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ABSTRACT
Our goal for this paper is to apply the method-
ologies of statistical mechanics to develop exible
tools for use in computational musicology. Classi-
cal statistical mechanics is the study of extremely
information-rich particle systems. Large quantities
of information describing the position and velocity
of each particle may be compressed into a few de-
scriptive variables such as temperature and pres-
sure. These variables are easily perceived by an
observer. In the same way, we will distill informa-
tion from the scores of musical compositions, pro-
ducing new macroscopic quantities that describe
perceptible features of the music.
1. INTRODUCTION
1.1 Statistical Mechanics
In the terminology of thermodynamics, a system is
the subset of the universe with which we are con-
cerning ourselves (the remainder of the universe is
the environment). Thermodynamics involves ob-
servable variables exhibited by a system, which are
called observables. Examples include temperature,
pressure, and volume. These observables provide
an easy means of comparing di�erent systems and
of quantifying perceived experiences. That is, a
system feels hot because its temperature is higher
than that of the observer's hand. A system has
high pressure because it compresses objects which
are placed within it.
Thermodynamics was developed before the con-
cept of fundamental particles was widely accepted.
For early scholars of thermodynamics, temperature
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and pressure were intrinsic, measurable properties
of a system. Statistical mechanics came about after
the discovery that systems were in fact collections
of tiny fundamental building blocks. Thus, a gas is
a collection of particles which interact in a speci�c
way to exhibit the properties we associate with a
gas. In this way, our observables are, in fact, func-
tions of more fundamental variables characteristic
of the particles.
In the model of statistical mechanics, a system
containing a classical gas can no longer be unam-
biguously described by temperature, pressure, and
volume. Even this very simple system contains
a huge amount of information. In order to per-
fectly describe such a system, one would need to
compile a list of the position and velocity of every
individual particle present in the system at every
instant of time. This is called the microstate of
the system. However, the observables seen by a
human specify the state of the system. Many mi-
crostates can exhibit the same state when observed
on a higher scale. Statistical mechanics allows us
to derive functions of the many independent vari-
ables, typically as averages over the particles, over
time, or over both. These functions distill the mi-
crostate information to depict the large-scale state
of the system. Examples of these functions corre-
spond with the human experiences of temperature
or pressure.
This idea of distilling microstate information into
macrostate information which is relevant to human
observations will prove to be key to the computa-
tional musicology we describe in this paper. Before
we implement these ideas, it is necessary to discuss
a few relevant concepts of musical scores and music
theory.
1.2 Musical Background



For the purposes of this paper, we are only con-
cerned with music composed in the western classi-
cal tradition.
A piece of music comprises a �nite collection of in-
dividual notes. Each note exhibits a certain pitch,
representing how high or low the note sounds to
an observer. This is physically represented by the
frequency of the sound (measured in Hertz (Hz)).
A perceptual phenomenon, believed to be universal
to human experience, is that of pitch class or octave
equivalence. Consider the pitch with frequency 440
Hz. We �nd that a pitch with frequency 220 Hz |
exactly half of the frequency and one octave below
| is perceived as being qualitatively similar to the
440 Hz pitch. We say that all pitches which possess
this same quality are in the \A" pitch class.
How many pitch classes are there? Historically,
this has been the subject of much debate [1]. In
the past, unique tunings have been constructed to
maintain the ratio of a perfect �fth (3 : 2) as well
as possible. In modern Western music, the equal
temperament system divides the frequency range
between one A (say 440 Hz) and the next A (at
880 Hz) into twelve uniform intervals, resulting in
twelve unique pitch classes. Each pitch in this oc-
tave is separated by one semitone (with two semi-
tones being designated a step). The mathemati-
cal symmetry of equal temperament disrupts the
small-integer frequency ratios of the perfect inter-
vals: the fourth (4:3) and the �fth (3:2), leading
to the aforementioned debate. For our purposes,
equal temperament is to be preferred because a
musical score in equal temperament designates un-
ambiguously the pitch of each note it contains.
Other aspects of music manifest themselves in the
presence of more than one note. The time interval
between the onsets of separate notes creates the
perception of rhythm (how the notes of the piece
are positioned in time). The unit of time for music
is de�ned as the beat. The meter determines the
pattern of accented beats. The time signature of a
piece de�nes the unit of a beat and the pattern of
accents. The most common meters are 44 time and34 time. In 44 time, every fourth beat is accented
and we group the beats of the song in four beat long
measures. A classic example is \Twinkle, Twinkle
Little Star". A 34 time piece accents every third
beat and the piece is divided into three beat long
measures. This is the time signature used by most
waltzes. A famous example is \Amazing Grace".

