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ABSTRACT
We present space-e�cient algorithms for performing Pearson’s

chi-square goodness-of-�t test in a streaming se�ing. Since the

chi-square test is one of the most well known and commonly used

tests in statistics, it is surprising that there has been no prior work

on designing streaming algorithms for it. �e test is not based on

a speci�c distribution assumption and has one-sample and two-

sample variants. Given a stream of data, the one-sample variant

tests if the stream is drawn from a �xed distribution. �e two-

sample variant tests if two data streams are drawn from the same or

similar distributions. One major advantage of using statistical tests

over other quantities commonly measured by streaming algorithms

is that these tests do not require parameter tuning and have results

that can be easily interpreted by data analysts. �e problem that

we solve in this paper is how to compute the chi-square test on

streams with minimal parameter con�guration and assumptions.

We give rigorous proofs showing that it is possible to compute

the chi-square statistic with high �delity and an almost quadratic

reduction in memory in the continuous case, but the categorical

case only admits heuristic solutions. We validate the performance

and accuracy of our algorithms through extensive testing on both

real and synthetic data sets.
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1 INTRODUCTION
Over the last few decades, modern computer and networking sys-

tems have created the ability to continuously generate enormous

volumes of data at a very high speed. �is data is being generated by

sensors, mobile devices, routers, scienti�c devices, and every large

system at a global level from the functioning of almost every major

business, government operation, scienti�c enterprise, and social

media exchange. Big Data has become so large that it is unfeasible
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to translate, store, and process. �is exponential growth of data is

unavoidable in the modern age. However, e�cient technologies to

store the generated information without massive down-sampling

have not been developed. �e inability of fast memory capacity

to keep up with the size of this data has become one of the most

pressing challenges of Big Data.

�e streaming model of computation was introduced to solve

the abovementioned problem. In the streaming model, the input

is presented as a stream of updates and the challenge is to answer

some question about the stream, as it goes by in a single pass,

without storing all of it. �ere has been considerable research

done in this model (see [1, 23] for surveys on the topic). �ere

has been work done to design sublinear memory data structures,

known as sketches, for fundamental operators such as frequency

moments [2] and quantiles [8], as well asmore complex queries such

as entropy [4], information divergences [11], and subpopulation

distributions [14].

A signi�cant barrier for practitioners to adopt many of these

techniques is that they do not have the expertise or time to learn

how to apply them or how to con�gure their parameters. On the

other hand, there are plenty of statistical hypothesis tests that can

be applied with minimal technical knowledge (e.g., interpreting a

p-value), that have few parameter knobs to con�gure and that are

already extensively being used by engineers and data analysts. It

is for this reason that we propose accessible streaming. We de�ne

accessible streaming to be streaming algorithms that are easy for

a practitioner to use with easy-to-understand guarantees and few

to no parameter knobs to be tuned so that the algorithm can be

used “out-of-the-box.” �e goal of this paper is to provide accessible

streaming algorithms for Pearson’s chi-square goodness-of-�t test.

�ere are many statistical tests for determining the validity of a

hypothesis, but few are as well-known or widely used as Pearson’s

chi-square goodness-of-�t test (henceforth referred to as the chi-

square test in this paper). �is test has the advantages of being

non-parametric, i.e., it is not tied to any speci�c distribution, such as

the Gaussian, and can be used for continuous as well as categorical

data. It is therefore surprising that there have been no sub-linear

memory algorithms for this test proposed in the literature. In this

paper, we will show how to compute the chi-square test to concisely

yet accurately check if a particular stream of continuous data comes

from a �xed known distribution, if two streams of continuous data

come from the same source, and if two categorical data streams

have a similar underlying distribution.

To perform the continuous version of the chi-square test, we

need to partition the data into bins, where the expected frequency

of each bin is compared to the observed frequency to calculate

the test statistic. �ere is a commonly used rule of thumb that

each bin has an expected value of at least �ve (see, e.g., Knuth [13,

p. 45]). In our se�ing, the distribution of the stream is unknown

beforehand, therefore picking bins without any foreknowledge of

the distribution can lead to one or more bins having fewer than �ve
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samples—violating the above requirement. An alternate approach

is to sample an initial section of the stream and choose bins based

upon this sample. �e downside to this is that we need to make an

identical and independently distributed (i.i.d.) assumption about

the stream, something that is not always the case. For example,

network tra�c data is notorious for being very bursty, exhibiting

non-stationary distributions. �e main challenge overcome by the

algorithms in our paper is that we are able to compute the chi-

square statistic in each of these cases without any prior knowledge

about the distribution being measured and making few assumptions

about the stream.

1.1 Contributions
�e contributions of this paper are as follows:

• We propose a streaming algorithm for the one-sample chi-square

test to check if a stream of continuous data comes from a �xed

known distribution. �e space complexity is O(K2
log (N )

√
N )

for a stream of length at most N and number of bins at most

K . While we need to know an upper bound on the size of the

stream and the number of buckets, there is no need to know the

distribution of the stream, the distribution being tested, or the

number of bins in advance.

• We propose a streaming algorithm for the two-sample chi-square

test to check whether two streams of continuous data come

from the same source. �e space complexity isO(K2
log (N )

√
N ).

Similar to the one-sample variant, we make few assumptions

about the stream.

• We show that it is impossible to similarly summarize the cat-

egorical chi-square test by establishing lower bounds for this

problem. We give a heuristic algorithm for computing the cate-

gorical chi-square test on two streams to show that reasonable

space savings are still possible in practice.

• We conduct extensive experiments on both synthetic and empir-

ical data to verify the accuracy of the proposed algorithms and

to show that they perform well in practice.

Organization: In Section 2, we discuss the most relevant related

work. Section 3 contains the formal de�nition of this problem.

Streaming algorithms for the one-sample, two-sample, and categor-

ical chi-square tests are given in Sections 4, 5, and 6 respectively,

along with their analysis for accuracy. In Section 7, we evaluate the

algorithms on both synthetic and empirical data. Section 8 contains

the conclusion of this paper and possible future work.

2 RELATEDWORK
Our work is the �rst to propose algorithms for the chi-square test

in the streaming model of computation. In the streaming model, the

input data is presented as a sequence of updates [23]. �e advantage

of this model is that it is possible to summarize the data in sketches

that use memory sub-linear in the input size. Streaming algorithms

have been designed for operators such as frequency moments [2],

quantiles [8], and counting distinct elements [6], more complex

queries such as entropy [16], information divergences [11], and data

mining applications such as clustering [12], outlier detection [3],

and wavelet decomposition [7].

