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ABSTRACT

The focus of this paper is to implement a genetic
algorithm using parallel programming. Genetic al-
gorithms are well-suited to “parallelization,” since
they model many individuals. Three implementa-
tions of a genetic algorithm were created for this
paper - a standard sequential programming algo-
rithm, a parallel algorithm using a master process
to control the algorithm’s operations, and a par-
allel algorithm using a grid structure for the indi-
viduals. These implementations were tested on a
single workstation as well as a server with many
processors. The parallel algorithms outperformed
the sequential algorithm, and their performance
improved when run on the server with more pro-
Cessors.

1. INTRODUCTION

A genetic algorithm, at its essence, finds a solution
to a problem. Genetic algorithms can be particu-
larly useful on problems with a prohibitively large
number of possible solutions. While a genetic al-
gorithm may not be guaranteed to find the “best”
answer, it provides a good solution in a reasonable
amount of time. Due to this applicability to in-
tractable problems, genetic algorithms have found
use in a wide variety of fields, from biology [10]
to graph theory [2] to industrial engineering [6].
Given the widespread utility of genetic algorithms,
we decided to investigate ways to improve their
speed and performance.

The focus of this paper is to describe the use of
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parallel programming to implement the genetic al-
gorithm. Intractable problems frequently have an
incredibly large number of possible solutions, and
the only way to determine the best solution is to
consider them all. A genetic algorithm cannot look
at all the possible solutions, but the more it can
consider, the better its results will be. By im-
plementing a genetic algorithm using parallel pro-
gramming, we hope that it will consider many more
solutions in a short period of time, thus increasing
the quality of the solution it eventually finds.

Since genetic algorithms can be used in so many
fields, we feel that it would be useful to have a
generic genetic algorithm; in other words, a genetic
algorithm that could be applied to any problem.
Similarly, genetic algorithms have quite a few inde-
pendent parameters that are set by the program-
mers. For example, the rate at which mutations
occur, or the method in which fitness is calculated,
are somewhat arbitrary and possibly problem de-
pendent. We will consider the variation in many
of these parameters and attempt to optimize their
values for a generic genetic algorithm.

In summary, in this paper, we hope to accomplish
three things:

1. Implement a genetic algorithm using parallel
programming.

2. Perform this implementation in such a way as
to be as problem-independent as possible.

3. Optimize some of the parameters of the algo-
rithm to maximize performance.



2. BACKGROUND

A genetic algorithm is a search algorithm that finds
as good a solution as possible to a problem by em-
ulating the process of (biological) evolution. While
there is no guarantee that the optimal solution will
be found, the genetic algorithm can generally find
good solutions relatively quickly. A genetic algo-
rithm is based on the concept of “survival of the
fittest.” In the biological world, people, animals,
and other organisms compete among themselves
on a daily basis to gain both resources vital for
survival and suitable mates. Successful individu-
als are more likely to survive and are capable of
producing the most offspring. As a result, the ma-
jority of new generations should contain mainly fit
individuals and their offspring [1].

A genetic algorithm models a population of indi-
viduals, as in biology, but each individual repre-
sents a potential solution to the problem the algo-
rithm is trying to solve. There are a number of
concepts used in the genetic algorithm to model
the survival of the fittest mechanic.

Fitness The “fitness” of an individual is based on
how good the solution is to the problem in
question. Individuals that are more fit are
more likely to reproduce, while unfit individ-
uals are more likely to die out. However, it is
still possible for poor solutions to survive and
reproduce [7].

Cross-Over Also known as “breeding,” this is the
mechanism by which individual solutions cre-
ate a new individual. In the case of a ge-
netic algorithm, two individuals are selected
(in such a way that more fit individuals are
more likely to be selected) and their attributes
are combined to form a new individual. The
way this combination is achieved is generally
problem-dependent, but can be generalized de-

pending on how the individuals are represented.

Mutation Each newly created individual in the
population has a chance of mutating. In this
case, this means making a relatively minor
change to the attributes of the individual. Mu-
tation allows the genetic algorithm to explore
more options, and avoid becoming “trapped”
in a local maximum.

Given these operators, a genetic algorithm gener-
ally operates in the following fashion:

1. Create an initial population of individuals ran-
domly.

2. Set other initial parameters to appropriate val-
ues.

3. Repeat until algorithm is complete:

(a) Select 2 individuals (so that fitter individ-
uals are more likely to be selected).

(b) Breed, or cross-over, those two individu-
als, creating a new individual.

(c) Possibly mutate the new individual.

(d) Add the new individual to the population,
possibly removing one or both of the par-
ents.