In addition to the temporal relation between two
notes, they are also separated by an interval in
the space of pitches, which we describe simply by
the number of semitones between the two pitches.
Some common intervals are expressed in Table 1.

Half step One semitone
Step Two semitones

Minor third Three semitones
Major third Four semitones
Perfect �fth Seven semitones
Octave Twelve semitones

Table 1: Common intervals in number of
semitones.
Furthermore, gathering more than two pitches to-
gether creates the concept of harmony. Three pitches
form a triad. A triad constructed by a major third
followed by a minor third is called a major triad.
A minor triad is constructed with a minor third
stacked below a major third.
The set of twelve pitch class representatives com-
prises an octave. This comes from the concept of
a scale: a sequence of pitch classes that begins and
ends with the same pitch class. A scale may begin
on any of the twelve pitch classes. There are sev-
eral avors of scales which are determined by the
sequence of intervals used to construct the notes
of the scale. For example, the major scale is con-
structed with the following intervals: step, step,
semitone, step, step, step, semitone.
Observe that this sums to twelve total semitones:
the scale returned to the pitch class at which it be-
gan. Note also that the most commonly heard scale
contains eight notes (hence the term\octave"). Like
triads, scales can be major or minor. A composer
will frequently designate a key signature for a piece,
indicating the scale from which the majority of the
pitches will come. If a piece is written in the key
of A major, we call the A major chord the home
key (I). Generally, a piece in a major key has a
brighter or happier sound than a piece in a minor
key, which often sounds somber or dramatic.
2. STATISTICAL MECHANICS APPLIED TO

MUSIC
Recall from the statistical mechanics discussion, we
as human observers perceive temperature and pres-
sure. As physicists, our understanding of particle
dynamics allowed us to explain the observed vari-
ables as functions of more basic variables.



For the musical analysis we describe here, we work
in reverse. Analogous to the particle microstates
of position and velocity are the pitch and rhythm
information of each note in a piece of music. This
is provided to us in the form of the musical score as
written by the composer. We will endeavor to dis-
till the musical microstate information into func-
tions that describe broader features of the piece
of music. We call these variables hearables in anal-
ogy to the observables of statistical mechanics. We
propose that these hearables model the perception
of a listener.
2.1 Basic musical variables
For this study, we focus on musical compositions
which are encoded into the MIDI format [9]. The
MIDI format [8] was invented in 1983 as a way to
store musical data taken from electronic keyboards.
It is a widely accepted protocol and contains data
for all of the variables we wished to study. MIDI
�les take the form of long strings of hexadecimal
numbers specifying everything from the pitch, vol-
ume, and onset time of each note in the piece to the
time signature and comments like copyright data.
For the purposes of this study, we de�ne three fea-
tures of individual notes that we consider as ba-
sic variables. First is the pitch of the note | the
frequency of the note's sound wave | rounded to
the nearest pitch class in the western 12-note scale.
In MIDI, the note known as middle C on the pi-
ano keyboard (256 Hz) is given a pitch value of
60. The unit of measurement is a semitone, so 61
corresponds to the C] above middle C and 72 cor-
responds to the C an octave above middle C. In
general the MIDI note number p corresponds to
the frequency f of the pitch according the formula

p = 69 + 12 log2 f
440 :

