
Extending the Schwartz-Saltikov Algorithm to Visualize
Three-Dimensional Particle Distributions

Bennjamin Snyder

The College of Wooster
benn.snyder@gmail.com

Denise Byrnes

The College of Wooster
dbyrnes@wooster.edu

Ruth Steinhour
The College of Wooster

rsteinhour13@wooster.edu

John David
Virginia Military Institute

davidja@vmi.edu

Joshua Thomas
The College of Wooster

josh.e.thomas11@gmail.com

ABSTRACT
Data collected from two-dimensional images
of three-dimensional material samples does
not always provide sufficient information
about the three-dimensional characteristics of
particles in the sample. We extend the
Schwartz-Saltikov algorithm [2, 9] to relate
the two-dimensional distribution of particle
diameters to their three-dimensional
distribution. We implement the extended
algorithm as a plug-in to an existing image
analysis tool. The plug-in automates many of
the tasks required to preprocess images for
analysis. The plug-in displays the data
collected during the analysis phase and
provides a three-dimensional visualization of
the distributed particles.
1. INTRODUCTION
Introducing additives to chemical compounds
can improve the physical properties of the
compounds, enhancing elasticity, toughening
efficiency, and impact resistance [7, 8] for
example. By examining the three-
dimensional structure of a blended chemical
we can observe the correlation between
additive distribution and desirable
characteristics.
Analysis of additive distribution involves
taking microscopic (scanning electron
microscopy or transmission electron
microscopy) cross-sections of compounds,
producing two-dimensional slices less than

100 nm in thickness. In the slice, additives
appear as particles.
We extend the Schwartz-Salktikov algorithm,
as presented by Corte and Leibler [1] to
produce a three-dimensional visualization of
particle distribution using two-dimensional
particle image information.
2. SCHWARTZ-SALTIKOV
ALGORITHM
The purpose of the Schwartz-Saltikov
algorithm is to predict the three-dimensional
distribution in particle diameter based on the
two-dimensional distribution in particle
diameter.
The algorithm corrects for the phenomenon
known as the cross-section effect.
2.1 Cross-Section Effect
Consider a spherical object such as an orange.
If we slice the orange horizontally, the cut
exactly through the center of the orange has
the orange's correct diameter. Any other
horizontal cut produces a diameter smaller
than the actual diameter. The cross-section
effect is depicted in Figure 1.

Figure 1: The Cross-Section Effect

The middle circle slice is the actual diameter.

For our purposes, the two-dimensional
sample images are taken from cross-sections
of a polymer blend. The samples contain
various particles that result from the cross-
sectioning process. The particles are shown in
white in Figure 2. Because the particles are
positioned in three-dimensions, they do not
all lie in the same horizontal plane.

Figure 2: Example Cross-sectioned Image

Thus when the cross-section is taken, the
resulting particle diameters can vary
significantly. It is possible than none of the
particles are sliced through their centers,
meaning that none of the particles in the
cross-section have the correct diameter.
2.2 Algorithm
The algorithm works by using the two
dimensional distribution in particle diameter
to predict the three dimensional distribution.
The 2-D distribution vector is determined by
binning the particles based on their two-
dimensional diameter measurements. The

!

i
th

entry in the distribution vector indicates the
number of particles per unit area that have a
diameter in between

!

i*" and

!

(i +1)*" ,
where Δ is the specified bin size.

The algorithm uses the 2-D measurements to
predict actual particle diameter in three
dimensions. The

!

j
th entry in the 3-D

distribution vector is the number of particles
per unit volume that have a diameter between

!

j *" and

!

(j +1)*" .
The Schwartz-Saltikov algorithm relates the
two-dimensional distribution in particle
diameter to the three-dimensional distribution
in particle diameter with a transition matrix:
2-D Distribution Vector = Transition Matrix *
3-D Distribution Vector [1].
The transition matrix TM is defined by:

!

TM = H * I + " * (j +1)2 # (i2) # j
2
i

2()

if

!

i " j [1]. EQ 1

H is the thickness of the cross-section and I is
the identity matrix [1]. This produces an
upper-triangular matrix, so we use back
substitution to solve for the three-dimensional
distribution.

3. IMPLEMENTATION
In this section, we describe the design and
implementation of our 3D Particle plug-in.

3.1 ImageJ
ImageJ is a free, open source image-editing
and analysis tool that is developed and
maintained by the National Institutes of
Health [5]. The tool is written in the Java
programming language. ImageJ can open
many types of images, make modifications to
the images (cropping, paint brush tool, and so
on) and apply filters to the images.
ImageJ allows customization through the use
of extensions: macros and plug-ins. These
extensions provide the ability to automate
preexisting tasks, create new ImageJ tools
(macros), and create entirely new
functionality for the application [6]. These
features allow us to implement the Schwartz-
Saltikov algorithm.

