤
d∑
i=1

p∗i vi + τ

d∑
i=1

p∗i (2)

≤ (1 + ε)p′ · v + τ

d∑
i=1

p∗i (3)

≤ (1 + ε)p′ · u+ (1 + ε)τ

d∑
i=1

p′i + τ

d∑
i=1

p∗i (4)

≤ (1 + ε)p′ · u+ τd(2 + ε), (5)

where lines (2) and (4) follow from the fact that |u[i]−v[i]| ≤
τ for all 1 ≤ i ≤ d, line (3) follows from the definition of v
above, and line (5) is due to the fact that p′i ≤ 1 and p∗i ≤ 1
for each 1 ≤ i ≤ d.

The theorem follows by substituting τ = 1
s(q−1)/(d−1) from

Lemma 1.

Example: If we have d = 3, s = 5, and ε = 0.1, then asking
just 7 questions gives a 0.0504-approximation.

A. Running Time

The running time of the interactive part of Algorithm 1
(Lines 1-16) is negligible as it only needs to compute the
points to be displayed. For pruning the points that are dom-
inated by other points for all utility functions in the region
(Lines 18-20), we need to do more computation.

In order to check if some point q is (1 + ε)-dominated
by some point p for all utility functions in R = [L1, H1] ×
[L2, H2] × . . . [Ld, Hd], we would have to check (p − q(1 +
ε)) · v > 0 for all v ∈ R. Since R is a convex region,
we can perform the check only on the boundary points
{L1, H1}×{L2, H2}× . . . {Ld, Hd}. Even so, this requires us
to check 2d conditions for all pairs of points p and q, resulting
in Ω(2dn2) computation.

To get around this computational cost (particularly the
quadratic dependency on n), we replace the above computation
with a simpler one with similar efficacy. We first compute a
lower bound for the utility of the user as V = maxp∈D p ·
(L1, . . . , Ld). We then check, for each point, if after scaling it
up by (1 + ε) and evaluated on the upper bound for the utility
function ranges it is still smaller than V . That is, we remove
the points in the set {p ∈ D : (1 + ε)p · (H1, . . . ,Hd) < V }.
Intuitively, if the utility of these points scaled up by (1 + ε)
is still less than the lower bound utility V even when using
the upper bound for the utility function, there is no way that
they can be in I. We demonstrate in the evaluation section
that this heuristic approach gives good performance with real
and synthetic data sets. The running time of this approach is
simply O(n) since we can both compute V and prune points
in linear time in n.

V. ALGORITHMS WITH REAL TUPLES (NO ERROR)

Since it is more realistic to show the user points that are
actually in the database D during interaction, we study algo-
rithms for the real point case as well. As noted in Section III-B,
though, we cannot hope to show any worst case bounds in this
setting.

To prune down the tuples in D to the set I, we present
the user with a series of options from D that allow us to
narrow down the space of their utility function u. Following
the techniques used in [5], we define the feasible region of the
utility function by Rj ∈ Rd after j queries have been made to
the user. For this case, we normalize the vector u by the sum
of its components without changing the result of the query.
Thus, the region is initially R0 = {r ∈ Rd+ :

∑d
i=1 ri = 1}.

To update the feasible region, we use the utility hyperplane
technique [5] to narrow it down after each question is asked
of the user. For example, if on question j we determine that
the user prefers tuple a to b, we then compute

Rj = {v ∈ Rj−1 : (a− b) · v > 0},

since we know that a · u > b · u.
We can use any of these Rj regions to prune down the set

of tuples using the following lemma.

Lemma 2. It is safe to prune a point b if there exists a point
a ∈ D such that R′ ≡ {v ∈ Rj : (b(1 + ε)− a) · v ≥ 0} = ∅.

Proof. Since R′ only contains vectors for which (b(1 + ε)−
a) · v ≥ 0 and R′ = ∅, it follows that b(1 + ε) · v < a · v for
each v ∈ Rj and thus b(1 + ε) · u < a · u ≤ p∗ · u, where p∗

is the optimal point for u in D. We can hence safely prune b
as it is not ε-indistinguishable from p∗.

We define a set of candidate points C that consists of tuples
that are at most ε off from being the optimal for some utility
function in R. A crucial difference from [5] is that we want
to maintain all such tuples—including non-skyline ones—and
thus we have to do considerably more computation.