Second, the MIDI onset time provides a rhythmic
variable. Some manipulation of MIDI code allows
us to represent the onset time of each note in terms
of beats instead of milliseconds. A note that begins
on the �rst beat of the �rst measure of the piece has
an onset time of 1. A note falling on the second half
of beat two in measure one has an onset time of 2:5.
In 44 time, beat one in measure 2 has onset time 5,
while in 34 time, beat one in measure 2 has onset
time 4, and so on. We do not explicitly consider
the duration of notes, and only concern ourselves
with the time at which notes begin, as this contains

the most pertinent rhythmic information.
Third, for much of what follows, it is useful to dis-
tinguish notes played by di�erent instruments, or
voices. MIDI format makes this very simple as
one of its stored variables designates the channel of
each note. That is, which instrument played which
note. In some cases, such as keyboard works for
which a single instrument e�ectively plays several
parts simultaneously, we simply designate all notes
of pitch higher than middle C (60) as being one
voice and all notes below middle C being another
voice.
2.2 Proposed Hearables
In the same way that the thermodynamic variables
of temperature and pressure correspond to features
of a system that are relevant and easily observed by
a human observer, our hearables ought to be easily
understandable and relatable to a listener. In this
vein, we have considered our own listening habits
and consulted with avid audiophiles and professors
of music theory to discover what it is that allows
us to classi�es musical pieces. In this work, we de-
sign and implement algorithms that compute these
hearables from MIDI �les. The result is a suite of
computer software that can detect the features of
music that listeners deem most representative of a
musical style, and perhaps can detect subtler fea-
tures not obvious to a casual or focused human
listener.
One easily quanti�able idea is the complexity of
a piece. Di�erent eras of music are known for in-
tricate rhythms, harmonies, and melodies, while
other eras are more stark and minimalistic. In
what follows, we quantify complexity as entropy.
Another hearable relates to the idea of signature
patterns. Just as many literary authors have fa-
vorite turns of phrase or characteristic terminol-
ogy, composers exhibit signature ideas in several
domains of musical composition. Within a piece, a
composer might repeatedly develop a rhythmic or
melodic idea. In a broader sense, a composer might
have a characteristic rhythm, melody, or harmonic
progression that one would expect to �nd in many
pieces by this composer. A listener who hears this
\Mozart-like" rhythmic pattern can guess that the
piece was composed by Mozart.
Finally, the harmonic structure of a piece is indica-
tive of its era. Generally, composers grew more ad-
venturous with harmony over the centuries. Very



early compositions invoke only the harmonies of
the home key and very near neighbor keys. On
the other end of the spectrum, modern composers
experiment with atonal music which does not con-
form to any well-de�ned key. We visually present
the distribution of harmonies in a given piece or
collection of pieces as a harmonic landscape.
3. FLEXIBLE TOOLS FOR MUSICAL ANAL-

YSIS
3.1 Complexity
Complexity can be quanti�ed as a form of entropy.
Entropy, in the sense of statistical mechanics, might
be said to characterize the unpredictability of a sys-
tem. A piece of music that is entirely predictable
is, by de�nition, not very complex. Consider a
piece consisting solely of a single pitch played at
a constant rate. This is perfectly predictable (low
entropy) and also very simple (low complexity).
Given a probability distribution P (xi), we can cal-
culate the entropy of the distribution with the fol-
lowing equation:

S = �
nX

i=1
P (xi) log(P (xi)):

In order to evaluate the entropy or complexity of a
piece, we only need to generate distributions which
represent the piece as heard by an observer. As
suggested by Madsen and Widmer [5], we sepa-
rately evaluate the melodic and rhythmic complex-
ity of a single voice in a piece and average them
to �nd a total entropy for that voice. We give
the rhythmic and melodic entropy equal weight.
Melodic entropy is evaluated in two ways, by pitch
class and by intervals, which we again weight equally:

