
An Interactive Software Tool for Parsing English Sentences

Claire M. Nelson
Oberlin College

Oberlin, OH
cmnelson@oberlin.edu

Rebecca E. Punch
Oberlin College

Oberlin, OH
rpunch@oberlin.edu

John L. Donaldson
∗

Oberlin College
Oberlin, OH

jdonalds@oberlin.edu

ABSTRACT
As natural language processing becomes an increas-
ingly relevant field, there is a need for treebanks
catered to the specific needs of more individual-
ized systems. The current tools to construct such
a treebank lack the clarity and utility to effectively
and efficiently complete such a task; therefore, an
interactive parser tool that caters more fully to the
needs of a human annotator is necessary. This pa-
per describes the implementation of an interactive
parser tool which includes the addition of several
utilities to facilitate the annotating process, includ-
ing parse constraints and a manual mode to be
used when the grammar cannot produce the cor-
rect tree.

1. INTRODUCTION
Natural language processing, a branch of artificial
intelligence that deals with the analysis and in-
terpretation of human languages, has become in-
creasingly relevant as people begin to rely more
and more on computers for aid in communication
and information compilation. From translation be-
tween languages to automatic spell checking, nat-
ural language processing has helped shape the way
people interact with computers and each other.
The field has huge potential for growth, as well,
given the overwhelming amount of textual corpora
available which can be analyzed with the aid of
linguistic models and machine learning.

1.1 Parsing, PCFGs, and the CKY Algorithm
A Context-Free Grammar (CFG) is a “mathemat-
ical system for modeling constituent structure” in
natural languages [4], consisting of rules for the
syntax of the grammar, as well as a lexicon of syn-
tax and associated words. More formally, each rule
∗Faculty advisor, Dept. of Computer Science

Proceedings of the 2011 Midstates Conference on Undergraduate Research

in Computer Science and Mathematics

in a CFG begins with a single start symbol, such
as a type of phrase, followed by the constituents
of that symbol. The constituents may be either
a terminal symbol associated with a word in the
lexicon (e.g. Verb), or a non-terminal symbol, as-
sociated with a symbol defined by its own set of
constituents (e.g. NounPhrase). For example, con-
sider the rules defining a VerbPhrase in this CFG
(for simplicity, we will abbreviate a NounPhrase to
NP, and a PrepositionalPhrase to PP):

VerbPhrase → Verb
VerbPhrase → Verb NP
VerbPhrase → Verb NP PP
VerbPhrase → Verb PP
VerbPhrase → Verb NP NP
VerbPhrase → VerbPhrase NP

Still, this representation of grammar falls short in
practical applications. If every possible combina-
tion of grammatical types is represented within a
CFG, there is a high likelihood that a rarely-used
rule will be given the same weight as a commonly-
used rule. This becomes problematic especially in
parsing natural language, where the best possible
parse is more likely to be a commonly-used struc-
ture than a rare one. To address this problem, a
Probabilistic Context-Free Grammar (PCFG) ex-
pands the structure of a CFG to include the prob-
ability that a given rule in the grammar will be
used. For example, by adding probabilities to our
previous example of a CFG, we can produce the
following PCFG (probabilities from [4]):

VerbPhrase → Verb [0.35]
VerbPhrase → Verb NP [0.20]
VerbPhrase → Verb NP PP [0.10]
VerbPhrase → Verb PP [0.15]
VerbPhrase → Verb NP NP [0.05]
VerbPhrase → VerbPhrase NP [0.15]



Note that the combined probabilities of each rule
for VerbPhrase add up to a total probability of 1;
that is, the CFG ideally represents every possible
combination of constituents with some probability
according to its frequency. The statistical element
of a PCFG allows for increased accuracy in parsing
by lessening the likelihood of a parsing algorithm
choosing a rule used infrequently in the grammar.