To decide which points to show the user at each iteration,
we propose the following two heuristic techniques:
Minimize R width (MinR): Recall from the proof of The-
orem 2 that the approximation factor is proportional to the
maximum difference in range of feasible values of the ui
values. We call this quantity the width of R and our first
algorithm attempts to minimize this value. More specifically,
for any subset of s tuples, we consider the region R′ formed
if each of the points is chosen by the user and compute the
average width of these regions. The goal is to then display a
set that minimizes this quantity.
Minimize R diameter (MinD): Our second heuristic aims to
minimize the diameter of the region R by preferring sets of
points such that the average diameter is as small as possible
over all possible choices made by the user.

For completeness, the full detail for these algorithms are
given in Algorithm 2.



Algorithm 2 MinR / MinD(D, s, ε)

Input: A database of tuples, D ⊂ [0, 1]d; Number of tuples
that can be showed to the user at a time, s; the
indistinguishability parameter, ε.

Output: A subset of D.
1: Let C be all points from D that are not

(1 + ε)-dominated by another point in D. . Use Obs. 3
to prune some tuples

. Maintain a feasible region for the utility function
2: Set R0 = {u ∈ Rd+ :

∑d
i=1 ui = 1}.

3: Set j = 1.
4: while the user does not terminate do
5: repeat
6: Randomly select a set S of s tuples from C .
7: (MinR) Compute the average width of R over all

possible optimal points p ∈ S.
8: (MinD) Compute the average diameter of R over

all possible optimal tuples p ∈ S.
9: Maintain the set S if it is the best so far.

10: until T attempts have been made
11: Display the best set S to the user and say that they

choose tuple c.
. Narrow down feasible region based on user choice

12: Update Rj =
⋂

p∈S−{c}
{v ∈ Rj−1 : (c− p) · v > 0}.

13: Update C to be the tuples that are not pruned with
the region Rj .

14: Set j = j + 1

15: Return C

A. Running Time

For both the proposed heuristics (MinR and MinD), a greedy
algorithm would have to try all possible sets of size s to find
the one that minimizes the respective metric. Unfortunately,
there are

(
m
s

)
such sets (where m is the size of the (1 + ε)-

skyline and s is the number of tuples shown at a time to the
user) which makes the computation prohibitively expensive.

To avoid the above issues, instead of trying all possible
sets of size s, we try several randomly selected sets and keep
the one that optimizes the respective metric. If we try T such
sets, then the running time for MinR and MinD width become
O(sT ) per round of interaction for updating the region R for
each of the s choices. We also prune tuples at each iteration
in O(n) time using an R-tree. Thus, the overall runtime of the
algorithm is O(q(sT + n)), where q is the number of rounds
of interaction (questions) with the user.

VI. USER ERROR

Since our original motivation for this paper is that users
may have a hard time choosing between tuples that have very
similar utility values for them, we study what happens if it is
possible for users to make errors in the interaction process. In
this section, we show how to account for the inability of the

Algorithm 3 Squeeze-u2(D, s, ε, δ)

Input: A database of tuples, D ⊂ [0, 1]d; Number of tuples
that can be showed to the user at a time, s; the desired
indistinguishability parameter, ε; the user’s
indistinguishability parameter when comparing points, δ.

Output: A subset of D.
1: Remove all points from D that are (1 + ε)-dominated by

another point in D. . Use Obs. 3 to prune some tuples
. Discover i∗ such that ui∗ = max1≤i≤d ui

2: For each 1 ≤ i ≤ d, define ei as the point with ei[i] = 1
and ei[j] = 0 for all j 6= i.

3: Let i∗ = 1, i = 2.
4: while i < d do
5: Display ei∗ , ei, . . . , ei+s−2 and say that the user

chooses ei′ .
6: Let i∗ = i′.
7: Let i = i+ s− 1.

. Bound each uj using the invariant Lj ≤ uj ≤ Hj

8: For each 1 ≤ j ≤ d, j 6= i∗ , define Lj = 0 and
Hj = (1 + δ)d(d−1)/(s−1)e. Define Li∗ = Hi∗ = 1.

9: Let i = 1.
10: while the user does not terminate do
11: if i = i∗ then
12: Let i = (i mod d) + 1.
13: For each 0 ≤ j ≤ s, let χj = Li + j(Hi − Li)/s.
14: Let p1, p2, p3, . . . , ps be defined as follows. For each

j /∈ {i, i∗} and 1 ≤ k ≤ s, let pk[j] = 0. For each
1 ≤ k ≤ s, let pk[i∗] =

∑s−1
l=k

χl

s and let pk[i] = k
s .

15: Display p1, p2, p3, . . . , ps and say that the user
chooses pc.

16: Update Li = max(Li,
1

1+cδ

(
χc−1 − δ

∑s−1
j=c χj

)
)

and Hi = min(Hi,
1

1−cδ

(
χc + δ

∑s−1
j=c χj

)
.