3.2 OpenGL
OpenGL is ``the industry's most widely used
and supported 2D and 3D graphics
application programming interface'' [4]. To
paraphrase, OpenGL is an open source
platform that supports features ranging from
rendering to texture mapping. OpenGL's
diverse capabilities allow it to be used for
many different applications, such as
``broadcasting, CAD/CAM/CAE,
entertainment, [...], and display[ing]
incredibly compelling 2D and 3D graphics''
[4]. In our case, OpenGL is combined with
the Java programming language (JOGL) to
produce three-dimensional renderings of
particle distributions for our 3D Particle plug-
in.

3.3 Plug-in Features
The flowchart in Figure 3 depicts the
execution flow of our plug-in.

Figure 3: Execution Flow of the 3D Particle Plug-in

The first feature in the plug-in is a user-
selectable, automated options window (Figure

4) that simplifies the manual tasks a user
performs prior to image analysis. This allows
the user to select the editing tasks appropriate
for the image they are working on. The
automation process removes the time-
consuming manual navigation of menus and
options required to edit and preprocess an
image in ImageJ.

Figure 4: Automated Tasks in 3D Particle Plug-in

The plug-in automatically executes these
tasks for the user (with prompts for manual
input when necessary).
After completion of preprocessing options,
the plug-in hands off the preprocessed image
to ImageJ for particle identification. ImageJ
identifies particles using an edge detection
algorithm. It also identifies the x-y location
and area of each particle.
Once the identification phase completes, the
particles are returned to the plug-in to be
placed in bins based on the particle’s size.
The binned particles are then automatically
analyzed using the Schwartz-Saltikov
algorithm.
The second feature of the plug-in produces a
histogram and graphs of relevant data
These graphs are a Probability Density
Function (PDF) and a Cumulative
Distribution Function (CDF).
The histogram gives the number of particles
with a diameter between

!

j *"and

!

(j +1)*" .
These values correspond to the values stored
in the 3-D distribution vector obtained
through the application of the Schwartz-
Saltikov algorithm. The Probability Density

Function shows the same information, but
expresses the number of particles per unit
volume as a percentage of total particles per
unit volume.
The Cumulative Distribution Function shows
the percentage of particles that have a
diameter less than or equal to a specified
value.
The final feature of the plug-in produces a 3-
D visualization of particle distribution. This
feature is implemented using JOGL.
3.4 Density and Distribution Functions
3.4.1 Probability Density Function
The histogram and Probability Density
Functions are shown in Figures 6 and 7
respectively, for the sample image in Figure
5.

Figure 5: Sample Image

Figure 6: Histogram produced from a sample image. H

represents the thickness of cross-sections in three-
dimensions.

Figure 7: PDF produced from a sample image. H
represents the thickness of cross-sections in three-

dimensions.

3.4.2 Cumulative Distribution Function
The 3D Particle plug-in also includes an
option to display a Cumulative Distribution
Function (CDF) of the analysis. Figure 8 is a
CDF for the sample image in Figure 5.

Figure 8: CDF produced from a sample image. H
represents the thickness of cross-sections in three-

dimensions.

3.5 3-D Visualization
We use each particle's center of mass to place
the particle in the xy-plane. The particle
dispersion in the xy-plane should match the
particle dispersion in both the xz- and yz-
planes. Therefore, we use the distribution in
particle distance in the xy-plane to determine
the particle’s depth (z-location). We place the

particles in z such that the particles have the
same dispersion in all three planes.

3.5.1 Distribution in Particle Distance
For each particle, we measure the distance
between the particle and every other particle
and store this information in a vector. For all
of our sample images, this data fits a normal
distribution curve as shown in Figure 9.

Figure 9: The x-axis displays the distance in pixels and
the y-axis indicates the total frequency that the
corresponding distance occurs between all particles in the
sample image.

One can use the mean and standard deviation
of the particle distance data to predict particle
depth. This is accomplished by minimizing
the following equation.

!

J z() = µxz "µxy()
2

+ µyz "µxy()
2

+ # xz "# xy()
2

+ # yz "# xy()
2

 EQ 2
In this equation, µ is the mean of the particle
distance in the associated plane and σ is the
standard deviation. The particles' z-
coordinates are stored in vector z. This
equation uses µ and σ in the xy-plane as a
reference and compares it to µ and σ in the
xz- and yz-planes. By minimizing this
function, we determine a vector z such that µ
and σ of the particle distance distribution in
all three planes are roughly equivalent.