Our work builds on work done on quantile sketches. A quantile

sketch is a summary that can be queried for the quantiles of a large

stream of data. �e idea of the quantile sketch was initially formal-

ized in a paper by Munro and Paterson [22] in which they proposed

an algorithm that uses Ω(n1/p )memory, wheren is the length of the

stream and p is the number of sequential scans of the input. Manku

et al. [19, 20] proposed a single pass deterministic algorithm that

uses O( 1ϵ log
2(ϵn)) memory, where n is the length of the stream

and the quantile returned has at most ϵ error, and randomized al-

gorithms with slightly smaller space bounds. Subsequently, their

results were improved by Greenwald and Khanna [8] who gave the

GK algorithm that only requires O( 1ϵ log(ϵn)) memory. Another

quantile sketch, Q-digest, uses O( 1ϵ logU ) memory, whereU is the

size of the input domain [25]. Wang et al. [26] and Luo et al. [18]

performed extensive experimental comparisons of the performance

of these quantile sketch algorithms. An equivalent alternative to

using quantile sketches is to use equi-depth histograms [9, 21].

In [17], stable random projections are used to compute the chi-

square similarity (as opposed to the chi-square test) on streaming

data. �is work doesn’t give guarantees for computing the chi-

square statistic in a stream. Another related work [15] proposes

space-e�cient streaming algorithms for Kolmogorov-Smirnov test.

�e goal of this test is to detect di�erences between large datasets,

similar to the work presented here. A major advantage of the chi-

square test is that it is used much more extensively in practice.

It also has a categorical variant, for which we also provide an

algorithm in this paper.

We show that it is impossible to design a sublinear solution for

the general case of the categorical chi-square test, even when we al-

low approximation and randomization, using techniques from [10].

As a result, we focus on a sampling-based solution for this test.

Speci�cally, we make use of a technique known as coordinated

sampling [5] to maximize the overlap between the pair of streams.

3 PROBLEM DEFINITION
�is section reviews the fundamental hypothesis setup and the

procedure of conducting the chi-square test. We work under the

model that a stream is processed over a �nite period (e.g., one hour

or one day at a location), as is done for example with anomaly

detection [27], into a sketch with the constraints that storing the

whole stream is infeasible and that processing time per item is

small. Our algorithms apply this test to detect di�erences between

a sample (sketch) and a �xed known distribution in the one-sample

continuous case, and determine if two samples come from the same

source in the two-sample continuous and categorical cases.

3.1 One-Sample Continuous
�e one-sample case checks if a set of data follows a speci�ed

distribution. Hence, the null and alternative one-sample hypotheses

are:

H0: �e sample is from the �xed known distribution.

Ha : �e sample is not from the �xed known distribution.

For this case, the data must be binned into non-overlapping

ranges. �e frequency of the data observed in each bin is then

compared to the expected frequency of each bin. We will use N to

denote the size of the stream and K to denote the number of bins.

For each 1 ≤ i ≤ K , if we let the observed frequency of bin i be Oi
and the expected frequency be Ei , then the chi-square statistic is
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de�ned as

χ2 =
K∑
i=1

(Oi − Ei )2
Ei

.

An important characteristic of this test is that it is sensitive to

the choice of bins, i.e, changing K or the bin ranges gives a di�erent

statistic. �ough there is no standard method to choose the bins or

even the number of bins, each bin must contain at least �ve data

points. One common convention that we follow in this paper is to

have equi-probable bins, i.e., each bin has approximately the same

expected frequency, N /K .
At the decision making stage, in order to accept or reject the

null hypothesis, the statistic is compared to critical values from the

chi-square distribution. �e critical values are read from the table

based on the signi�cance level α , where 0 < α < 1, and the degrees

of freedom. For the chi-square test, the degrees of freedom is K − c ,
where c is the number of estimated parameters (such as the location,

scale and shape parameters) plus one. For example, for a two-

parameter normal distribution (mean and standard deviation), c = 3.

�erefore, the null hypothesis is rejected if χ2 > χ2
1−α,K−c , where

χ2
1−α,K−c is the appropriate value from the chi-square distribution.

3.2 Two-Sample Continuous
We de�ne the size of the �rst stream as N , the second asM , and K
as the number of bins. �e two streams must use the same bins, and

the frequency in the ith bin is de�ned as Si for the �rst stream and

Ri for the second stream. Since there are two streams, the expected

frequency for the �rst stream in the ith bin is
(Si+Ri )
N+M N , and the

expected frequency for the second stream in the ith bin is
(Si+Ri )
N+M M .

�erefore, based on the contingency table de�nition of two-sample

(this generalizes to the k-sample case, but we limit ourselves to

two for the purpose of this paper), the chi-square statistic χ2 is

calculated and simpli�ed [24] to:

χ2 =
K∑
i=1

(Si
√

M
N − Ri

√
N
M )

2

Si + Ri
.

At the decision making stage, the rules are fairly similar as the

rules for the one-sample version, which is that the null hypothesis

is rejected if χ2 > χ2
1−α,K−c . �e only di�erence is that when

computing the degrees of freedom K − c , we use c = 1 if the two

samples have the same size (N = M) and c = 0 otherwise.

�e two sample variant compares two streams to determine if

they come from the same distribution. �e null and alternative

one-sample hypotheses are:

H0: Two samples have the same underlying distribution.

Ha : Two samples have di�erent underlying distributions.

3.3 Categorical
�e categorical case checks if two streams of discrete data come

from the same distribution. We do not study the one-sample cate-

gorical case as it would be unfeasible to specify expected counts

for a large number of categories. �e hypotheses are the same as

for the continuous two-sample case.

We once again de�ne the length of the two streams as N andM .

We now de�ne the number of categories to be K as each category

symbol description

N length of stream (one- and two-sample)

M length of second stream (two-sample)

K number of bins

Oi observed frequency of bin i (one- and two-sample)

Ei expected frequency of bin i (one- and two-sample)

Si count of stream1 bin i (two-sample, categorical)

Ri count of stream2 bin i (two-sample, categorical)

F CDF of comparison distribution (one-sample)

Q quantile sketch for the stream (one-sample)

Q1 quantile sketch for stream1 (two-sample)

Q2 quantile sketch for stream2 (two-sample)

χ2
1−α,d critical value for p = α with d degrees of freedom

H0 the null hypothesis

Ha the alternative hypothesis

Table 1: List of notation

corresponds to its own bin. Each stream consists of a sequence of

category labels, where the frequency of a category is the number

of times its label appears in the stream. If we let the frequencies

of the ith category be Ri and Si for the �rst and second streams,

respectively, then the chi-square statistic is identical to that for the

two-sample continuous case:

χ2 =
K∑
i=1

(Si
√

M
N − Ri

√
N
M )

2

Si + Ri
.