Smusical = 1
4(Sm + Sint) + 1

2(Sr):

Our probability distribution for rhythm is the col-
lection of inter-onset times (that is, the time elapsed
between two adjacent notes in a single voice of a
piece):
Pr(xi) = number of occurrences of inter-onset time xi

number of notes in the piece� 1

Sr = �
nX

i=1
Pr(xi) log(Pr(xi)):

In this case, minimum entropy occurs when notes
are played at some constant rate, independent of

pitch.
For the melodic entropy, we used two distributions
to capture melodic complexity. One is the distri-
bution of pitch classes of a voice:
Pm(xi) = number of occurrences of pitch class xi

number of notes in the piece

Sm = �
nX

i=1
Pm(xi) log(Pm(xi)):

In this case, minimum entropy is given by the same
pitch repeated constantly.
Unfortunately, a simple musical scale would achieve
maximum entropy with this measure (each note is
a di�erent pitch). Thus we also use the distribu-
tion of intervals between two adjacent notes as an
indicator of melodic entropy:
Pint(xi) = number of occurrences of interval xi

number of notes in the piece� 1

Sint = �
nX

i=1
Pint(xi) log(Pint(xi)):

In this case, a simple scale possesses minimum en-
tropy.
We average these two quantities for a generalized
melodic entropy. Thus, we calculate the rhythmic
and melodic entropy of a voice in a piece and then
average these quantities to �nd the entropy of that
voice. For pieces comprising more than one voice,
we average over the n voices to represent the total
complexity of the entire piece:

Stotal = 1
n

nX
i=1

Smusical:

We did not implement a measure for harmonic en-
tropy, nor did we consider harmonies in our calcu-
lation of the net complexity of a voice or piece.
3.2 Signature Patterns
Within a piece of music, rhythmic, melodic, and
harmonic ideas are repeated and developed in in-
teresting ways. An excellent example can be found
in Beethoven's Fifth Symphony, in which the iconic
\Bum-bum-bum BUM" rhythm is repeated hun-
dreds of times, with di�erent pitches, throughout
the �rst movement of the piece. We have developed



a program to search MIDI �les for these repeated
patterns.
At the lowest level, the program can be provided
a target rhythmic or intervallic pattern or a tar-
get harmonic progression. We search the given
piece for examples where the target pattern occurs.
With an additional loop, the program uses each
measure of each voice of a piece as a target and
searches for duplicates located in any later mea-
sure in any voice. Any rhythmic or intervallic pat-
tern that occurs two or more times in a piece is
recorded as a pattern for that piece. An additional
input parameter is a tolerance, which allows for
pieces with exible rhythm (such as jazz improvi-
sation) to still present patterns. The program can
also be instructed to consider only patterns that
are shorter or longer than a single measure. Fi-
nally, the melody pattern �nder can be altered to
consider diatonic (within the scale) motion as iden-
tical even when the exact intervals di�er slightly.
For example, in C major, C-D-E would be written
as \+2;+2" whereas D-E-F would be \+2;+1" al-
though the two patterns are diatonically identical.
The output for these pattern �nder algorithms comes
in two parts. The programs output the patterns in
an easily-read format, and also provide a tally ta-
ble indicating the measures in which each pattern
appears. Rhythmic patterns are written as a vec-
tor of the onset times of each note in the pattern.
Thus, Beethoven's well known pattern would read
in our format \1:5, 2, 2:5, 3."