4. Report the best individual from the final pop-
ulation.

The algorithm is complete when a preset condition
(determined when starting the algorithm) is met.
For example, the algorithm could be set to run a
certain number of seconds, or it could be set to run
for a certain number of generations, or it could be
set to stop when a certain number of generations
pass without improvement in the best individual.

3. DETAILS ON GENETIC OPERATORS
The two types of genetic operators used are muta-
tion and crossover. We will discuss implementation-
specific details of each here.

3.1 Mutation

Mutation alters the binary representation of one
individual, resulting in a new solution [7]. There
are multiple types of mutation, including binary
mutation and mutation of a permutation.

Binary mutation converts each element in the in-
dividual to binary digits. Mutation then assigns a
certain probability that each binary digit will “flip.”

For example, a 16-bit individual encoded as
1101011100011011 might have a mutation in the
seventh bit, and become the new individual
1101010100011011. The mutation rate is typically
set at a level where it is unlikely for many bits in
an individual to change.

For a permutation problem, such as the traveling
salesman problem, mutation should only change
the order of an individual’s elements. Using the
“bit flipping” method could result in an invalid so-
lution to the problem, since the resulting individual



must be a permutation of the original one [9]. Mu-
tation in a permutation problem selects on element
with a specified probability and randomly selects
another element. The two selected elements swap
location, resulting in a new permutation.

For example, an individual encoded as the
list [7,4,5,3,1,6,2] might mutate by randomly se-
lecting the 4 and the 1, resulting in the new indi-
vidual [7,1,5,3,4,6,2]. This preserves the individual
as a valid permutation while changing it slightly
from its pre-mutation form.

3.2 Crossover

Crossover takes two different individuals and swaps
some elements between the two, creating two new
solutions [7]. There are many approaches to this,
including simple crossover at the binary level, real
valued simple crossover, and crossover of two per-
mutations.

Simple crossover at the binary level converts two
entire individuals to binary. A random position is
chosen, and both binary representations are split
at this position. The two individuals combine at
this splitting point, and then convert back from the
binary values.

For example, two eight-bit individuals, 11010111
and 01100001, might be selected to crossover, with
the crossover point randomly selected as between
the third and fourth bits. The two children that
could result from this crossover would then be
11000001 (the 110 coming from the first individual
and the 00001 from the second) and 01110111 (the
011 from the first and the 10111 from the second).

Real valued simple crossover takes splits the ele-
ments of two individuals at a random position. The
real valued elements before the split of one individ-
ual are combined with those after the split of the
other individual, and vice versa. This works just
like the simple crossover described above, except
with real valued elements.

The results of a crossover of two permutations must
also be two permutations of the same elements.
While the order can change, the elements in the
permutations must be the same. To do this, a
group of elements in each individual can be se-
lected. These elements are then reordered to mimic
the order of the other individual in crossover, re-
sulting in two new permutations of the problem.

For example, say we have two individuals repre-
sented as [5, 2, 3, 1, 4] and [4, 3, 1, 5, 2]. Assume a
crossover point is given as between the second and
third number in the list. We cannot simple swap
the values, as we did above, because then the so-
lutions would not be valid permutations. Instead,
we consider the second region of the first individ-
ual (the 3, 1, and 4). We keep these elements in
that region, but we reorder them to match the or-
der in the second individual (4, 3, 1). Thus, the
first possible child is [5, 2, 4, 3, 1]. Similarly, the
second possible child is [4, 3, 5, 2, 1]. This gives us
new children that contain information from both
parents.

4. THE ALGORITHMS

Three different implementations of a genetic algo-
rithm are discussed in this paper. Those three im-
plementations are:

1. A sequential algorithm

2. A parallel algorithm using a master process
approach

3. A parallel algorithm using a grid approach

These algorithms were implemented in Erlang. This
programming language choice is discussed briefly,
then the three implementations are given more de-
tail in this section.

4.1 Erlang

We chose Erlang as the programming language to
use for the work done in this paper. Erlang was
developed in the early 1990s at Ericsson, for use in
the telecom industry. Important features of Erlang
with respect to this paper are its use of concurrent
processes, message passing, and scalability in par-
allel problems [3].

Erlang was chosen for this work because it would
allow us to model each individual in the popula-
tion of the genetic algorithm as a single process.
Given the size of populations in a typical genetic
algorithm (we used 10,000 individuals when test-
ing our algorithms), this requires a language that
can handle large numbers of concurrent processes
at once. The use of message passing as a communi-
cation method between processes fits in well with
our algorithms’ approaches (see below).



