
Locality Analysis: A Nonillion Time Window Problem

Jacob Brock Hao Luo Chen Ding
Department of Computer Science

University of Rochester
Rochester, NY

{jbrock, hluo, cding}@cs.rochester.edu

ABSTRACT
The rise of social media and cloud computing, paired with
ever-growing storage capacity are bringing big data into the
limelight, and rightly so. Data, it seems, can be found ev-
erywhere; It is harvested from our cars, our pockets, and
soon even from our eyeglasses. While researchers in ma-
chine learning are developing new techniques to analyze vast
quantities of sometimes unstructured data, there is another,
not-so-new, form of big data analysis that has been quietly
laying the architectural foundations of e�cient data usage
for decades.

Every time a piece of data goes through a processor, it
must get there through the memory hierarchy. Since retriev-
ing the data from the main memory takes hundreds of times
longer than accessing it from the cache, a robust theory of
data usage can lay the groundwork for all e�cient caching.
Since everything touched by the CPU is first touched by the
cache, the cache traces produced by the analysis of big data
will invariably be bigger than big.

In this paper we first summarize the locality problem and
its history, and then we give a view of the present state of
the field as it adapts to the industry standards of multicore
CPUs and multithreaded programs before exploring ideas
for expanding the theory to other big data domains.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance Mea-
sures

General Terms
Program Behavior, Performance

Keywords
Locality of References, Metrics, Big Data

1. INTRODUCTION
The memory systems in today’s computers are in many

ways simple; There are a few levels of cache, with the last
level sometimes shared between cores, before the main mem-
ory and a storage device, and memory gets bigger, slower
and cheaper the further it is from the cache. But despite
the relatively intuitive nature of the memory hierarchy, the
quantity of data that moves through it is immense. During

Big Data Analytics Workshop 2013 Pittsburgh, Pennsylvania USA

Copyright is held by author/owner(s).

a short program, the processor can make billions of data
requests to the memory hierarchy.

With such a high volume of data, it is easy to understand
that choosing which data to store and when is a very com-
plex problem with very limited resources for a solution (since
the CPU is busy using the data for its intended purpose).
Most solutions to that problem rely on making on-line ob-
servations and predictions with minimal hardware resources
(e.g. Dynamic Insertion Policy [17] and Re-Reference Inter-
val Prediction [11]). This enforced minimalism has had the
dual e↵ect of requiring creativity for on-line analysis, and
increasing the importance of o↵-line analysis.

2. LOCALITY AS A BIG DATA PROBLEM
The first hint that a theory of data locality would be useful

came when virtual memory systems exhibited the problem
of thrashing; So many page faults occurred in the RAM
that the system would spend more time retrieving data than
processing it [6]. The first step was to develop the working
set model, which notes that a program uses only a subset of
its data in any time period [4].

Locality analysis measures the active data usage. Given a
window of execution, the footprint is defined as the amount
of distinct data accessed in the window. For an execution
of length n, we define fp(Tw) as the average footprint of all
windows of the length Tw. For example, the trace “abbb”
has 3 windows of length 2: “ab”, “bb”, and “bb”. The size
of the 3 footprints is 2, 1, and 1, so average footprint for
length-2 windows is fp(2) = (2 + 1 + 1)/3 = 4/3.

Footprint measurement is a big-data problem. The aver-
age footprint is the expected quantity of data in any size of
trace window. To measure it, we must count the number of
unique data in every substring of a trace. Assuming a typ-
ical benchmark program running for 10 seconds on a 3GHz
processor, we have 3E10 CPU cycles in the execution and
need to measure the footprint in 4.5E20 distinct windows.