Figure 1: Excerpt from violin part for �rst
movement of Beethoven's Fifth Symphony
and example output from rhythm pattern
�nder program applied to this piece. Note
the iconic rhythm in line 13.
The example output shown in Figure 1 was gener-
ated by searching for four-beat rhythmic patterns

in Beethoven's Fifth Symphony. Observe that line
thirteen contains the iconic \bum-bum-bum BUM"
rhythm. An additional output catalogs the mea-
sures in which each of these rhythmic patterns ap-
pears (that is, if we look at line thirteen of the other
output data structure, we see which measures con-
tained this rhythm). It should be noted that the
line number (13 here) merely indicates that this is
the 13th in an unordered list of identi�ed patterns.
Once these within-piece patterns have been found
for a number of pieces by the same composer, we
can search for patterns which occur in two or more
separate pieces - signature patterns. When given
a collection of pieces by the same composer, we
locate the patterns found within each individual
piece. Comparing these located patterns, we iden-
tify the patterns that appear in more than one
piece. These signature programs again provide two
outputs. Each signature is written in an easily-read
format along with a count of the separate pieces
exhibiting the associated pattern. The signature
rhythm program groups pieces in triple time (three
or six beats per measure) separately from pieces
in duple time (the number of beats in a measure
is a power of two) as the rhythmic language dif-
fers so greatly between the two. Similarly, for har-
monic signatures, pieces in major and minor keys
are treated separately.

Figure 2: Example output from signature
interval program. The leftmost column in-
dicates the number pieces in which the pat-
tern is found. Columns three through the
end depict the pattern of intervals. The 100s
are placeholders.
The example output shown in Figure 2 was gen-
erated by searching for interval patterns through-
out the complete collection of Mozart's string quar-
tets. Observe that the pattern\�2;�1; 1"occurs in
four separate pieces in the collection. Similarly, a
descending octave (�12) followed by �ve repeated
notes (0) occurs in two of the string quartets.
3.3 Harmonic Landscape



From the macroscopic pitch data, we assign a chord
of best �t to a collection of notes as an approxima-
tion of harmony. Krumhansl and Kessler [3], in
their perceptual psychology study, cataloged how
well each of the twelve pitch classes �t within each
of the 24 major and minor chords. This generated
24 distributions representing perceived goodness-
of-�t of each pitch class within each chord. Given
a collection of notes, we construct a distribution
of pitch classes. By comparing this distribution
to the self organizing map data of Krumhansl and
Toivenen [4], we identify the chord that �ts best.
The program has an adaptive feature that can iden-
tify the chord of best �t at the �nest appropriate
temporal scale | the pitches within one beat, a
collection of beats, etc.
Once this has been done, we compute the distri-
bution of harmonies within the twenty-four major
and minor keys. This data is illustratively pre-

Figure 3: Major and minor keys arranged in
a two dimensional Tonnetz.
sented in a two dimensional histogram with the
twenty-four major and minor keys arranged in ac-
cordance with the two-dimensional Tonnetz [2], a
map of keys shown in Figure 3 in which keys with
close harmonic relationship are also nearby geo-
metrically. In this way, keys that are closely re-
lated harmonically are near to each other in our
histogram. When considering collections of pieces,
we transpose every piece into the same key | we
replace the Tonnetz C major and c minor with the
harmonic symbols I and i (that is the major chord
of the �rst note of the key, the minor chord of the
�rst note of the key).
Since the original key of the piece is unimportant in