�e rejection conditions are identical as well: χ2 > χ2
1−α,K−c , with

c once again being the indicator of whether the streams have the

same length.

3.4 Accessible Streaming
Notice that in all the de�nitions listed above, the user of the stream-

ing algorithm is not expected to know much about the stream prior

to deploying the algorithm and does not have to con�gure any

parameters to use the algorithm. To obtain the guarantees shown

in this paper, the user should know an upper bound on the length

of the stream and the number of buckets to compute the size of the

sketch needed, but absent this she can simply provision the largest

sketch feasible and still be able to perform the test. �is is explained

in more detail later. Also note that the desired signi�cance level (α )
and number of bins (K ) can be speci�ed a�er the stream has been

processed. �ere are fairly standard choices available to the user,

such as α = 0.05 and a value of K between 10 and 100.

For ease of reading, the notation for this paper is summarized in

Table 1.

4 ONE-SAMPLE TEST
�is section describes the algorithm for the one-sample continuous

variant of the chi-square test, in which the observed input can be

compared against an arbitrary distribution function speci�ed a�er

the stream has been collected. �e algorithm achieves this by creat-

ing a compact summary of the data, also known as a sketch, which

can be used to compare with an arbitrary distribution a�erwards.
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Algorithm 1 OneSample(Q,N ,K , F ,α ,c)

Input: �antile ϵ-sketch Q of stream size N ; K number of bins;

cumulative distribution function F ; signi�cance level α ; the
number of estimated parameters + 1, c

Output: Whether the test rejects the null hypothesis

1: χ̂2 = 0

2: for i = 1 to K do
3: Ei =

N
K

4: Let l = F−1( i−1K ).
5: Let u = F−1( iK ).
6: Let îl be the approximate fraction of the stream less than l ,

as computed in �eorem 4.1.

7: Let ˆiu be the approximate fraction of the stream less than

u, as computed in �eorem 4.1.

8: Ôi = N ( ˆiu − îl )
9: λ̂i = |Ôi − Ei |
10: if λ̂i > 2

√
N then

11: return true
12: χ̂2 = χ̂2 + (λ̂i )

2

Ei

13: Let χ2
1−α,K−c be the critical value at signi�cance level α and

degree of freedom K − c .
14: return χ̂2 > χ2

1−α,K−c

If we know the comparison distribution or the bin ranges be-

forehand, then computing the chi-square statistic is fairly trivial

to accomplish by keeping a count for each bin and incrementing

the count for the appropriate bin for each insertion into the stream.

Our algorithm does not need to know the comparison distribution,

the bin ranges, or even the number of bins beforehand. It makes a

sketch of the stream and computes the bin ranges a�er the stream

has been processed. �is is important because choosing bin ranges

beforehand can be catastrophic for unknown distributions since

it is impossible to know where the input data may fall and it may

be that several of the bins will have expected count less than �ve.

In contrast, our algorithm guarantees that all bins have roughly

the same counts (the ideal case for the chi-square test) so that the

expected count for each bin is very large.

As for the sketch, it follows that it must guarantee some error

bounds for any distribution. We use an ϵ-quantile sketch to store the
quantiles of the data in a streaming fashion. An ϵ-quantile sketch
is de�ned as a data structure with input stream X1, . . . ,XN (X1 ≤
X2 ≤ . . . ≤ XN ) in arbitrary order that can be queried to return for

a �xed ϵ > 0 and any rank 1 ≤ r ≤ N , a value Xi such that i is in
the range [r − ϵN , r + ϵN ] [15].

Our algorithm will make use of the ability to compute inverse

quantiles from these quantile sketches. Prior work shows how to

extract from an ϵ-quantile sketch the inverse quantile of some value,

i.e., the approximate fraction of the stream that a given value is

bigger than [8, 15]. We use the following result from [15]:

Theorem 4.1 ( [15] ). For any value x ∈ R, it is possible to compute
the fraction of the stream that has value less than x to within 3ϵ error
using an ϵ-quantile sketch.

4.1 One-Sample Algorithm
We use this result to compute the chi-square statistic in Algorithm 1

with the following guarantee:

Theorem 4.2. Algorithm 1 computes an estimate of the chi-square
statistic with at most ±0.0812 additive error.

Proof. We want to approximate χ2 =
∑K
i=1
(Oi−Ei )2

Ei . Fix some

1 ≤ i ≤ K . For the known cumulative distribution function that

we are comparing against, F , let l = F−1( i−1K ) and u = F−1( iK ), so
that [l ,u) corresponds to the ith equi-probable interval from the

distribution. Let il and iu be the fractions of the stream less than

u and l , respectively, computed from the ϵ-sketch using the result

from �eorem 4.1. We use these values to get an approximation

to Oi , denoted Ôi = N (iu − il ). By �eorem 4.1, we know that

estimating il and iu gives at most ±3ϵ error each, so the total error

of Ôi is ±6ϵN .

In order to �nd the total error of χ2, we must calculate the error

at every i . It follows that estimating Oi with Ôi leads to an esti-

mate χ̂2 =
∑K
i=1
((Oi−Ei )±6ϵN )2

Ei =
∑K
i=1(

(Oi−Ei )2
Ei ± 12(Oi−Ei )ϵN

Ei +

36ϵ 2N 2

Ei ). Each bin in the expected distribution F has the same fre-

quency, Ei =
N
K , as de�ned in line 2 of Algorithm 1. For ease of

presentation and completeness, assume that ϵ = 1

300

√
NK 2

. Using

these de�nitions,

χ̂2 =
K∑
i=1

(
(Oi − Ei )2

Ei
± 0.04(Oi − Ei )√

NK
+
0.0004

K3

)
.

Now consider λi = |Oi − Ei |, where ˆλi = |Ôi − Ei |. As we noted
earlier the total error of estimating Oi by Ôi is ±6ϵN . �erefore

it follows that the error of estimating λi by λ̂i is also ±6ϵN , or

λi − 6ϵN ≤ λ̂i ≤ λi + 6ϵN . Since ϵ = 1

300

√
NK 2

, it follows that

λi − 0.02
√
N

K 2
≤ λ̂i ≤ λi +

0.02
√
N

K 2
. We can further say that since

0.02
√
N

K 2
< 0.02

√
N , λi − 0.02

√
N ≤ λ̂i ≤ λi + 0.02

√
N . From here

there are two cases.

