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ABSTRACT 
Data collected from two-dimensional images 
of three-dimensional material samples does 
not always provide sufficient information 
about the three-dimensional characteristics of 
particles in the sample.  We extend the 
Schwartz-Saltikov algorithm  [2, 9] to relate 
the two-dimensional distribution of particle 
diameters to their three-dimensional 
distribution.  We implement the extended 
algorithm as a plug-in to an existing image 
analysis tool.  The plug-in automates many of 
the tasks required to preprocess images for 
analysis. The plug-in displays the data 
collected during the analysis phase and 
provides a three-dimensional visualization of 
the distributed particles.   
1. INTRODUCTION 
Introducing additives to chemical compounds 
can improve the physical properties of the 
compounds, enhancing elasticity, toughening 
efficiency, and impact resistance [7, 8] for 
example.  By examining the three-
dimensional structure of a blended chemical 
we can observe the correlation between 
additive distribution and desirable 
characteristics. 
Analysis of additive distribution involves 
taking microscopic (scanning electron 
microscopy or transmission electron 
microscopy) cross-sections of compounds, 
producing two-dimensional slices less than 

100 nm in thickness.  In the slice, additives 
appear as particles. 
We extend the Schwartz-Salktikov algorithm, 
as presented by Corte and Leibler [1] to 
produce a three-dimensional visualization of 
particle distribution using two-dimensional 
particle image information. 
2. SCHWARTZ-SALTIKOV 
ALGORITHM 
The purpose of the Schwartz-Saltikov 
algorithm is to predict the three-dimensional 
distribution in particle diameter based on the 
two-dimensional distribution in particle 
diameter.  
The algorithm corrects for the phenomenon 
known as the cross-section effect. 
2.1 Cross-Section Effect 
Consider a spherical object such as an orange. 
If we slice the orange horizontally, the cut 
exactly through the center of the orange has 
the orange's correct diameter. Any other 
horizontal cut produces a diameter smaller 
than the actual diameter. The cross-section 
effect is depicted in Figure 1.  

 
 
 
 
 
 

Figure 1: The Cross-Section Effect 



The middle circle slice is the actual diameter. 
 

For our purposes, the two-dimensional 
sample images are taken from cross-sections 
of a polymer blend. The samples contain 
various particles that result from the cross-
sectioning process. The particles are shown in 
white in Figure 2. Because the particles are 
positioned in three-dimensions, they do not 
all lie in the same horizontal plane. 
 

 
Figure 2: Example Cross-sectioned Image 

Thus when the cross-section is taken, the 
resulting particle diameters can vary 
significantly. It is possible than none of the 
particles are sliced through their centers, 
meaning that none of the particles in the 
cross-section have the correct diameter. 
2.2 Algorithm 
The algorithm works by using the two 
dimensional distribution in particle diameter 
to predict the three dimensional distribution. 
The 2-D distribution vector is determined by 
binning the particles based on their two-
dimensional diameter measurements.  The 

! 

i
th  

entry in the distribution vector indicates the 
number of particles per unit area that have a 
diameter in between 

! 

i*"  and 

! 

(i +1)*" , 
where Δ is the specified bin size. 

The algorithm uses the 2-D measurements to 
predict actual particle diameter in three 
dimensions.  The 

! 

j
th  entry in the 3-D 

distribution vector is the number of particles 
per unit volume that have a diameter between 

! 

j *"  and 

! 

( j +1)*" . 
The Schwartz-Saltikov algorithm relates the 
two-dimensional distribution in particle 
diameter to the three-dimensional distribution 
in particle diameter with a transition matrix: 
2-D Distribution Vector = Transition Matrix * 
3-D Distribution Vector [1]. 
The transition matrix TM is defined by: 

 

! 

TM = H * I + " * ( j +1)2 # (i2) # j
2
# i

2( )  

if 

! 

i " j  [1].    EQ 1 

H is the thickness of the cross-section and I is 
the identity matrix [1].  This produces an 
upper-triangular matrix, so we use back 
substitution to solve for the three-dimensional 
distribution. 
 