this context, we can aggregate harmonic counts be-
tween pieces. Thus, given a collection of pieces by
a composer, we generate normalized aggregate his-
tograms presenting the frequency of each harmony
relative to the given home key. We treat keys in
major and minor keys separately to accommodate
the di�ering harmonic languages.
4. APPLICATIONS
4.1 Complexity
As an application of the usefulness of the complex-
ity measure, we explore how complexity varies over
a period of time by �nding the average complexity
of various composers from the Baroque and Classi-
cal periods. From the early Baroque period, Jean-
Philippe Rameau (1683 � 1764) exhibits a com-
plexity of 2:2950 (standard deviation 0:2040) and
Francois Couperin (1668�1733) shows a complex-
ity of 2:2980 (standard deviation 0:1688). We see
that these two composers present nearly identical
complexities. These complexities are the highest of
all the composers we investigated, as might be ex-
pected: Baroque music is characterized by complex
ornamentation, such as trills, which would serve to
arti�cially increase the rhythmic and melodic en-
tropy of a piece.
From the late Baroque period, George Frideric Han-
del (1685 � 1759) presents a mean complexity of
1:8367 (standard deviation 0:1858), while Johann
Sebastian Bach (1685� 1750) exhibits a complex-
ity of 1:7073 (standard deviation 0:1876). We see
that, for these slightly later composers, the com-
plexity is signi�cantly lower than the early Baroque
composers. One wonders if this is indicative of a
rapid mentality shift with regards to complexity
over the course of the Baroque period, or if this
discrepancy can be explained by the geographic dif-
ferences of the composers (Rameau and Couperin
were French, while Handel and Bach were Ger-
man). This low complexity is consistent with a
characterization of Bach's music as being largely
scalewise in motion, often with simple rhythmic
organization.
Finally, we have the string quartets of Classical
composers Joseph Haydn (1732� 1809) and Wolf-
gang Amadeus Mozart (1756 � 1791). Haydn's
pieces average to a complexity of 1:8860 (standard
deviation 0:1693), while Mozart's pieces exhibit a
mean complexity of 1:9465 (standard deviation 0:1613).
Taken together, we see a fascinating trend of high
complexity in the early Baroque period, to very
low complexity in the late Baroque, and a very



slight increase in complexity during the Classical
period. Obviously, much more data are needed to
form any conclusions about the long-term develop-
ment of complexity and there are also many com-
plicating factors, such as geography. It appears
that this complexity measure could be useful as a
scalar descriptor of a piece of music.
4.2 Signature Patterns
We have applied our signature pattern �nders to
each of the aforementioned composers. Our early
Baroque composers, Rameau and Couperin, present
very few signature rhythms amongst their compo-
sitions. Any recurring patterns seldom appear in
more than two pieces and are remarkable for their
irregular onset times suggestive of ornamentation
and grace notes. Essentially no signature interval-
lic patterns were found for either composer. This
paints the picture of composers who created variety
with novel rhythms and melodies, without speci�c
repetition or development thereof.
The change from the early Baroque period to the
late Baroque is noteworthy. While Rameau and
Couperin seldom reuse any rhythmic or melodic
ideas, the studied works of Handel and Bach con-
tain many rhythmic and melodic patterns used in
separate pieces. From 109 keyboard pieces com-
posed by Handel, our software located 504 rhyth-
mic patterns and 633 intervallic patterns repeated
between pieces. Some of these signatures were used
in nearly forty di�erent pieces, or almost 40%! The
patterns themselves are quite illuminating. As might
be expected, Bach's favored rhythmic patterns use
constant eighth or sixteenth note rhythms. His fa-
vorite melodic patterns are mostly scalewise mo-
tion, with the most frequent non-scalewise pattern
taking the form of a simple arpeggio.
Classical composers Haydn and Mozart also present
hundreds of repeated rhythmic and melodic ideas
| The two composers speak the same rhythmic
language. Melodically, however, we begin to see
some di�erences. Mozart's repeated melodic pat-
terns vary in note length between three and eight
notes, while nearly all of Haydn's signature melodic
patterns are exactly four notes long. Haydn is more
prone to use simple arpeggios than Mozart as well.
Finally, we found one curiosity: one of Haydn's fa-
vorite melodic patterns comprises a note, then de-
scending exactly one octave and repeatedly playing
the lower note. Mozart also enjoys this pattern,
however his version always takes on an ascending
format: playing one note, then repeatedly playing

the note one octave above the original note.
The possibilities of signature patterns are very promis-
ing. With so much cross-pollination of musical
ideas between pieces, if we were to more carefully
analyze the vast amounts of data, we expect we
would �nd certain rhythmic or melodic ideas that
are completely unique to a certain composer.
4.3 Harmonic Landscape
Finally, we aggregate the harmony distributions of
each composer to generate a major and minor har-
monic landscape for each. These aggregated his-
tograms represent the probability distribution of
each harmony for a composer. The relative usage
of each chord can be easily observed in the his-
tograms.
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Figure 4: The major harmonic landscapes
of Rameau (top) and Couperin. Note the
steepness of the histograms. Both are heav-
ily centered on the home key I.