As a reference, we show the scale of the footprint problem
in Figure 1. As the length of execution increases from 1 sec-
ond to 1 month, the number of CPU cycles (n) ranges from
3E9 to 2E15, and the number of distinct execution windows�
n
2

�
from 4.5E18 to 5.8E29, that is, from 4 sextillion to over

a half nonillion.
Early methods addressed the immensity of this problem

in three ways. The first is to measure a subset of windows,
for example, all windows starting from the beginning of a
trace [1] or windows of a single length (the CPU schedul-
ing quantum) [21]. The second is an approximation under
stochastic or probabilistic assumptions [2,3,7,13,19,20]. The

Execution Time (CPU cycles on a 3GHz core)

N
um

be
r o

f F
oo

tp
rin

t W
in

do
w

s

se
xi

til
lio

n
oc

til
lio

n
no

ni
llio

n

1E
21

1E
24

1E
27

1E
30

(1E10) (1E12)sec minute hour day

Radius of Observable
Universe: 4.4e28 cm

Radius of Milky
Way: 4.8e22 cm

Figure 1: The scale of the problem shown by the

number of footprint windows in a program execution

last is sampling [9]. With just a single-window length, the
result is not complete. In approximation or sampling, the
accuracy is unknown.

Our recent work developed new algorithms to measure the
all-window footprint for either the full distribution [8,22] or
just the average [23]. The average-footprint algorithm takes
time linear to the length of the execution.

Next we give an overview of the recent advance in locality
theory and outline ongoing work on multicore cache man-
agement. Both are based on the solution to the big-data
footprint problem that we have just discussed.

3. PRESENT AND FUTURE OF LOCALITY

3.1 Higher Order Theory of Locality
The working set theory was pioneered in Peter Denning’s

thesis work [4]. His 1968 paper established the relation be-
tween the miss rate and the inter-reference interval (iri). For
each access, the inter-reference interval is the time since the
previous access to the same datum. Given a window length
T , the time-window miss rate m(T) is the fraction of data
accesses whose inter-reference interval is greater than T :

m(T) = P (iri > T)

Using the footprint as the cache size, we showed a similar
formula for the miss rate mr(C) for fully-associative LRU
cache of size C [25]. Let the window length Tc be such that
fp(Tc) = C. The LRU miss rate is:

mr(C) = mr(fp(Tc)) = P (iri > Tc)

For each memory access, the reuse distance, or LRU stack
distance, is the number of distinct data used between this
and the previous access to the same datum [16]. The reuse
distance includes the datum itself, so it is at least 1. The
probability function P (rd = C) gives the fraction of data
accesses that have the reuse distance C. The LRU miss rate,
mr(C), is the total fraction of reuse distances greater than
the cache size C, i.e. mr(C) = P (rd > C). Consequently,

P (rd = C) = mr(C � 1)�mr(C)

Figure 2 shows the footprint, miss rate curve, and the
reuse distance for an example program bzip2. All three are
program specific and can be used by programmers and hard-
ware designers to quantify and optimize the cache usage of
programs. The working set models are widely used in virtual
memory management [5], the miss rate curve in computer
design [10, 16] and memory management in OS and virtual
machines [26, 28], and reuse distance in program analysis
and optimization (see Section 6 in [27]).

Through the conversion formulas like the ones in this sec-
tion, we have shown that the locality metrics of footprint,
miss rate, and reuse distance are mutually convertible [25].
They form a higher-order relation where we can compute
higher-order metrics by taking the sum in lower-order met-
rics or in the reverse direction, compute lower-order metrics
by taking the di↵erence in higher-order metrics. The con-
version formulas and the properties including the correctness
conditions are called collectively the higher-order theory of
locality.

For the locality theory, it is vital that the footprint fp

is uniquely defined for each window size. As described in
Section 2, the footprint is so defined as a big-data problem
of all-window analysis.

Among the locality metrics, the footprint is unique in its
three properties. First, it is composable in that the ag-
gregate footprint of a set of programs is the sum of their
individual footprints (assuming no data sharing). Second,
it can be measured e�ciently through sampling, with 0.5%
visible cost on average [25]. Using the locality theory, we
can derive other metrics from the footprint. As a result,
we can now measure the reuse distance and the miss rate
curve e�ciently and compose them for multi-programmed
workloads.

3.2 Cache Sharing and Multithreading
Cache sharing is done in two di↵erent ways: by partition-

ing the cache among the programs so that they each have ef-
fectively a cache some fraction of the size of the whole cache,
or by allowing all programs to use the whole cache with an
LRU-like replacement scheme. In the second scheme, either
program’s data may dominate the cache at any given time,
depending on its memory demand. On a modern machine, a
single thread can replace the entire contents of a 4MB cache
in milliseconds, so the “ownership” of the cache can change,
or even oscillate, extremely quickly.