17: Let i = (i mod d) + 1.
. Use the ui bounds to prune out tuples not in I

18: C = D
19: for all p ∈ D do
20: Remove all points from C that are (1 + ε)-dominated

by p for all utility functions in
[L1, H1]× [L2, H2]× . . . [Ld, Hd].

21: Return C

user to correctly pick between tuples that have very similar
utility values for them.

For generality, we assume that the user cannot tell apart
tuples that are δ-indistinguishable. In practice, we may want
to set δ = ε for simplicity.

A. Artificial Tuples

We account for when the user cannot discern between δ-
indistinguishable tuples by adapting Algorithm 1 to account
for this in Algorithm 3. As before, we attempt to find the
index i such that ui is greatest. This time, however, because



of the user error, they may select a sub-optimal point each
time. However, we are guaranteed that this sub-optimal point
is at most (1 + δ) factor short of the optimal. Thus, after the
d(d−1)/(s−1)e rounds of comparison (Lines 3-6) the selected
i∗ may be a (1+δ)d(d−1)/(s−1)e factor short of the true optimal
value. We account for this by still selecting L∗i = H∗i = 1
but now we set all the other upper bounds to Hj = (1 +
δ)d(d−1)/(s−1)e.

Since the user can make up to δ error, we cannot hope to
compute each ui to arbitrary precision any longer. We instead
stop when each Hi −Li cannot be improved much more. We
will show next that even with δ user error the algorithm still
gives a good approximation.

Theorem 3. Alg. 3 returns a O(dδs)-approximation for I.

Proof. If the user chooses pc in Line 14, we know that (1 +
δ)pc · u is at least pc−1 · u (otherwise, the user would prefer
pc−1 and be able to δ-distinguish it from pc). In other words,

(1 + δ)

(
cui
s

+ ui∗
s−1∑
l=c

χl
s

)
≥ (c− 1)ui

s
+ ui∗

s−1∑
l=c−1

χl
s

or
(1 + cδ)ui

s
≥ ui∗

(
χc−1
s
− δ

s−1∑
l=c

χl
s

)
.

Substituting in u∗i = 1, this gives us

ui ≥
1

1 + cδ

(
χc−1 − δ

s−1∑
l=c

χl

)
(6)

≥ 1

1 + sδ
(χc−1 − δ(s− 1))

= (1− sδ + Ω(δ2)) (χc−1 − δ(s− 1))

≥ χc−1 − δ(s− 1 + sχc−1) + Ω(δ2)

≥ χc−1 − δ(2s− 1) + Θ(δ2).

Similarly, since the user chooses pc over pc+1 we have that

(1 + δ)

(
cui
s

+ ui∗
s−1∑
l=c

χl
s

)
≥ (c+ 1)ui

s
+ ui∗

s−1∑
l=c+1

χl
s

or
ui(1− cδ)

s
≤ ui∗

(
χc
s

+ δ

s−1∑
l=c

χl
s

)
.

Again substituting u∗i = 1, we get

ui ≤
1

1− cδ

(
χc + δ

s−1∑
l=c

χl

)
(7)

≤ 1

1− sδ
(χc + δ(s− 1))

≤ (1 + sδ +O(δ2)) (χc + δ(s− 1))

≤ χc + δ(s− 1 + sχc) +O(δ2)

≤ χc + δ(2s− 1) + Θ(δ2).

Since δ < 1 and will typically be small (e.g., less than
0.1), we ignore the quadratic terms. Putting the above results

together, we get that after each iteration we update the bounds
of ui from [Li, Hi] to the formulas given in Equations 6 and
7. We thus update Li and Hi appropriately in Line 15 of
Algorithm 3.

After a few iterations, the error of δ(4s − 2) will start
to dominate and we cannot narrow down the range of ui
any longer. Substituting τ = δ(4s − 2) into the bound from
Theorem 2, we get that for the optimal point p∗ and any
tuple q output by the algorithm we have that p∗ · u ≤
(1 + ε)q · u+ d(2 + ε)δ(4s− 2). Thus, Algorithm 3 will give
a O(dδs)-approximation for I.

Example: If d = 3, s = 3, ε = 0.1, and δ = 0.001, then we
have a 0.063-approximation.

We show in the experimental section that the algorithm
also works for slightly larger δ (e.g., 0.01) but has poor
performance for larger values (e.g., 0.1).

B. Real Tuples

If the user indicates that they prefer tuple a to b, we then
have that a(1 + δ) · u ≥ b · u and we can thus update the
feasible region as follows:

Rj = {v ∈ Rj−1 : (a(1 + δ)− b) · v > 0},

which slightly weakens the update rule. All the previous results
and algorithms follow.