As before, we begin with the early Baroque com-
posers Rameau and Couperin. The most striking
feature of the distributions shown in Figure 4, espe-
cially Rameau, is the steepness of the histogram.



The home key (I) accounts for nearly half of the
harmonic distribution in Rameau. Distant keys
are completely unrepresented. Another curiosity
is the prominence of the major fourth (IV) and the
absence of the major �fth (V). In more modern
music, the major �fth is a very important chord
which is used to exibly move between keys. Pro-
gressions involving the major fourth have a more
ancient sound. In fact, the fourth is a very impor-
tant chord in psalms and religious chanting.
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Figure 5: The major harmonic landscapes of
Handel (top) and Bach. Note that the major
�fth (V) and the major fourth (IV) now rival
each other in usage. Observe also that the
distributions are less heavily centered on the
home key (I).
Investigating the late Baroque major-key works of
Handel and Bach, we begin to see some develop-
ment in the distributions shown in Figure 5. The
major �fth (V) and the major fourth (IV) now rival
each other in use. There is more exploration of dis-
tant keys, in particular the minor second (ii) and
the relative minor (vi) are becoming prominent.
In minor pieces, we �nd some more surprising re-
sults. As seen in Figure 6, the minor fourth (iv) is
again used signi�cantly more than the �fth (either

1

2

3

4

5

6

1
2

3
4

0

0.1

0.2

0.3

0.4 IV# 

iv# 

II  

I   

VII 

ii  

vii 

VIIb

V   

viib

IV  

vi  
III 

v   

iii 

IIIb

iiib

VI  

i   

VIb 

vib 

iv  

I#  

i#  

Student Version of MATLAB

1
2

3
4

5
6

1
2

3
4

0

0.1

0.2

0.3

0.4

IV# 
iv# 

VII 

II  

vii 

III 

ii  

vi  

V   
iii 

VI  

VIIb

IV  

v   
I   

viib

IIIb

i   

iiib

VIb 

iv  

vib 

I#  

i#  

Student Version of MATLAB

Figure 6: The minor harmonic landscapes
of Handel (top) and Bach. Note the explo-
ration of nearby major keys on the part of
Handel. Observe also that the minor fourth
(iv) is used much more than the �fth (either
V or v).

V or v), revealing that the composers were more
comfortable with an ancient sound in their more
somber pieces. We also see extensive exploration
of nearby major keys.
Finally, for Haydn and Mozart the distributions
shown in Figure 7 represent a more modern sound,
as the major �fth (V) has �nally overtaken the ma-
jor fourth (IV) in usage. There is also exploration
of many nearby keys, most prominently the minor
second (ii) and the relative minor (vi) again.
The minor harmony distributions of Haydn and
Mozart (Figure 8) are remarkable for being very
spread out. In particular, Haydn spends almost
as much time in the relative major (III[) as in the
home minor key (i). We begin to also see the mod-
ern practice of using the major or dominant �fth
(V) in minor compositions rather than just major
compositions.

5. CONCLUSIONS AND AVENUES FOR FUR-
THER RESEARCH



1

2

3

4

5

6

1
2

3
4

0

0.1

0.2

0.3

0.4
IV# 

iv# 
vii 

iii 

II  

VII 

ii  

VIIb

V   

viib

III 

v   

VI  

IIIb

I   

iiib

i   

vi  

VIb 

IV  

vib 

iv  

I#  

i#  

Student Version of MATLAB

1

2

3

4

5

6

1
2

3
4

0

0.1

0.2

0.3

0.4
IV# 

iv# 

VI  

vii 

iii 

II  

VII 

ii  

VIIb

V   

III 

viib

v   

IIIb

I   

iiib

i   

vi  

VIb 

IV  

vib 

iv  

I#  

i#  

Student Version of MATLAB

Figure 7: The major harmonic landscapes
of Haydn (top) and Mozart. Note the in-
creased prominence of the major �fth (V)
and the extensive exploration of nearby
keys.