In case 1, suppose there exists at least one i where 1 ≤ i ≤ K ,

such that λ̂i > 2

√
N . By our inequality found above, it follows

then that λi > 1.98
√
N . �en consider

(Oi−Ei )2
Ei ≥ (1.98

√
N )2

N /K =

K(1.98)2. �is is only one out ofK bins, howeverK(1.98)2 is already
signi�cantly greater than the critical value at any signi�cance level

of 0.001 or greater, so we should reject the null hypothesis. �is is

the reason for the test in lines 10-11 of Algorithm 1.

In case 2, λ̂i ≤ 2

√
N for all i such that 1 ≤ i ≤ K . From the

inequality above, it follows that λi ≤ 2.02
√
N , and therefore

χ̂2 =

K∑
i=1

(
(Oi − Ei )2

Ei
± 0.04(2.02

√
N )

√
NK

+
0.0004

K3

)
=

K∑
i=1

(Oi − Ei )2
Ei

± (0.0808) + 0.0004

K2
.

As K must at least be 1, at maximum the error will be ±(0.0808) +
0.0004, and hence we will have at most ±0.0812 error for the chi-
square statistic. �
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As this amount of error is so small, it is almost negligible when

comparing to the critical value at some given signi�cance level. For

example, the critical values for α = 0.1, 0.05, and 0.025 with K = 20

are 28.412, 31.410, 34.170, respectively, so an error of 0.0812 will

have very li�le bearing on the e�cacy of the test. Moreover, we can

decrease this error bound further by changing the threshold on Line

10 of Algorithm 1 while slightly increasing the space requirement,

but this would unnecessarily complicate the analysis.

4.2 Computational Analysis
�e analysis of the streaming part of the algorithm depends on

the speci�c quantile used in the implementation. For example,

the Greenwald-Khanna sketch uses at most O( log (ϵN )ϵ ) space and
time-per-insertion. Earlier we assumed ϵ = 1

300

√
NK 2

, giving us

O

(
log

( √
N

300K2

)
K2
√
N

)
= O(K2

log (N )
√
N )

memory required. For example, we can summarize a stream of

size in the terabytes (N = 10
12
) using hundreds of megabytes of

memory. Moreover, the fraction of memory needed decreases as

the stream size increases—for example, a stream 100 times larger

would only need about 10 times more memory for the sketch.

In terms of the running time of Algorithm 1, the majority of

time is spent �nding îl and ˆiu . As described in [15], this involves a

binary search which takes O(logN ) time. Algorithm 1 iterates K
times and performsO(logN ) computations for the binary searches,

giving a running time of O(K logN ), which is very small, even for

large streams.

4.3 Accessible Streaming
�e above algorithm is very convenient for a data analyst to use

since it does not require any parameter con�gurations while col-

lecting the stream. �e distribution being compared against, the

desired signi�cance level (α ), and number of bins (K) can all be

speci�ed a�er the stream has been processed.

At �rst blush, it might appear that the memory requirement of

O(K2
log (N )

√
N ) indicates that we need to know both the length

of the stream (N ) and the number of bins (K ) to provision memory

for the sketch before the stream is processed. However, note that

if we have some (perhaps loose) upper bound on N and K , this
will su�ce, since all the guarantees listed above still apply for all

stream lengths N ′ < N and number of bins K ′ < K . Moreover, the

user could also provision the largest sketch that was feasible in her

infrastructure and still use this algorithm with no prior knowledge

of N and K , with the caveat that there would be no guarantee on

the �delity of estimation of the test statistic beforehand.

5 TWO-SAMPLE TEST
In this section we describe the algorithm for the two-sample contin-

uous variant of the chi-square test, where data from two di�erent

datasets are compared to determine if they come from the same

distribution. As this requires no prior knowledge of the underlying

distribution of either dataset, the two sample case has a signi�cant

advantage over the one sample, and is therefore more o�en used in

practice.

Algorithm 2 TwoSample(Q1,Q2,N ,M,K ,α )

Input: �antile ϵ-sketches Q1 and Q2 of streams of length N and

M , respectively (N ≥ M); K number of bins; signi�cance level α
Output: Whether the test rejects the null hypothesis

1: χ̂2 = 0

2: for i = 1 to K do
3: Ŝi =

N
K

4: Let l = Q1( i−1K ).
5: Let u = Q1( iK ).
6: Let ĵl be the approximate fraction of the second stream less

than l , as computed from Q2.

7: Let ˆju be the approximate fraction of the second stream

less than u, as computed from Q2.

8: R̂i = M( ˆju − ĵl )
9: if |R̂i −M/K | > 20

√
M
K then

10: return true

11: χ̂2 = χ̂2 +
(Ŝi

√
M
N −R̂i

√
N
M )2

Ŝi+R̂i

12: Let c be 1 if N andM are equal, 0 otherwise.

13: Let χ2
1−α,K−c be the critical value at signi�cance level α and

degrees of freedom K − c .
14: return χ̂2 > χ2

1−α,K−c

As with the one-sample algorithm, the two-sample algorithm

does not require knowledge of the bin ranges or number of bins

before running. It creates sketches of the two streams, and without

loss of generality, computes the bin ranges from one of the two

sketches a�er both have been processed. Just as the one-sample

case, this helps avoid situations where at least one of the bins has

a count less than �ve. We use the ϵ-sketch for inverse quantiles,

similarly to the one-sample algorithm, but we also make use of the

ability to compute the quantiles themselves.

5.1 Two-Sample Algorithm
Algorithm 2 computes the chi-square statistic with the following

guarantee. Note that even though we require truly massive streams

for this theorem, this is simply for the worst case bounds. We show

experimentally that the algorithm works well even for modestly

large streams.

Theorem 5.1. Algorithm 2 returns an estimate of the chi-square
two-sample test with about 0.048K additive error, assuming that
N ,M ≥ 10

14, 10 ≤ K ≤ 1000.

Proof. We want to compute

χ2 =
K∑
i=1

(SiK1 − RiK2)2
Si + Ri

where K1 =

√
M
N and K2 =

√
N
M . For any i , consider Si and Ri .

By the de�nition of the ϵ-quantile sketch, querying for a value at
an index i returns the value X j such that j ∈ [i − ϵN , i + ϵN ]. It
follows that querying for equi-probable intervals on the quantile

Q1 will give this error for both the lower and upper estimate, giving

Si =
N
K ± 2ϵN . We compare this with Ŝi as approximated in
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line 2 of Algorithm 2, where Ŝi =
N
K . �erefore it follows that

approximating Si with Ŝi gives ±2ϵN error.