A few papers have approached the problem of predict-
ing shared cache performance. [14] presents a fairness-based
model for cache sharing. In [3], a model for multithread
cache contention is presented. [9] developed a trace-based
locality theory for multithreaded programs, analyzing how
the reuse distance profile of a thread changes with a co-run
thread.

A new metric for quantifying the relationships between
threads is the shared footprint of [15]. To illustrate, Figure 3
shows an interleaved trace with accesses by two threads. A
window has non-zero shared footprint if a datum is accessed
by two (or more) threads in the window. Therefore, the
shared footprint gives the quantity of data that is actively
shared. The sharing ratio is the ratio of shared footprint to
the total footprint. This metric has potential to help with
cache sharing design, identifying false sharing, and thread
scheduling. Possible extensions to the idea include defining a
separate shared footprint for every quantity of threads (not

(a) The average footprint function gives the average
amount of distinct data in window of a given size. With
a trace length of nearly 180 billion accesses, at each
window length x the average footprint of 180⇥ 109 � x

windows is calculated.

(b) The miss rate curve for a fully associative LRU
cache, derivable from the footprint function, shows what
size cache is necessary for best e�ciency.

(c) The reuse distance profile, derivable from the miss
rate curve or the footprint function.

Figure 2: Examples of the locality metrics footprint,

reuse distance, and miss rate for an example run of

bzip2. The three metrics are mutually computable

according to the higher-order theory of locality out-

lined in Section 3.1.

b c

W

W

a a ac b c

1

2

()()

Figure 3: Shared footprint in an interleaved execu-

tion of two threads. The two accesses by one of the

threads are colored red and marked with parenthe-

ses. The shared footprint is zero for W1 because the

two threads do not access the same datum and one

for W2 because both threads access a.

just shared vs. unshared), and quantifying the “popularity”,
or number of threads in which a block is active in a temporal
window.

4. LOCALITY BEYOND THE CHIP
The lessons of locality theory can have implications be-

yond memory management. Any data set that can be for-
mulated as a long stream of discrete data can be analyzed
using methods developed for memory traces; this includes
web search terms, website views, social media communica-
tions, product sales online or in stores, and even play calls
in sports (e.g. series of pitches in baseball). As an exam-
ple application, an average footprint curve or reuse distance
signature might aid in identifying the authorship of written
works, or even predicting their success. One can imagine
that a book such as Dr. Seuss’s Green Eggs and Ham would
have a particularly uncommon footprint curve1 [18].

Other applications might include classifying tra�c flow
patterns, or identifying “types” of customers for web retail-
ers based on what products they view and buy, and how of-
ten they revisit these products. A series of short revisit times
(analogous to reuse distance) might indicate that a customer
is planning a purchase. Recognizing trends in searches and
purchases can help retailers plan inventory in the same way
that caches use prefetching. In the way that locality analysis
has been used for multiprocessor scheduling (see [12,24,29]),
it might in some way be applicable to public event schedul-
ing for minimizing tra�c congestion. While machine learn-
ing techniques have already been applied to most of these
topics, locality theory can provide a new perspective on the
data.

5. CONCLUSIONS
Developed to analyze long lists of data, locality theory has

mature metrics that can be applied to a large class of big
data problems. At the same time, the theory is still evolving
to inspire, enable and accommodate new architecture. As lo-
cality theory matures with multithreading and multi-tiered
metrics, and other areas of big data mature with the rise
of social media, medical data, and market data, researchers
in the often disparate fields of systems design and machine
learning are being presented with a rare opportunity to iden-
tify parallel problems between the fields and draw from each
other’s lessons. This is an opportunity not to be missed!

1Seuss famously wrote the book using 50 distinct words in
response to a bet he made with his publisher, who did not
think it possible to write a successful story with such a lim-
ited vocabulary.

6. REFERENCES
[1] A. Agarwal, J. L. Hennessy, and M. Horowitz. Cache

performance of operating system and
multiprogramming workloads. ACM Transactions on
Computer Systems, 6(4):393–431, 1988.