The Cocke-Kasami-Younger (CKY) algorithm is
used to create a parse tree describing the syntax
of a sentence. The algorithm uses a grammar in
Chomsky Normal Form (CNF), a form in which
each rewrite rule must expand either to a single ter-
minal node or exactly two non-terminal nodes. The
algorithm is a bottom-up parsing method which
uses the technique of dynamic programming. In
the probabilistic version of the CKY algorithm to
be used for a PCFG, each possible parse tree is
given a score based on the probabilities encoded
in the PCFG, and the highest-scoring tree is re-
turned.

A completed parse, using the Penn Treebank tag
set, on the sentence “This is an example of a parse
tree.”

1.2 Training a PCFG: Treebanks
In order to use a PCFG with the CKY algorithm
to parse some piece of text, the PCFG must first
be trained with a corpus; that is, the probabilities
assigned to each rule must be estimated for use by
the parser. This is usually done by reading in a cor-
pus of pre-constructed trees parsed by annotators
with linguistic expertise; from there, probabilities
can be estimated by counting the number of time

each rule appears within the corpus. This corpus is
generally referred to as a treebank, the most com-
mon example of which is the Penn Treebank [5],
the current standard for natural language process-
ing systems. Other treebanks available include the
Prague English Dependency Treebank [2], LinGo
Redwoods [6], and the Penn Chinese Treebank [9].

Although the Penn Treebank tends to be used as
a standard, it is not without its limitations. In
particular, the treebank is trained on a corpus of
sentences mostly from Wall Street Journal articles.
The type of language recognized most accurately
by a parser trained on the Penn Treebank, there-
fore, is that which reflects the same journalistic
style. The treebank also uses a fixed tagset for
parts of speech, potentially leading to problems for
treebank users wishing to annotate trees using a
different set of annotations. Finally, the treebank
is limited by its size; users do not have the option
to expand upon it to better suit their needs.

There is therefore a need for additional parsed data
to use in natural language applications, particu-
larly in corpora of other genres, such as literature
or poetry.

2. RESEARCH OBJECTIVES
We set out to develop an interactive software tool
which can be used by linguists and students to
identify and save correct parse trees for sentences,
with the ultimate goal of building a custom tree-
bank. Parsing by hand is a time-consuming pro-
cess, and automatic parsing often is unable to find
the best parse without user input. An interac-
tive parser allows for creation of correct parse trees
while minimizing effort in correcting parses on the
part of the user [7]. The parser proposes a parse,
and then the user can make a single change after
which the parser re-parses under the given con-
straints. This process is repeated until a satisfac-
tory parse is found.

A number of tools have been built to perform this
task; however, with each tool a new set of limita-
tions arises, complicating the process of building a
treebank.

The TreeBanker application [1], designed for su-
pervised training of a system, asks the user clar-
ifying questions about the given parsed training
data with the intention of gaining extra informa-
tion about the trees. While the application is de-



signed for users without linguistic expertise, we
found that its interface was unintuitive; the visual
representation of the parse tree was difficult to de-
cipher. In particular, the representation showed
the phrase structures, but not the underlying part
of speech tags for each individual word, making
it difficult to determine the exact precision of the
parse.

Although the LinGO Redwoods treebank applica-
tion [6] provides an intuitive graphical interface,
it is limited to creating trees using a head-driven
phrase structure grammar (HPSG), limiting the
number of applications that could use it, as many
systems are structured with the assumption of a
PCFG structure.

The IPP-Ann tool [7] provides the user with an ex-
cellent graphical representation of parse trees, in-
cluding a manual editing feature. However, trees
in IPP-Ann can only be modified in a top-down,
left-right manner; if the user attempts to edit the
tree in the wrong order, the parser overrides previ-
ous modifications. Each edit to the tree, likewise,
is made by reparsing the tree in the grammar used
by the tool; therefore, if a valid tree is, for any rea-
son, not accepted by the grammar, the tool cannot
properly construct that tree.