Now consider Ri . Let l = Q1( i−1K ) andu = Q1( iK ), the bounds for
the interval of Si . Let jl and ju be the fraction of the second stream

less than u and l , respectively. It follows that Ri = M(ju − jl ). We

compare this with R̂i as computed in Algorithm 2. By �eorem 4.1,

we know that estimating jl with ĵl gives at most ±3ϵ error, and

similarly estimating ju with ˆju gives at most ±3ϵ error. �erefore

it follows that approximating Ri = M(ju − jl ) with R̂i = M( ˆju − ĵl )
gives ±6ϵM error.

In order to �nd the total error of χ2, we must calculate the

error at every i . We separate the error into two cases, where we

look separately at the largest overestimate the error can give, and

the largest underestimate the error can give. In order to do these

calculations, we must have an estimate for how close Ri is to
M
K , i.e.,

bound E ≡ |Ri − M
K |. Let ϵ =

1

320

√
NK 2

, and recall that |Si − N
K | ≤

2ϵN . We can bound the chi-square statistic term for the ith bin,

λi ≡
(Si

√
M/N − Ri

√
N /M)2

Si + Ri
,

by

λi ≥
(NK

√
M/N + 2ϵN

√
M/N − M

K

√
N /M − E

√
N /M)2

N /K + 2ϵN +M/K + E .

Simplifying this, we get

λi ≥
(2ϵ
√
M − E/

√
M)2

1

K (1 + 2ϵK +
M
N +

EK
N )
.

We assume that ϵ = 1

320

√
NK 2

, M ≤ N , and EK ≤ N , so it follows

that

λ ≥ (2ϵ
√
M − E/

√
M)2

4

K
= ϵ2KM − ϵEK + E2K

4M
.

We assume that ϵEK < 1, so that λ ≥ E2K
4M − 1. Suppose that E ≥

20

√
M/K . �en λ ≥ 99, and therefore if E ≥ 20

√
M/K , we know

that we should reject the null hypothesis when there are a small

number of bins since the critical value will always be much less

than 99. As the leading constant 20 is arbitrary, it can be changed to

account for a larger number of bins. Lines 9-10 in Algorithm 2 check

for the case that E is above this threshold, and so for the remainder

of this analysis we will assume that |Ri − M
K | ≤ 20

√
M/K .

We assume that ϵ = 1

320

√
NK 2

, and in order for the algorithm to

provably bounded error, we will also assume that N ≥ 10
14,M ≥

10
14
, (i.e., the case for truly big data that cannot be stored in main

memory) and 10 ≤ K ≤ 1000, which are typical values for the

number of bins. We will later show in the evaluation section that

our algorithm also works for considerably smaller streams as well.

As opposed to the analysis of the one-sample algorithm, here we

look at the under and overestimates of the actual statistic that can

be given by the algorithm. First we will look at the overestimate, β ,
where we will calculate the di�erence between the actual statistic

and the estimated statistic given by Algorithm 2. We are looking for

the error that gives the largest possible actual chi-square statistic

and smallest estimated chi-square statistic. �erefore it follows that

for the �rst fraction the error will maximize the numerator and

minimize the denominator. Inversely for the second fraction, the

error will minimize the numerator and maximize the denominator.

We bound

β =
K∑
i=1
( (SiK1 − RiK2)2

Si + Ri
− (ŜiK1 − R̂iK2)2

Ŝi + R̂i
)

≤
K∑
i=1
(
((NK + 2ϵN )

√
M
N − (

M
K − E)

√
N
M )

2

N
K +

M
K − 2ϵN − E

−

(NK
√

M
N − (

M
K + E + 6ϵM)

√
N
M )

2

N
K +

M
K + E + 6ϵM

)

=

K∑
i=1
(
(2ϵ
√
NM + E

√
N
M )

2

N
K +

M
K − 2ϵN − E

−
(−6ϵ
√
NM − E

√
N
M )

2

N
K +

M
K + E + 6ϵM

)

=

K∑
i=1
(

( 2
√
M

320K 2
+ 20

√
N
K )

2

N
K +

M
K −

2

√
N

320K 2
− 20

√
M
K

−

(−6
√
M

320K 2
− 20

√
N
K )

2

N
K +

M
K +

6M
320

√
NK 2

+ 20

√
M
K

).

From here we would like to have common denominators in the

fractions, which can be achieved by considering the error terms as

fractions of
N
K +

M
K . With our earlier assumptions about N ,M , and

K , it follows that 2

√
N

320K 2
/NK ≤

2

3
(1010), 6M

320

√
NK 2

/NK ≤ 2(1010), and

20

√
M
K /

M
K ≤ 2(10−7/2). Using these fractions, it follows that:

β ≤
K∑
i=0
(
( 2
√
M

320K 2
+ 20

√
N
K )

2

N+M
K (1 − 0.00006)

−
(−6
√
M

320K 2
− 20

√
N
K )

2

N+M
K (1 + 0.00006)

)

≤
K∑
i=0
(
( 2
√
M

320K 2
+ 20

√
N
K )

2(1.00006)
N+M
K

−

(−6
√
M

320K 2
− 20

√
N
K )

2(0.9994)
N+M
K

)

≤ K2

N +M
(−0.0003M

K4
+
0.048N

K
− 0.4999

√
NM

K2

√
K

)

=
N

N +M
(0.048K − 0.0003M

NK2
− 0.4999

√
M

√
NK

)

≤ 0.048K − 0.0003

K2
− 0.4999
√
K
.

As for the underestimate, γ , we are again calculating the dif-

ference between the actual chi-square statistic and the estimate

generated from Algorithm 2, however here we are looking for the

error that minimizes the actual statistic and maximizes the esti-

mated statistic. Just as with the overestimate, we consider the error

in terms of
N
K +

M
K to further simplify the equations.
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We have

γ =
K∑
i=1
( (SiK1 − RiK2)2

Si + Ri
− (ŜiK1 − R̂iK2)2

Ŝi + R̂i
)

=

K∑
i=1
(
((NK − 2ϵN )

√
M
N − (

M
K + E)

√
N
M )

2

N
K +

M
K + 2ϵN + E

−

(NK
√

M
N − (

M
K − E − 6ϵM)

√
N
M )

2

N
K +

M
K − E − 6ϵM

)

=

K∑
i=1
(
(−2
√
M

320K 2
− 20

√
N
K )

2

N
K +

M
K +

2

√
N

320K 2
+ 20

√
M
K

−

( 6
√
M

320K 2
+ 20

√
N
K )

2

N
K +

M
K −

6M
320

√
NK 2

− 20
√

M
K

)

≤
K∑
i=1
(
(−2
√
M

320K 2
− 20

√
N
K )

2

N+M
K (1 + 0.00006)

−
( 6
√
M

320K 2
+ 20

√
N
K )

2

N+M
K (1 − 0.00006)

)

≤ K2

N +M
(−0.0003M

K4
− 0.048N

K
− 0.5001

√
NM

K2

√
K

)

≤ −0.048K − 0.0003

K2
− 0.50001
√
K
.