3. IMPLEMENTATION 
In this section, we describe the design and 
implementation of our 3D Particle plug-in. 
 
3.1 ImageJ 
ImageJ is a free, open source image-editing 
and analysis tool that is developed and 
maintained by the National Institutes of 
Health [5]. The tool is written in the Java 
programming language. ImageJ can open 
many types of images, make modifications to 
the images (cropping, paint brush tool, and so 
on) and apply filters to the images. 
ImageJ allows customization through the use 
of extensions: macros and plug-ins. These 
extensions provide the ability to automate 
preexisting tasks, create new ImageJ tools 
(macros), and create entirely new 
functionality for the application [6]. These 
features allow us to implement the Schwartz-
Saltikov algorithm. 
 



3.2 OpenGL 
OpenGL is ``the industry's most widely used 
and supported 2D and 3D graphics 
application programming interface'' [4]. To 
paraphrase, OpenGL is an open source 
platform that supports features ranging from 
rendering to texture mapping. OpenGL's 
diverse capabilities allow it to be used for 
many different applications, such as 
``broadcasting, CAD/CAM/CAE, 
entertainment, [...], and display[ing] 
incredibly compelling 2D and 3D graphics'' 
[4]. In our case, OpenGL is combined with 
the Java programming language (JOGL) to 
produce three-dimensional renderings of 
particle distributions for our 3D Particle plug-
in. 
 
3.3 Plug-in Features 
The flowchart in Figure 3 depicts the 
execution flow of our plug-in.  

 
Figure 3: Execution Flow of the 3D Particle Plug-in  

 
The first feature in the plug-in is a user-
selectable, automated options window (Figure 

4) that simplifies the manual tasks a user 
performs prior to image analysis. This allows 
the user to select the editing tasks appropriate 
for the image they are working on. The 
automation process removes the time-
consuming manual navigation of menus and 
options required to edit and preprocess an 
image in ImageJ. 
 

 
Figure 4: Automated Tasks in 3D Particle  Plug-in 

 
The plug-in automatically executes these 
tasks for the user (with prompts for manual 
input when necessary).  
After completion of preprocessing options, 
the plug-in hands off the preprocessed image 
to ImageJ for particle identification. ImageJ 
identifies particles using an edge detection 
algorithm. It also identifies the x-y location 
and area of each particle.  
Once the identification phase completes, the 
particles are returned to the plug-in to be 
placed in bins based on the particle’s size. 
The binned particles are then automatically 
analyzed using the Schwartz-Saltikov 
algorithm. 
The second feature of the plug-in produces a 
histogram and graphs of relevant data  
These graphs are a Probability Density 
Function (PDF) and a Cumulative 
Distribution Function (CDF). 
The histogram gives the number of particles 
with a diameter between 

! 

j *"and 

! 

( j +1)*" .  
These values correspond to the values stored 
in the 3-D distribution vector obtained 
through the application of the Schwartz-
Saltikov algorithm.  The Probability Density 



Function shows the same information, but 
expresses the number of particles per unit 
volume as a percentage of total particles per 
unit volume.  
The Cumulative Distribution Function shows 
the percentage of particles that have a 
diameter less than or equal to a specified 
value. 
The final feature of the plug-in produces a 3-
D visualization of particle distribution. This 
feature is implemented using JOGL. 
3.4 Density and Distribution Functions 
3.4.1 Probability Density Function 
The histogram and Probability Density 
Functions are shown in Figures 6 and 7 
respectively, for the sample image in Figure 
5. 
 

 
Figure 5: Sample Image 

 

 
Figure 6: Histogram produced from a sample image. H 

represents the thickness of cross-sections in three-
dimensions. 

 

 
Figure 7: PDF produced from a sample image. H 
represents the thickness of cross-sections in three-

dimensions. 
 
 
3.4.2 Cumulative Distribution Function 
The 3D Particle plug-in also includes an 
option to display a Cumulative Distribution 
Function (CDF) of the analysis. Figure 8 is a 
CDF for the sample image in Figure 5.  
 

 
Figure 8:  CDF produced from a sample image. H 
represents the thickness of cross-sections in three-

dimensions. 
 
3.5 3-D Visualization 
We use each particle's center of mass to place 
the particle in the xy-plane. The particle 
dispersion in the xy-plane should match the 
particle dispersion in both the xz- and yz-
planes. Therefore, we use the distribution in 
particle distance in the xy-plane to determine 
the particle’s depth (z-location). We place the 



particles in z such that the particles have the 
same dispersion in all three planes. 
 
3.5.1 Distribution in Particle Distance 
For each particle, we measure the distance 
between the particle and every other particle 
and store this information in a vector. For all 
of our sample images, this data fits a normal 
distribution curve as shown in Figure 9. 
 