Given the limitations of the available systems for
treebank production, our task was to implement a
better application that would provide a linguist or
native speaker the proper tools for editing trees,
whether through constraints on the parse, retag-
ging, or manual modifications to the tree and its
structure. With this tool, a human annotator could
create and store a set of parse trees into a treebank,
which could then be used for training a PCFG.

We worked with the source code for Stanford Uni-
versity’s CoreNLP suite [8], a set of tools for NLP
including part of speech tagging, named entity re-
cognition, parsing, and recognition of dependen-
cies. Most of our work focused on the Stanford
Parser itself, an implementation of a lexicalized
PCFG parser in Java. The Stanford Parser tool,
and an interactive GUI interface to it, became the
framework for our own interactive parser.

3. METHODOLOGY
In developing our parsing application, we started
with the Stanford Parser and a GUI interface to it,
both of which are found in the CoreNLP package

[8]. The GUI program, written by Huy Nguyen, ac-
cepts sentences from the user, calls on the Stanford
Parser to parse them, and then displays the result-
ing parse trees. As with any automatic parser, the
Stanford Parser sometimes makes mistakes, gen-
erating an incorrect parse tree. We extended the
GUI program to allow the user to find the correct
parse tree by manipulating the parse tree in several
ways. Basic features of the program include:

• Users start by loading in a grammar model
(such as a PCFG) and an input file containing
sentences that they wish to parse. Users may
optionally enter the name of an output file in
which to save parse trees in Penn Treebank
form. If no input file is loaded in, the user
may manually enter sentences to be parsed.

• Users may choose to enter tokenized or unto-
kenized text; if the given text is untokenized,
our parser automatically tokenizes it.

• Sentences within the input are automatically
selected upon clicking or by scrolling through
the sentences one at a time. Phrases within
a sentence can also be highlighted and used
to add constraints to the parse, described in
section 3.1.

• Parsing a sentence displays an graphical, in-
teractive parse tree from which the user may
modify the tree through part-of-speech tags,
phrasal constraints, or manual editing.

3.1 Constraints
We modified the Stanford Parser to parse under
a set of constraints. When constraints are added,
the program calls the Stanford Parser to parse the
tree, subject to the given constraints. When a tree
satisfying the constraints has been found by the
parser, the new tree is displayed.

Part-of-speech tags can be edited and enforced by
the user. For example, consider the sentence “I
made her duck.” How the sentence is parsed de-
pends on whether the word “duck” is interpreted
as a verb or a noun. Using our program, the user
could specify a constraint on the word “duck” so
that it must be tagged as a verb, or the user could
choose to require that it be tagged as a noun. Ei-
ther constraint would force the parser to produce
a parse tree consistent with the user’s choice of tag.

Negative tag constraints are also supported. The



user may specify that the tag for “duck” may not
be“verb.” The parse can then choose any tag other
than “verb.” In this way, the user can rule out cer-
tain trees, but still utilize the power of the parser.

The parsing algorithm recognizes several forms of
phrasal constraints, allowing the user to specify
how a certain phrase within the sentence should
(or should not) be labeled within the parse tree.
In particular, the user may indicate that:

• A sequence of words should be treated by the
parser as a phrasal unit. (e.g. a verb phrase
or a prepositional phrase)

• A sequence of words should not be treated as
a phrasal unit.

• A sequence of words should be treated as a
particular type of phrase.

• A sequence of words should not be treated as
a particular type of phrase.

For example, consider the sentence “The women
talked about the dogs on the beach.” The user
may decide that “the dogs on the beach” is a sin-
gle phrase, and this can be enforced by using con-
straints on the parse (effectively ensuring that the
topic of these women’s conversation is “the dogs on
the beach” rather than that the conversation took
place on the beach). Constraints may be added
through the text interface or via the interactive
tree.

3.2 Manual Mode
If the parser is unable to create a correct tree using
the loaded grammar, the user then has the option
to enter manual editing mode to edit the tree with-
out calling the parser. This is useful for instances
in which the grammar may not accept a tree that
the user considers to be the correct tree. Trees pro-
duced manually may be checked for validity in the
loaded grammar. A list of valid labels and/or tags
for a specific node is available for use in editing the
tree.