4.2 Sequential Approach

The sequential algorithm implements a “classic” ge-
netic algorithm, and was intended as the “control”
for this experiment. The pseudocode for a typi-
cal genetic algorithm was followed. The popula-
tion is initially created randomly. The fitness for
each individual in the population is then calcu-
lated. Based on their fitnesses, certain individu-
als are selected to breed and create offspring. The
new offspring have a certain probability of mutat-
ing. These offspring create a new population of
individuals. The process is repeated until the al-
gorithm finishes (based on total running time or
total generations).

4.3 Master Process Approach

This approach treats every individual in the pop-
ulation as a process. These individuals are orga-
nized by another process, known as the master pro-
cess. This master process controls how the individ-
uals in the population interact. Since all processes
need to communicate through it, the master pro-
cess should do as little work as possible in order
to minimize the bottlenecking which could occur.
Our algorithm has individuals notify the master
process after they have completed their fitness cal-
culations. The master process then groups indi-
viduals together into groups of arbitrary size. Our
experiments used groups of size four, to maintain
similarity to the grid approach (described below).
Once the four individuals have been grouped to-
gether, one of those individuals is designated as
the group leader.

The other processes of the genetic algorithm - se-
lection, crossover, and mutation - are performed
within the small group, independent of the mas-
ter process. Members send their fitness values and
chromosome to the leader process, which then per-
forms all functions. The members of the group
are modified to become their offspring as necessary,
then they reevaluate their fitness function and re-
port to the master process again.

This approach uses one process as the master pro-
cess, plus a single process for each individual in the
population. Any size population can be modeled
with this approach; we tested it on populations
ranging from a few individuals up to 100,000 in-
dividuals with no problems. The data reported in
this paper used a population size of 10,000.

4.4 Grid Approach

Parallel programs can be run on anywhere from one
single processor to hundreds of processors at once.
As the number of processors increase, a larger num-
ber of threads can run simultaneously. When there
is a large number of threads running, a central
process controlling them could slow the program
down.

Our second parallel approach has each individual
process perform its own selection. This avoids the
possibility of a bottleneck occurring in a single mas-
ter process. However, each process needs to com-
municate with the other processes in the popula-
tion. If there are a large number of processes, and
every process must communicate with every other
process, the computer could run out of memory,
and the program could bog down.

To avoid this, imagine all of the processes being
stored in a two dimensional array, or grid. Each
process can communicate with every neighboring
process, particularly those directly above, below,
and to each side.

To perform selection, each process sends its fitness
value to every neighboring process, then waits to
receive either a specified number of communica-
tions from neighboring individuals, or a new indi-
vidual to replace itself. If a process receives infor-
mation from neighboring individuals, both selec-
tion and breeding are done without the knowledge
of any other processes. The resulting children are
sent to their respective parents. These children re-
place the parents, then a new generation begins.

This approach avoids the need for a process as a
“master” process, and thus uses a single process
for each individual. Again, we tested on sizes of
populations up to 100,000 with no problems. The
data reported later in the paper used a population
size of 10,000.

5. THE TEST PROBLEMS

We chose to test our genetic algorithms on two
problems - the Traveling Salesman problem (TSP)
and the Bin Packing problem (BPP). These prob-
lems were selected for a number of reasons. They
are “classic” problems in computer science. They
are both NP-complete problems, which means that
they are extremely unlikely to ever be solved by a
polynomial running time algorithm. This means
that they are well-suited to being attacked by non-
brute force methods, such as a genetic algorithm.
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Figure 1: TSP Using Sequential Algorithm

Additionally, while they are both NP-complete, they
are fairly different in their specifications. Using
two different problems for testing allows us to make
sure the algorithm is general enough to handle both.
We describe each of the problems briefly here.

5.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) states that
a traveling salesman has some set of cities that he
services, including his home city. The salesman
must travel from his home city to every other city
and return home. He must visit each city only once
(excepting the fact that he starts and finishes at his
home city). He also wants to minimize the cost of
his trip. The problem requires us to find the mini-
mum cost trip that leaves from the home city, visits
every other city once, and returns home.

This relatively informal description can be trans-
lated to a graph theory problem. Given a graph
with a set of N vertices and a set of weighted edges
connecting these vertices, find the minimum cost
cycle in this graph that starts and ends at a spe-
cific vertex V and visits every other vertex only
once. Thus, the cycle consists of exactly N edges.
In practice, the requirement to start and stop at
a particular vertex is not necessary, as long as the
cycle visits every vertex. This problem has been
proven to be NP-complete [5]. To find the exact
minimum solution, it is necessary to consider all
possible paths, which requires a running time of
O((N-1)!), where N is the number of cities.