 

 
Figure 9: The x-axis displays the distance in pixels and 
the y-axis indicates the total frequency that the 
corresponding distance occurs between all particles in the  
sample image. 
 
One can use the mean and standard deviation 
of the particle distance data to predict particle 
depth.  This is accomplished by minimizing 
the following equation. 
 

! 

J z( ) = µxz "µxy( )
2

+ µyz "µxy( )
2

+ # xz "# xy( )
2

+ # yz "# xy( )
2

                   EQ 2 
In this equation, µ is the mean of the particle 
distance in the associated plane and σ is the 
standard deviation.  The particles' z-
coordinates are stored in vector z. This 
equation uses µ and σ in the xy-plane as a 
reference and compares it to µ and σ in the 
xz- and yz-planes. By minimizing this 
function, we determine a vector z such that µ 
and σ of the particle distance distribution in 
all three planes are roughly equivalent. 

 
 
3.5.2 Optimization 
The authors investigated optimization 
routines to improve the run time 
by minimizing EQ 2.  The methods 
investigated were Nelder-Mead and Steepest 
Descent. Both methods require an initial 
iterate for z. To determine this iterate, we 
consider the particle locations in the xy-plane. 
First, we compute the mean and standard 
deviation of the particles' x-coordinates and 
y-coordinates. Then, we average the two 
means and we average the two standard 
deviations. We use these averaged values and 
a random number generator to assign random 
z-coordinates that fit the average mean and 
standard deviation of the xy-coordinates. This 
step is performed ten times, generating ten 
possible initial iterates. The z that returns the 
lowest value of Equation 2 is used as the 
initial iterate for optimization. 
Both optimization methods run slowly and 
yield only a slight improvement from the 
initial iterate.  We use Matlab's fminsearch 
function to perform Nelder-Mead. Nelder-
Mead uses a simplex of N+1 points to find 
the minimum of a function in N-dimensions. 
This runs slowly because some of our sample 
images have several hundred particles, 
resulting in a large simplex. 
We use Kelley's implementation of the 
steepest descent method [3]. We determine 
the gradient using a finite difference method. 
Steepest Descent also runs slowly because the 
function's gradient is small. 
4. RESULTS 
In the final implementation of the 3D 
Particles plug-in, we do not implement either 
optimization technique discussed in section 
3.5.2. We implement the procedure to 
calculate an initial iterate for optimization and 
then use that iterate for the z-coordinates in 
the three-dimensional rendering. We 
recommend this method, as the optimizations 
take several hours and yield only slightly 



better results. Table 1 summarizes the percent 
improvement attained by finding z through 
optimization compared to using the initial 
iterate.  
 

Table 1: Percent improvement attained by finding z 
through Nelder-Mead the optimization for sample image 

in Figure 5. 
 

 

 
Figure 10: These graphs show the distribution results 
using the image in Figure 5. The left graph displays the 
distance distribution on the x-y plane. The center graph 
displays the distance distribution in the xz-plane using 
the randomly generated iterate. The graph on the right 
displays the distance distribution in the xz-plane using z 
values found through optimization. 
 
We see both quantitatively and visually that 
the optimization produces only a slight 
improvement.  These results are roughly 
consistent across all of the sample images we 
analyzed. As such, we feel that the added 
computations and runtime do not produce a 
significant increase in accuracy for their 
costs. 
4.1. Java OpenGL Rendering 
Equations 1 and 2 in sections 2.2 and 3.5 are 
applied to an OpenGL canvas using JOGL 
(Java OpenGL). Each particle is placed into 
the three-dimensional canvas using its center 
of mass for its (x,y) location. We take the z-
coordinates for the particles from the initial 
iterate as described in section 3.5. We give 
each particle its diameter from the two-
dimensional image. We then compute α, the 
average growth rate of the particles from two 
dimensions to three dimensions. 
The growth rate is computed by taking the 
sum of the values in each bin of the three-

dimensional distribution of a given thickness 
and dividing by the sum of the values in each 
bin of the two-dimensional distribution. This 
ratio is our growth factor, α.  Each particle's 
diameter is then multiplied by α. This results 
in diameters that are scaled by the distribution 
of particle sizes in three dimensions. 
Figures 11 and 12 show the three-dimensional 
rendering of various sample images. 

 
Figure 11: Top down view of three-dimensional particle 
distribution. 

 
Figure 12: Default angle view of the three-dimensional 
particle distribution. 
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