The focus of this research has been to develop ex-
ible tools to simplify further research. The MAT-
LAB programs we developed for this purpose can
be found at [10]. We believe we have succeeded
in this aim and have only conducted preliminary
inquiries with the tools to test their usability. The
potential for further study is both wide and fasci-
nating.
The calculation of the complexity of a piece is ex-
ceedingly simple and quick, because repeated nested
loops are not required as for the signature pat-
tern �nders. Running many pieces through the
program, we can formulate a better idea of the
changes in complexity over time, as we began to see
above. Additionally, small adjustments of the pro-
gram allow us to compare the complexity of each
individual voice or only the melodic entropy. We
could also consider harmonic entropy using the dis-
tribution of the twenty-four major and minor har-
monies.
The pattern �nder tools can be adjusted to allow
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Figure 8: The minor harmonic landscapes of
Haydn (top) and Mozart. Note the growing
prominence of the major �fth (V) and the
use of nearby major keys.

researchers to search an entire collection of works
for speci�c rhythmic, melodic, or harmonic pat-
terns of interest. If one does not have a speci�c
target in mind, the programs can adaptively cre-
ate these targets from the pieces themselves. This
allows us to very easily and quickly catalog even
the subtlest patterns of a composer within a piece.
The signature pattern �nders are more promising
still. By supplying the programs with ever more
pieces by the same composer, we can say with more
and more con�dence which patterns were preferred
by that composer. As noted above, signature pat-
terns could be invaluable in distinguishing between
two similar composers such as Haydn and Mozart.
The algorithm for �nding the chord of best �t can
be improved. Currently, it can only identify the
twenty-four major and minor keys. More modern
music frequently uses other chord qualities, notably
chords of four notes. Most important among these
is the dominant seventh chord (given by the inter-
vals: major third, minor third, minor third). A
similar psychological study to that of Krumhansl
and Kessler [3] could be used to create reference



distributions for other chord qualities than the twenty
four major and minor chords. This would allow
more precision in our harmony identi�cation (as it
is, dominant chords tend to manifest as either the
major chord that makes up the bottom half of the
chord or the minor chord that makes up the upper
half).
A potential goal for the future would be the care-
ful collection of reference data from many di�er-
ent composers. From this, we hope to be able to
correctly guess the era or composer of a mystery
piece. Given an unknown MIDI �le, we can calcu-
late its complexity, �nd any repeated patterns, and
generate its harmonic landscape. Each of these de-
scriptors can then be compared to our collection
of reference data to �nd the best match for era or
composer.
Two further questions might explore the social and
geographic development of western music. Presently,
we have only endeavored to note the changes in
complexity, signature patterns, and harmonic con-
struction over time. Another avenue of inquiry
would be to study how these variables change geo-
graphically in the same time period. Does Classi-
cal French music have a di�erent characteristic har-
monic distribution than Classical Germanic music?
Historically, some composers, such as Bach, were
known to compose pieces on commission. These
pieces often took the form of expansions or vari-
ations on a previously existing melody and were
composed rather quickly. We wonder if we can dis-
tinguish between these commissioned pieces and
pieces composed over a long period of time with
the complete attention of the composer. Might
these uncommissioned pieces contain more com-
plex musical ideas or more signature touches? Per-
haps they would contain more adventurous har-
monic ideas?
We are also interested to apply our programs to
modern popular music. The MIDI �les are readily
available for most popular songs of the past �fty
years. Many popular music software today such as
Apple's Genius and Pandora Internet Radio have
features which suggest artists considered similar to
other musical artists. Our musical analysis pro-
grams could provide quantitative comparisons be-
tween two di�erent artists or two di�erent songs.
Overall, the current work shows great promise and
suggests many further applications, re�nements,

and developments.
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