5.2 Bin Packing Problem
The bin packing problem (BPP) states that a com-
pany has a number of bins, each with a particular
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Figure 3: TSP Using Master Algorithm

capacity, and a large collection of items, all of dif-
ferent sizes. The problem asks if there is a way
to assign all the items to a bin such that every
item is in a bin, and no bin exceeds its capacity.
In more formal language, given a finite set U of
items, a size(u) function defined for all elements of
U such that size(u) is a real number larger than 0,
a bin capacity B, and a number of bins K, can U
be partitioned into K subsets so that the sum of
the sizes of the items in each subset is less than or
equal to B. This problem has also been shown to
be NP-complete [5].

6. RESULTS

The results of the algorithms on the two problems
are given in this section. Each algorithm was tested
on two machines, a sixteen-core server and a four-
core workstation.
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6.1 TSP Results

These three graphs (Figures and (3)) plot the
total distance of the best solution in the population
versus the time (measured in generations). There-
fore, a smaller solution value is a better fitness for
this problem. As can be seen, there is a large ini-
tial improvement in the quality of the solution in
all algorithms, followed by a modest improvement
over a longer time frame. As expected, the ma-
chine running the sequential algorithm had little
effect on the algorithm’s performance, since the al-
gorithm runs on a single processor. The sequential
algorithm also provided the worst solutions, even-
tually reaching a best solution with a distance of
2809.

The parallel algorithms each outperformed the se-
quential algorithm, with both eventually finding
solutions with a distance of approximately 1400
(the grid algorithm finds a solution of 1433, and the
master process algorithm finds one with 1430). No-
tice that the master process algorithm reaches its
best performance much more quickly than the grid
algorithm, particularly on the server. In both par-
allel algorithms, running them on the server (with
more processors) offers better performance and a
quicker convergence to a good solution.

Note that the time is measured in generations, not
in actual units of time. This allows us to avoid is-
sues with timing algorithms, such as differences in
implementation as well as differences in machine
load at the time of testing. Genetic algorithms
tend to improve the longer they are run - there is
no real pre-defined “end point.” Therefore, plotting
algorithm performance vs. generation allows us to
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more easily compare performance by the different
algorithms. For example, note that each parallel
algorithm surpassed the best solution found by the
sequential algorithm within 10 generations, and the
final results were less than half the size of the so-
lution found by the sequential algorithm.

6.2 BPP Results

Performance of the three algorithms on the BPP is
a little more varied. In this problem, the solution
value is measured using a function based on how
evenly the bins are packed. This function is con-
structed so that a larger value means more evenly
packed bins, so larger valued solutions are better
fitnesses.

In the end, each of the algorithms finds solutions
of similar value (as shown in Figures and @,
although it takes the sequential algorithm a bit
longer to reach it. Our belief is that the prob-



lems we tested on were somewhat too simple, al-
lowing each algorithm to converge to an optimal or
near-optimal solution in the time frame given. It is
somewhat puzzling that the sequential algorithm
seems to perform better when run on the server
than the workstation, although this might be due
to a difference in speed between single CPUs on
those machines.

We are also somewhat puzzled why the performance
of the master process algorithm seems to be roughly
identical on the server and the workstation. This
may be due to the algorithm finding the solution so
quickly that differences between the machines be-
come negligible. After all, the grid algorithm seems
to perform much faster on the server. We should
also point out that there is a certain amount of ran-
domness inherent in genetic algorithms, so minor
variations can be expected.

7. FUTURE WORK

There are many plans to continue the work de-
scribed in this paper. We would like to further
test the generic nature of the algorithm by test-
ing on more problems. We would also like to more
rigorously test the significance of the number of
processors used on the machine to run the algo-
rithm. Particularly, would the performance be sig-
nificantly improved by running the algorithms on
machines with massive numbers of CPUs (on the
order of 1 CPU per individual)? Finally, there
are many parameters used in the algorithms (such
as the number of process in a group in the mas-
ter algorithm, the mutation rate, the number of
threads to allocate to the algorithm, and so on).
The differences in performance that would result
from changing these parameters could be more rig-
orously studied as well.

8. CONCLUSION

In conclusion, we have created two algorithms to
execute a genetic algorithm using parallel process-
ing. These two algorithms have been shown to per-
form faster and find better solutions than a stan-
dard sequential algorithm. There is also evidence
to show that increasing the number of processors in
a machine increases the performance of the parallel
algorithms.
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