[2] E. Berg and E. Hagersten. Fast data-locality profiling
of native execution. In Proceedings of SIGMETRICS,
pages 169–180, 2005.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin.
Predicting inter-thread cache contention on a chip
multi-processor architecture. In Proceedings of HPCA,
pages 340–351, 2005.

[4] P. J. Denning. The working set model for program
behaviour. Commun. ACM, 11(5):323–333, 1968.

[5] P. J. Denning. Working sets past and present. IEEE
Transactions on Software Engineering, SE-6(1), Jan.
1980.

[6] P. J. Denning. The locality principle. In J. A. Barria,
editor, Communication Networks and Computer
Systems, pages 43–67. 2006.

[7] P. J. Denning and S. C. Schwartz. Properties of the
working set model. Communications of ACM,
15(3):191–198, 1972.

[8] C. Ding and T. Chilimbi. All-window profiling of
concurrent executions. In Proceedings of PPoPP, 2008.
poster paper.

[9] C. Ding and T. Chilimbi. A composable model for
analyzing locality of multi-threaded programs.
Technical Report MSR-TR-2009-107, Microsoft
Research, August 2009.

[10] M. D. Hill and A. J. Smith. Evaluating associativity
in CPU caches. IEEE Transactions on Computers,
38(12):1612–1630, 1989.

[11] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and
J. Emer. High performance cache replacement using
re-reference interval prediction (rrip). In ACM
SIGARCH Computer Architecture News, volume 38,
pages 60–71. ACM, 2010.

[12] Y. Jiang, K. Tian, and X. Shen. Combining locality
analysis with online proactive job co-scheduling in
chip multiprocessors. In Proceedings of HiPEAC,
pages 201–215, 2010.

[13] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen. Is reuse
distance applicable to data locality analysis on chip
multiprocessors? In Proceedings of CC, pages 264–282,
2010.

[14] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of PACT, pages 111–122,
2004.

[15] H. Luo, X. Xiang, and C. Ding. Characterizing active
data sharing in threaded applications using shared
footprint. In Proceedings of the The 11th International
Workshop on Dynamic Analysis, 2013.

[16] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM
System Journal, 9(2):78–117, 1970.

[17] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and
J. S. Emer. Adaptive insertion policies for high
performance caching. In Proceedings of ISCA, pages
381–391, 2007.

[18] D. Seuss. Green Eggs and Ham. Random House

Children’s Books, 1960.
[19] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality

approximation using time. In Proceedings of POPL,
pages 55–61, 2007.

[20] G. E. Suh, S. Devadas, and L. Rudolph. Analytical
cache models with applications to cache partitioning.
In Proceedings of ICS, pages 1–12, 2001.

[21] D. Thiébaut and H. S. Stone. Footprints in the cache.
ACM Transactions on Computer Systems,
5(4):305–329, 1987.

[22] X. Xiang, B. Bao, T. Bai, C. Ding, and T. M.
Chilimbi. All-window profiling and composable models
of cache sharing. In Proceedings of PPoPP, pages
91–102, 2011.

[23] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time
modeling of program working set in shared cache. In
Proceedings of PACT, pages 350–360, 2011.

[24] X. Xiang, B. Bao, C. Ding, and K. Shen. Cache
conscious task regrouping on multicore processors. In
Proceedings of CCGrid, pages 603–611, 2012.

[25] X. Xiang, C. Ding, B. Bao, and H. Luo. A higher
order theory of cache locality. In Proceedings of
ASPLOS, 2013.

[26] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. CRAMM: Virtual memory support for
garbage-collected applications. In Proceedings of
OSDI, pages 103–116, 2006.

[27] Y. Zhong, X. Shen, and C. Ding. Program locality
analysis using reuse distance. ACM TOPLAS,
31(6):1–39, Aug. 2009.

[28] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar. Dynamic tracking of page
miss ratio curve for memory management. In
Proceedings of ASPLOS, pages 177–188, 2004.

[29] S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. In Proceedings of ASPLOS,
pages 129–142, 2010.