�erefore the total error, X , is bounded by −0.048K − 0.0003
K 2
−

0.50001√
K
≤ X ≤ 0.048K − 0.0003

K 2
− 0.4999√

K
, or approximately 0.048K .

�

�e error is dependent on K , however this is not a problem as

the critical value centers around K or K − 1, so an error of 0.048K
will have a negligible e�ect on the result of the test. Also note that,

while the above theorem requires a truly massive stream (N ≥ 10
14
),

this is simply for the worst guarantee to work. We will show that

there are considerable savings even for much smaller streams in

the experimental evaluation section.

5.2 Computational Analysis
�e analysis of the space required by the two-sample test is almost

identical to that of the one-sample, with the only di�erence being

storing two streams of lengths N andM instead of storing a single

stream of length N . However since we have assumed that N ≥ M ,

the analysis remains the same, such that the Greenwald-Khanna

sketch uses at most O(K2
log (N )

√
N ) space. As before, we can

summarize terabytes of data using hundreds of megabytes of main

memory. �e running time of Algorithm 2 isO(K logN ), similar to

Algorithm 1.

5.3 Accessible Streaming
As with the one-sample algorithm, this algorithm does not need

much prior information about either stream other than an upper

bound on the stream sizes and number of bins. Moreover, the

sketch for both streams can be computed independently of one

another (e.g., at two di�erent locations) with no information or

communication necessary until it is time to compute the test. �e

tight space bounds allow these sketches to be e�ciently stored and

transferred between locations.

6 CATEGORICAL DATA
In this section we show that computing the chi-square test on

categorical data will entail using a large (linear) amount of memory.

We then give an algorithm that reduces the memory requirement

by a (signi�cant) constant amount and show in Section 7 that it

performs well in practice.

6.1 Lower Bound
To show that the categorical chi-square test requires linear memory,

we use a result from [10] about sketching decomposable distances.

For a pair of data streams, p and q in which the fraction of the

stream that comprise item i is given by pi and qi , respectively,
the decomposable distance dϕ is de�ned as dϕ (p,q) =

∑
i ϕ(pi ,qi ).

�is relates to the chi-square categorical test which, for the case of

equal length streams (say, length N ), can be wri�en in this form as∑
i ϕ(pi ,qi ) with ϕ(x ,y) =

N (x−y)2
x+y .

�e following Shi� Invariant �eorem from [10] shows that any

decomposable distance of the above form with certain properties

cannot be sketched using sublinear space:

Theorem 6.1 ([10] ). For ϕ such that ϕ(x ,x) = 0 for all x ∈ [0, 1],
if for su�ciently large n there exists a,b, c > 0 such that

max

(
ϕ

(a + c
t
,
a

t

)
,ϕ

(a
t
,
a + c

t

))
>

α2w

4

(
ϕ

(
b + c

t
,
b

t

)
+ ϕ

(
b

t
,
b + c

t

))
where t = αn/4+bn+cn/2, then any streaming algorithm over values
in [5n/4] for estimating

∑
i ϕ(pi ,qi ) within factor α with probability

at least 3/4 for a stream of lengthO((a+b+c)n)must use Ω(w) space.

We now use the above theorem to show the desired lower bound

for the chi-square test.

Theorem 6.2. �e categorical chi-square test statistic cannot be
approximated to within a factor of 2 with probability greater than 3/4
using a sketch unless it uses Ω(min(N /K ,K)) space.

Proof. Assume that the two streams are of the same length

(N = M). (Note that if the equal length stream case is hard to

approximate, it follows that the general case will no less hard.) For

each category i , let si = Si/N and ri = Ri/N be the fractions of the

two streams that make up this category. �e chi-square statistic

when the two streams are of the same length is

χ2 =

K∑
i=1

(Si − Ri )2
Si + Ri

=

K∑
i=1

N 2(si − ri )2
N (si + ri )

=

K∑
i=1

N (si − ri )2
si + ri

.

Applying �eorem 6.1 with ϕ(x ,y) = N (x−y)2
x+y , n = 4K/5, a = 1,

b = 5N /4K − 2, c = 1, α = 2, w = 5N /12K − 1, it is easy to
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verify that all the conditions for ϕ are satis�ed. Moreover, the

number of categories is 5n/4 = K and the length of the stream

is N = (a + b + c)n. Finally, it is always possible to estimate the

statistic by storing the counts for each category using K counters.

Hence, there is no hope for sketching the categorical chi-square

test using less than Ω(min(w,K)) = Ω(min(N /K ,K)) space even
when we allow a 2-factor approximation error and a 1/4 probability

of failure. �

6.2 Algorithm

Algorithm 3 Insert(S1, S2,p,R)

Input: Two streams of categories S1 and S2, sampling rate p,
range of hash table R.

1: Initialize empty hash tables t1 and t2.
2: Initialize function h that uniformly maps categories into the

range [0,R − 1].
3: for each category c in S1 do
4: hash = h(c)
5: if hash < pR then
6: if c is in t1 then
7: Increment value of c in t1
8: else
9: Insert c into t1 with value 1

10: Similarly, insert stream S2 into t2 with same h

Algorithm 4 CalculateStatistic(N ,M,K , t1, t2,α )

Input: Stream lengths N andM ; number of categories K ; hash
tables t1, t2; signi�cance level α .

Output: Whether the test rejects the null hypothesis

1: χ̂2 = 0

2: for each category i in t1 ∪ t2 do
3: Ri = value for key i in t1 (0 if not present)
4: Si = value for key i in t2 (0 if not present)

5: χ̂2 = χ̂2 +
(Ri

√
M
N −Si

√
N
M )2

Ri+Si

6: Let c be 1 if N andM are equal, 0 otherwise.

7: Let χ2
1−α,K−c be the critical value at signi�cance level α and

degrees of freedom K − c .
8: return χ̂2 > χ2

1−α,K−c

Here we present our heuristic algorithm for the two-sample cat-

egorical variant of the chi-square test. Similar to the continuous

variant, data from two di�erent streams are compared to determine

if they come from the same distribution. Like the two sample con-

tinuous variant, no prior knowledge of the underlying distribution

is required to calculate the test statistic.