3.5.2 Optimization
The authors investigated optimization
routines to improve the run time
by minimizing EQ 2. The methods
investigated were Nelder-Mead and Steepest
Descent. Both methods require an initial
iterate for z. To determine this iterate, we
consider the particle locations in the xy-plane.
First, we compute the mean and standard
deviation of the particles' x-coordinates and
y-coordinates. Then, we average the two
means and we average the two standard
deviations. We use these averaged values and
a random number generator to assign random
z-coordinates that fit the average mean and
standard deviation of the xy-coordinates. This
step is performed ten times, generating ten
possible initial iterates. The z that returns the
lowest value of Equation 2 is used as the
initial iterate for optimization.
Both optimization methods run slowly and
yield only a slight improvement from the
initial iterate. We use Matlab's fminsearch
function to perform Nelder-Mead. Nelder-
Mead uses a simplex of N+1 points to find
the minimum of a function in N-dimensions.
This runs slowly because some of our sample
images have several hundred particles,
resulting in a large simplex.
We use Kelley's implementation of the
steepest descent method [3]. We determine
the gradient using a finite difference method.
Steepest Descent also runs slowly because the
function's gradient is small.
4. RESULTS
In the final implementation of the 3D
Particles plug-in, we do not implement either
optimization technique discussed in section
3.5.2. We implement the procedure to
calculate an initial iterate for optimization and
then use that iterate for the z-coordinates in
the three-dimensional rendering. We
recommend this method, as the optimizations
take several hours and yield only slightly

better results. Table 1 summarizes the percent
improvement attained by finding z through
optimization compared to using the initial
iterate.

Table 1: Percent improvement attained by finding z
through Nelder-Mead the optimization for sample image

in Figure 5.

Figure 10: These graphs show the distribution results
using the image in Figure 5. The left graph displays the
distance distribution on the x-y plane. The center graph
displays the distance distribution in the xz-plane using
the randomly generated iterate. The graph on the right
displays the distance distribution in the xz-plane using z
values found through optimization.

We see both quantitatively and visually that
the optimization produces only a slight
improvement. These results are roughly
consistent across all of the sample images we
analyzed. As such, we feel that the added
computations and runtime do not produce a
significant increase in accuracy for their
costs.
4.1. Java OpenGL Rendering
Equations 1 and 2 in sections 2.2 and 3.5 are
applied to an OpenGL canvas using JOGL
(Java OpenGL). Each particle is placed into
the three-dimensional canvas using its center
of mass for its (x,y) location. We take the z-
coordinates for the particles from the initial
iterate as described in section 3.5. We give
each particle its diameter from the two-
dimensional image. We then compute α, the
average growth rate of the particles from two
dimensions to three dimensions.
The growth rate is computed by taking the
sum of the values in each bin of the three-

dimensional distribution of a given thickness
and dividing by the sum of the values in each
bin of the two-dimensional distribution. This
ratio is our growth factor, α. Each particle's
diameter is then multiplied by α. This results
in diameters that are scaled by the distribution
of particle sizes in three dimensions.
Figures 11 and 12 show the three-dimensional
rendering of various sample images.

Figure 11: Top down view of three-dimensional particle
distribution.

Figure 12: Default angle view of the three-dimensional
particle distribution.

5. ACKNOWLEDGMENTS
We acknowledge the Applied Mathematics
Research Experience program at The College
of Wooster for supporting this project during
the summer of 2011. We also acknowledge
The Goodyear Tire & Rubber Company,
especially Craig Burkhart and George
Papakonstantopo, R&D Associates, for
supporting this project.
6. REFERENCES
[1] Corte L, Leibler L. Analysis of Polymer

Blend Morphologies from Transmission
Electron Micrographs. Polymer
2005:46:6360-368.

[2] Giumelli AK, Militzer M, Hawbolt EB.
Analysis of the Austenite Grain Size
Distribution in Plain Carbon Steels. ISIJ
International 1999; 39:271-80.

[3] Kelly CT. Iterative Methods for
Optimization. Society for Industrial and
Applied Mathematics. SIAM 2011.
http://www.siam.org/books/kelley/fr18/in
dex.php.

[4] Khronos Group. OpenGL Overview 2011.
http://www.khronos.org/opengl.

[5] National Institutes of Health. ImageJ.
http://rsbweb.nih.gov/ij/.

[6] National Institutes of Health. ImageJ
Features.
http://rsbweb.nih.gov/ij/features/features.
html.

[7] Paul DR, Barlow JW. Polymer Blends (or
Alloys). Macromol Sci-Part C 1980; 109-
68.

[8] Ruzette A-V, Leibler L. Block
Copolymers in Tomorrow’s Plastics. Nat
Mater 2005; 4:19-30.

[9] Saltikov SA. The Determination of the
Size Distribution of Particles in an
Opaque Material from a Measurement of
the Size Distribution of their Sections.
Proceedings of the Second International
Congress for Stereology 1967. p. 163-73.