4. EXAMPLES

Above, an unedited parse tree for the sentence “I
made her duck.” With this parse tree, the sentence
indicates that the speaker (“I”) cooked waterfowl be-
longing to her. Below, a parse of the same sentence
modified by selecting the tag for “duck” on the parse
tree and changing the tag from NN to VB, specify-
ing the constraint that the word “duck” should be a
verb (VB). With this modification to the parse tree,
the meaning of the sentence changes to “I caused
her to quickly crouch.”



Above, an unedited parse tree for the sentence “The
women discussed the dogs on the beach.” With this
parse tree, the sentence indicates that the women
were on the beach while discussing the dogs, which
could have been located elsewhere. Below, a parse
of the same sentence modified with phrasal con-
straints by highlighting the phrase “the dogs on the
beach” in the text section and clicking on the “add
phrase” button. This specifies that “the dogs on
the beach” should be treated as a phrasal constraint
within the parse. With this constraint, the meaning
of the sentence shifts to to the women discussing
the dogs, which are located on the beach.

Above, an unedited parse tree for the sentence “I
ate sushi with chopsticks.” With this parse tree, the
meaning of the sentence is nonsensical: the speaker
(“I”) ate sushi with chopsticks, where chopsticks are
included in the meal. This sentence can be cor-
rected in manual mode without parsing, specifically
by dragging the prepositional phrase (PP) marker
associated with the phrase “with chopsticks” from
below the noun phrase (NP) “sushi with chopsticks”
to VP, the parent verb phrase. This shifts the mean-
ing to the speaker (“I”) eating sushi with the help
of chopsticks.



5. REFERENCES
[1] Carter, David. 1997. The TreeBanker: a Tool
for Supervised Training of a Parsed Corpora. Pro-
ceedings of the ACL Workshop on Computational
Environments for Grammar Development and Lin-
guistic Engineering, Madrid.

[2] Cinková, Silvie, et. al. Tectogrammatical Anno-
tation of the Wall Street Journal. Prague Bulletin
of Mathematical Linguistics, 2009, 92.

[3] Jurafsky, Dan, and James H. Martin. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition. 2nd ed. Upper Sad-
dle River, NJ: Prentice Hall, 2009.

[4] Klein, Dan and Christopher D. Manning. 2003.
Accurate Unlexicalized Parsing. Proceedings of the
41st Meeting of the Association for Computational
Linguistics, pp. 423-430.

[5] Marcus, Mitchell P., Beatrice Santorini, and

Mary Ann Marcinkiewicz. Building a large anno-
tated corpus of English: the Penn Treebank. Com-
putational Linguistics, vol. 19, 1993.

[6] Oepen, Stephen, et al. 2002. LinGO Redwoods:
a Rich and Dynamic Treebank for HPSG. Proceed-
ings of the Workshop on Parseval and Beyond and
the 3rd International Conference on Language Re-
sources and Evaluation (LREC ’02). Las Palmas,
Spain.

[7] Sánchez-Sáez, Ricardo and Joan-Andreu Sánchez
and José-Miguel Bened́ı. Interactive Predictive Pars-
ing. 2009. Proceedings of the 11th International
Conference on Parsing Technologies, pp. 222-225.

[8] Stanford Natural Language Processing Group.
Stanford CoreNLP. 2011.
http://nlp.stanford.edu/software/corenlp.shtml.

[9] Xue, Nianwen, et. al. The Penn Chinese Tree-
Bank: Phrase Structure Annotation of a Large Cor-
pus. Natural Language Engineering, 11(2)207-238,
2005.


	Introduction
	Parsing, PCFGs, and the CKY Algorithm
	Training a PCFG: Treebanks

	Research Objectives
	Methodology
	Constraints
	Manual Mode

	Examples
	References
	References