Our algorithm makes use of the concept of coordinated sam-

pling [5] which is superior to uniform sampling. If we were to

perform uniform sampling on the two streams, say with a rate of

10%, then the overlap of the two streams would be only 1% of all

the possible categories. We get around this by coordinating the

sampling so that both streams measure the same random categories,

making the �nal sample size 10% as well.

In the insertion algorithm (see Algorithm 3), every category is

passed into the same hash function which returns a hash value

uniformly within a particular range. (In our experiments, we used a

hash range of [0, 232)). By the method shown in the algorithm, each

category has preciselyp probability of being sampled (wherep is the
sampling rate). Since both streams use the same hash function, the

sampled categories will be the same in both streams. �is achieves

coordinated sampling and gives our technique a strong advantage

over uniform sampling.

We use a hash table to keep track of the frequency of each sam-

pled category. Once the frequency of each category is calculated,

the algorithm computes the statistic using the two-sample formula,

as shown inAlgorithm 4. Depending on the signi�cance level we get

the critical value to determine whether to reject the null hypotheses.

We will show how this algorithm performs experimentally in the

next section.

�e insertion algorithm (Algorithm 3) simply samples the stream,

taking O(1) time per insertion. �e memory requirement of the

algorithm is linear, but has a 1/p factor savings over storing the

frequencies of all the categories. Algorithm 4 has a running time of

O(K).

6.3 Accessible Streaming
�e categorical chi-square algorithm is also easy to deploy with

minimal con�guration necessary. �e only parameter to be tuned

is the sampling rate p, which can be selected based on the memory

constraints of the user. �ere is no need to know the number of

categories (K) beforehand. �e coordinated hash function can be

any hash function implementation that is known to give a uniformly

random distribution across its range.

7 EXPERIMENTAL EVALUATION
In this section we show the results from our experimental eval-

uations on synthetic and empirical data sets. We ran all of our

experiments on 3.2 GHz Intel quad-core i5 processors with 8 GB

memory. All of our code is in C++.

We generated the synthetic data from several di�erent distri-

butions, namely the normal, Pareto, and uniform distributions,

as these are commonly seen in practice. In order to get an accu-

rate measure, the results were averaged over ten independently

generated streams of data. For the one-sample and two-sample con-

tinuous variants of the chi-square test we ran experiments using

di�erent quantile sketches and varying di�erent parameters, such

as stream size, number of bins, and percent of the stream size that

the sketches used. Unless otherwise speci�ed, all experiments used

stream sizes of ten million (N = 10
7
), 20 bins (K = 20), and 1% of

the memory needed to store the entire stream.

For the real data sets we looked at the following streams:

• Light Data: We used radiant light energy measurements, specif-

ically the irradiance level (microW /cm2
) collected by Columbia

University’s EnHANTs project
1
, which contains two data streams

coming from Trace A (1133636 values) and Trace B (1081793 val-

ues) that were gathered in 2009 and 2010, respectively.

1
h�p://www.crawdad.org/columbia/enhants/20110407/

http://www.crawdad.org/columbia/enhants/20110407/
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(c) P(1, 2) vs. P(1, 2)

Figure 1: Varying memory (N = 10
7,K = 20) for one-sample

data drawn from various distributions

• Power Consumption Data: We compared household electric

power consumption in 2006-2007 (543661 values) against con-

sumption in 2008-2009 (1505619 values), collected from EDF R&D,

Clamart, France
2
.

• U.S. Census Data (1990): We gathered the data in our categor-

ical variant experiments from a one percent sample (2458285

values) of the Public Use Microdata Samples (PUMS) person

records drawn from the 1990 census sample.
3
�e categories

were combinations of demographic information such as age,

gender, and marital status.

2
h�p://archive.ics.uci.edu/ml/datasets/Individual+\household+electric+power+
consumption

3
h�ps://archive.ics.uci.edu/ml/datasets/US+Census+\Data+(1990)
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Figure 2: Varying one-sample n, N(0, 1) vs.
N(0, 1) (1% memory, K = 20)
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Figure 3: Varying one-sample k , N(0, 1) vs.
N(0, 1) (1% memory, n = 10

7)
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Figure 4: Varying two-sample memory
(N = 10

7,K = 20)

As for the speci�c quantile sketches implemented and used, �rst

is the Greenwald-Khanna (GK) sketch [8], which uses O( 1ϵ log(ϵn))
memory. We also run tests on the Q-Digest [25], which uses

O( 1ϵ logU ) memory whereU is the size of the input. Additionally,

we compared these with a uniform sampling technique, namely

reservoir sampling.

�e goal of these algorithms is to compute the chi-square statistic

with enough accuracy that the hypothesis is or is not rejected at

some given signi�cance level. �is is done by comparing the chi-

square statistic with the critical value from a table. We will show

in this section that the error added by using our algorithm is very

small compared with the critical value, thereby giving con�dence

that the algorithm does not erroneously reject (or fail to reject) the

hypothesis.

http://archive.ics.uci.edu/ml/datasets/Individual+\household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+\household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/US+Census+\Data+(1990)
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Figure 5: Varying N ,M , N(0, 1) vs. N(0, 1)
(1%memory, K = 20)
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Figure 6: Varying N only, N(0, 1) vs. N(0, 1)
(1% memory, K = 20)
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Figure 7: Varying K , N(0, 1) vs. N(0, 1) (1%
memory)
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Figure 8: Real data for two sample continuous

7.1 One-sample Continuous Data
In these experiments, we compared the synthetic data to the same

distribution it was generated from. We �rst looked at the three

di�erent distributions while varying memory, illustrated in Figure 1.

�e Reservoir Sampling and Q-Digest sketches give very high error

when using 0.1% of memory and the error from sampling remains

high even at 1% of memory. In contrast, the GK sketch gives rela-

tively low error and reduces to an error of about 1 while using just

1% of the cost of storing the entire stream. Comparing this error

with the critical value for α = .05 of 27.587 4
, we can see that the

4
When K = 20, α = 0.05, and we have a distribution with two parameters (c = 2+ 1),

the critical value to compare against is χ 2

1−α ,K−c = χ
2

0.95,17 = 27.587.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 10  15  20  25  30  35  40  45  50
A

b
s
o

lu
te

 E
rr

o
r

Percent Memory

estimated

(a) S1 and S2 data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10  15  20  25  30  35  40  45  50

A
b

s
o

lu
te

 E
rr

o
r

Percent Memory

estimated

(b) stream1 and stream2

Figure 9: Real data for the categorical algorithm

error is considerably smaller and hence will not have a signi�cant

e�ect on the result of the test. �is error can be diminished further

by increasing the size of the sketch by a few percent.