VII. EXPERIMENTAL EVALUATION

All the experiments in this section were performed on a
machine with a quad-core 3.40GHz CPU with 16GB RAM.
All code was implemented in C++ and is freely available1.
Data sets: We use both synthetic and real data sets. For
synthetic data, we used a data set generator [2] to create anti-
correlated data sets which have large skyline sizes. The real
data sets we used included an Island data set with 63383
geographical 2D coordinates, a 4D data set with 21961 NBA
player/season records, and a 6D data set with 12793 housing
utility values (House). For all data sets, we normalized them
so that the largest value was always one.
Algorithms: We evaluated our algorithm for artificial points,
Squeeze-u, together with the two algorithms that are con-
strained to using real points, MinR and MinD. We note that
these algorithms are not directly comparable since the ones
showing real points are at a disadvantage, but showing them
together allows us to compare their performance nonetheless.
We also included results for the state-of-the-art interactive
regret minimization algorithm UH-Random [5] that shows
the user randomly selected points from the database at each
step and uses the user’s selection to update the feasible
region for the utility function R and produce an output set
C. We modified this algorithm to perform the same pruning
computation performed by our algorithms to guarantee that all
tuples in I would appear in the output and in the case when
δ > 0 the modified update rules were used. Note that other
techniques such as skyline and regret-minimization cannot be

1https://github.com/ashlall/Indistinguishability
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Fig. 1: Results for real points algorithms when varying T on
NBA (q = 3d, s = d, ε = 0.05, δ = 0.0)

used here as there is no clear way in which to adaptively select
the tuples shown in each subsequent round of interaction.
Parameter settings: In all our experiments, we evaluated the
algorithms on ten independently random utility functions and
reported the average performance. We studied the approxi-
mation value (α) for the different algorithms while varying
various parameters. Recall that α measures the worst case
deviation from being ε-indistinguishable over all the points
output by the algorithm, hence closer to zero is better. Unless
otherwise stated, we used default values of ε = δ = 0.05,
s (number of tuples per round) equal to the number of
dimensions d, and q = 3d. We selected s to be equal to the
number of dimensions so that the first part of the Squeeze-u
algorithm would complete in one round and q = 3d so that
each component of u would be updated at least 3 times by
the Squeeze-u algorithm. For the MinR and MinD algorithms
we also had a parameter T , the number of random repetitions
to find a set that minimizes the width and diameter. We tried
many values of T on the real data sets, with 100 independent
runs each to reduce variance, and the results are shown in
Figure 1 for the NBA dataset. As seen in this figure, the α
value had increasing error with T , so we set T = 10 for all
the remaining experiments.

A. No User Error

We first compared the performance of the algorithms when
there was no user error (i.e., δ = 0) to understand the behavior
of the algorithms in this context. In Figure 2, we see the effect
of increasing the number of questions on the value of α when
fixing the number of points shown at each iteration to s = d. In
all cases, the error for the Squeeze-u algorithm drops quickly
with the number of questions and tends to zero. In contrast,
the other algorithms, which are restricted to real points, have
relatively high error and variability. This is due to the fact that
real points may not allow us to eliminate many other points
that are not ε-indistinguishable, as discussed in Section III-B.
Note that the curves may not be monotonically decreasing with
q because of small random variations in the randomly chosen
utility functions.

We next studied the effect of varying the number of points
shown in each round of user interaction, s. We fix the number
of rounds to q = 3d and vary s in Figure 3. Once again, the

Squeeze-u UH-Random MinD MinR
Island 0.00 177.55 6.06 11.10
NBA 0.00 0.02 0.47 0.58
House 0.00 19.30 173.85 177.73

TABLE III: Running time (s.) (ε = 0.05, δ = 0, s = d, q = 3d)

Squeeze-u UH-Random MinD MinR
Island 0.00 557.61 8.54 8.60
NBA 0.00 0.02 0.57 0.66
House 0.00 54.56 149.92 144.33

TABLE IV: Running times (s.) (ε = δ = 0.05, q = 3d, s = d)

Squeeze-u algorithm is clearly the best and the others have a
large amount of variability.

Figure 4 shows the performance of the algorithms when we
vary ε from 0.001 to 0.1. (note log-scale on the x-axis). The
performance of the Squeeze-u algorithm is fairly flat with this
variation. This is in keeping with our expectations from theory
since the theoretical bounds are independent of ε. The other,
real point algorithms, do less well, especially when ε is larger.

We measured the running time of the algorithms in Table III
(s = d, q = 3d and ε = 0.05). The Squeeze-u algorithm
consistently took well under a hundredth of a second to
execute. The MinD and MinR algorithms were very slow on
House and UH-Random was very slow on Island.

B. With User Error

We next measured the performance of the algorithms with
user error (i.e., δ > 0). To maintain consistency with the
previous figures, we label the results of the Squeeze-u2 algo-
rithm (which accounts for up to δ error) as Squeeze-u. When
allowing for δ error, it is possible for the user to mistakenly
pick a sub-optimal tuple. For all the simulations, whenever
the user was shown s tuples, we simulated user errors by
collecting all the tuples that were δ-indistinguishable from the
best among the s tuples and randomly picking one of them.

Figure 5 shows the performance of the algorithms when
varying δ with s = d, q = 3d and ε = 0.05 (note logscale x-
axis). All the algorithms show a degradation in performance
when δ is increased from 1% to 10%, though Squeeze-u is still
the overall best. The decrease in performance of Squeeze-u is
in keeping with our theoretical expectations as we showed the
bound for α to be proportional to δ in Section VI.

As can be seen in Table IV, the running times for most of
the algorithms in this case are similar to the ones for when
δ = 0 (Table III). This is because the artificial tuple algorithms
just show slightly different tuples and the real point algorithms
have a weaker pruning condition, otherwise the algorithms are
unchanged. Thus, we are able to account for user error without
a significant run-time penalty.

C. Scalability Test

We next performed a scalability test to examine the behavior
of the algorithms when we increase the number of tuples
or the number of dimensions. For these tests, we generated
anti-correlated data sets of varying sizes using the data set
generator mentioned previously [2]. We used anti-correlated
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Fig. 2: Varying number of questions, q (s = d, ε = 0.05, δ = 0)
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Fig. 3: Varying number of points shown per round, s (q = 3d, ε = 0.05, δ = 0)
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Fig. 4: Varying ε (s = d, q = 3d, δ = 0), log-scale on x-axis

data so that the skyline size is large. In the interest of space,
we only show the results with user error (δ > 0) since this is
the harder case.

We see in Figure 6a that for three-dimensional data with
varying number of tuples, the performance of the algorithms
stays fairly consistent even when we increase up to a million
tuples (note that the x-axis is in logscale in Figure 6a). In
particular, the Squeeze-u algorithm has very little degradation
in approximation when the number of tuples is increased
a thousandfold. The running time for all the algorithms do
increase (note that both the x- and y-axes are in logscale in
Figure 6b) as would be expected. The increase in running time
for Squeeze-u is approximately linear (increasing by an order
of magnitude with each increase in magnitude of number of

tuples), as would be expected since we showed that the running
time is linear in n in Section IV-A.

Figure 7a shows the performance of the algorithms when we
fix the number of tuples to 10000 and vary the dimensionality.
We now see instances where Squeeze-u does not have the best
α value (Figure 7a). This is because the performance of the
Squeeze-u algorithm seems to degrade for δ values greater
than 0.01 (cf. Figure 5). The Squeeze-u algorithm’s run-time
continues to outperform the others (Figure 6b).

D. Summary

The experiments show that the Squeeze-u algorithm ap-
proximates the indistinguishability query very effectively. By
having the user answer as few as 6 questions (when d = 2)
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Fig. 7: Varying number of dimensions in synthetic data with fixed number of tuples (n = 10000, s = 6, q = 18, ε = 0.05, δ =
0.05)

and up to 18 (when d = 6) it bounds α to a small value
(nearly zero) for almost all the data sets and parameter settings
studied. The algorithms that are constrained to show only real
points are not as consistent in their α or runtime performance.
However, the other algorithms have a place in situations in
which artificial tuples are undesirable.

In the case where δ > 0, the Squeeze-u algorithm does well
for small values of δ but doesn’t perform as well when δ is
larger than 1%. Future work might explore how to bound error
better when there is a large amount of user error.

VIII. CONCLUSION

We present interactive algorithms for performing the indis-
tinguishability query to identify all of the user’s near-optimal

tuples. We show that by having the user examine a few
artificial tuples we can guarantee a close approximation of
their optimal set with provable bounds and that using real
tuples can also give good approximation in practice. Moreover,
these algorithms generalize to the case in which the user can
make small errors in their interactive selections. Experimental
simulations validate the efficacy of our algorithms.

This novel query also raises a number of open questions.
(1) Is it possible to get a closer approximation guarantee with
artificial tuples? (2) What are the limits of the error that the
user is allowed to make? (3) Can these results be generalized
to non-linear [43] utility functions? We leave all these as open
questions.
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