For the remainder of this subsection, we focus on the normal

distribution as the results are similar to the other two distributions.

In Figure 2 we hold memory at 1% while varying the size of the

stream. While the error is not negligible, the plot shows a downward

trend as the stream size increases. At N = 10
8
the absolute error is

around 1, which is fairly small error. It follows that the one-sample

algorithm requires a very large sample size for best results. �is

resonates with the theory, for our assumption of ϵ = 1

300

√
NK 2

requires N to be very large in order to produce signi�cant savings.



Accessible Streaming Algorithms for the Chi-Square Test Conference’17, July 2017, Washington, DC, USA

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 100000  1e+06  1e+07

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Stream Size

GK

Figure 10: Varying one sample n, N(0, 1) data (1% memory,
K = 20)
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Figure 11: Varying memory (N = 10
7,K = 20) for one-sample

N(0, 1) data

�e one de�ciency in our algorithm is that for larger number

of bins there is more error, as seen in Figure 3 which varies the

number of bins while keeping stream size and memory constant.

�is is because the memory dependence on K is quadratic, hence

the accuracy of our algorithm declines as we increase K and keep

the memory constant.

7.2 Two-sample Continuous Data
As we already saw that the Q-Digest and sampling techniques

perform very poorly, we omit testing them with the two-sample

case. Instead we just compare the three di�erent distributions using

only the GK sketch while varying memory, as seen in Figure 4. As

with the one-sample case, at very small amounts of memory the test

performs poorly in all distributions, however around 1% of memory

the test performs well. �ere is slightly more error here than in the

one-sample case, however this is expected as the theory states that

the two-sample case requires huge stream sizes. For the following

experiments we will again focus on the normal distribution.

In Figure 5 we vary the size of both streams, such that they

always are of the same length, and we are increasing the sizes

together. Each point of this plot is an average over �ve (rather than

ten) repetitions because of the longer running time. �ere is a very

sharp drop from N = M = 10
6
to N = M = 10

7
, just as in the

one-sample case, once again because 1% memory gives too small of

a sketch for the former case but starts to become e�ective by the

la�er. �e performance will continue to improve as the stream size

increases.
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Figure 12: Time per insertion using the categorical algo-
rithm with real data

Next, in Figure 6, we �x the second stream at sizeM = 10
7
and

vary the size of the �rst stream. We once again see an increase in

accuracy as the stream size increases. �e results are slightly be�er

than for Figure 5 since, except for the last point, the streams and

hence the sketches are larger.

As with the one sample case, the one de�ciency to our algorithm

is the direct relationship between the increasing number of bins

and an increasing amount of error, as seen in Figure 7. �is relates

directly to the theory in Algorithm 2, for the error is related to K ,
and therefore increases as K increases.

Finally we tested the two sample continuous algorithm on the

empirical data sets, the �rst of which compares household power

consumption, and the second of which looks at radiant light energy

measurements. As can be seen in Figure 8, the absolute error is

negligible (under 0.1) even when using just 1% of the memory

needed to store the entire stream. We thus see that even for streams

of length considerably smaller than N = 10
14

(see Section 5) we

can obtain up to two orders of magnitude reduction in the amount

of memory needed.

7.3 Categorical Data
We performed tests on our categorical algorithm with empirical

data. In Figure 9 we show the absolute error of our algorithm

when performing tests on the data sets described above. �e results

show that we have low absolute error even when using an order of

magnitude less memory than storing the entire stream. �ese plots

are less smooth than the ones before because each experiment is
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run on the same data set (as opposed to an average of ten in the

synthetic case).

While the results for the categorical case are not as impressive

as for the continuous tests, this is expected from the theory. We

can only hope for constant savings in this scenario unless we allow

for huge error and probability of failure. Still, the results show how

one can trade o� the memory footprint and error when performing

this version of the test.

7.4 Running Time
Finally, we performed some of the same tests as earlier, but instead

evaluated the average time per insertion. In Figure 10, we looked at

the time per insertion of increasing stream sizes with the same 1%

of memory and 20 bins. As the plot shows, there is a sharp increase,

almost 10-fold, between the stream sizes of n = 10
6
and n = 10

7
.

�is is due to the fact that with a common memory percent, the 10
7

stream size is storing about 10 times more values in the quantile

than the 10
6
sized stream. As our implementation of the quantile

uses a list instead of a tree structure, each subsequent insertion

takes more time, resulting in a higher average time per insertion

for a longer stream. �is e�ect would be ameliorated by a tree

implementation.

A similar e�ect is also seenwhenwe look at the time per insertion

when varying memory in Figure 11. While more linear, the time

per instruction clearly goes up when more values are added to the

quantile. Still, it is clear that our implementation is able to handle

thousands of items per second. A more e�cient and optimized tree

implementation would potentially allow for millions of insertions

per second.

We also looked at the average time per insertion for categorical

data, using our aforementioned streams of real data, see Figure 12.

�ese average times per insertion are much smaller than that of

the previous graphs, since the insertion is an O(1) time operation.

Here, the algorithm is able to perform about 5 million insertions

per second.

8 CONCLUSIONS
In conclusion, motivated by a wide range of needs from real world

applications, we provided streaming algorithms for the one-sample

continuous and the two-sample continuous and categorical versions

of Pearson’s chi-square goodness-of-�t test. �e algorithms have

rigorous proofs demonstrating their accuracy, further con�rmed in

our experimental evaluation. We found that using the Greenwald-

Khanna quantile sketch gives the best result, and our algorithm

greatly outperforms the strategy of uniform sampling.

�ere is still much future work that is possible. One avenue of

future work is to determine if the

O(K2
log (N )

√
N )

space utilization of our algorithms for continuous data can be im-

proved upon or if there is a corresponding lower bound. In the case

of categorical data, we showed that coordinated sampling can give

good results with reduced memory, but there may still be further

improvements possible. All the tests proposed in this paper are

for single-dimensional data; similar tests for higher-dimensional

or structured data are also possible. Finally, there are many other

statistical tests that do not have obvious streaming algorithms that

allow them to be computed in sub-linear space. Determining which

ones can and cannot be categorized as such would be of interest to

scientists and practitioners in industry that need to perform these

tests on big data sets.
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