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ABSTRACT
We examine a generalization of the standard Hawk-
Dove evolutionary model in which we incorporate a
proportional inheritance of Darwinian fitness. We
discuss the behavior of the model analytically and
numerically and, in particular, find regions of the
parameter space corresponding to stable equilibria.
We show a dependence of these equilibria on the
relative values of the inheritance parameters and
show the existence of periodic orbits not present
in the original. Further, we show that fixed initial
fitness values need not be assumed, as they are in
the standard model, since these equilibrium fitness
values will be sought out by the model itself. This
demonstrates that frequency-based models may be
resilient to certain changes in assumptions of in-
heritance mechanisms.

1. INTRODUCTION
The prevalence of conventional contests in animal
populations is a persistent theme in biological the-
ories of animal behavior. Quite often, contests be-
tween pairs of animals over food, habitat, mates,
and so forth, take the form of highly ritualized dis-
play behavior so that more often than not these
contests are settled without serious injury to ei-
ther animal. For example, harbor seals display an
array of contest behavior, from flipper movements
to head thrusts, in order to establish hierarchical
dominance for mating [12]. Aggressive behavior,
such as biting, is rarely observed. Similarly, many
species of deer rely on vocalization and lateral dis-
play to settle conflicts over territory [4], [7]. On
occasion – usually when the contest pairs are most
evenly matched – deer will charge each other, lock
antlers, and push against each other. However, if
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during the charge, one animal turns his flank to his
opponents sharp antlers, the other animal halts his
potentially injurious attack and again resumes dis-
play (see [6] p. 57).

Such behavior may be beneficial for the species
as a whole since it avoids self-inflicted mortality
among the population. However, it is hard to see
at first why such behavior is beneficial on the indi-
vidual level. After all, a ruthlessly aggressive ani-
mal seeking to kill his opponent would inherit his
opponents’ territory, harem, and so forth, increas-
ing his number of offspring. These offspring would
then inherit the parent’s aggressive behavior and
reproduce at a greater rate than the less aggres-
sive population.

Several explanations have been given for why such
escalated contests remain relatively rare. Early
theorists, such as Tinbergen [13], focused on the
intimidating aspects of contest behavior, the no-
tion being that one animal might use a show of
aggression to frighten his opponent into giving up
the resource without a fight. As Clutton-Brock and
Albon point out [4], this theory has the weakness
that “selection should favor those individuals that
are not intimidated unnecessarily and which adjust
their behaviour only to the probability of winning
and the costs and benefits of fighting.” Because of
this, subsequent theories have viewed display be-
havior as a mutual assessment of quality, or “re-
source holding potential,” which allows animals to
avoid fighting if they are unlikely to win [4], [7],
[10].

However, while this view of contest behavior as
mutual assessment does a good job of explaining
the prevalence of escalated contests when oppo-
nents are evenly matched, it does not completely
explain the lack of aggression when opponents are
not equally matched. After all, if an assessment



of resource holding potential can lead the inferior
animal to choose to give up the resource, then so
too could it lead the superior animal to attempt to
injure its opponent.

Realizing the need for a theory of animal contest
behavior that avoids questions of individual ethol-
ogy, John Maynard-Smith used game theory to
propose a solution to the problem that focuses on
the evolutionary dynamics of the population as a
whole [11]. The theory is presented in the form of
an abstract population model consisting of a single
species in two distinct phenotypes. The first phe-
notype, Hawk, displays aggressive behavior while
the second, Dove, is passive. Under the assump-
tions of the model, Hawk always defeats Dove in
contesting for a resource. Yet, in the long term,
Hawks do not always come to dominate the pop-
ulation. Maynard-Smith’s model showed for the
first time how simple mathematical rules governing
interaction and reproduction can lead to the evo-
lution of a stable distribution of aggressive/passive
behavior in a population with neither one domi-
nating the other.

An important assumption of the Hawk-Dove model
is that initial fitness of each generation is held con-
stant. In other words, each generation starts with
a uniform fitness and it is solely the results of the
contests in each generation that determine the phe-
notypes’ fitness prior to reproduction. This as-
sumption, while justified for the purposes of ex-
amining the dynamics of the model in the simplest
case, can be justifiably weakened in cases where
the resource itself is heritable. For instance, if the
resource is status-related, and if the status of the
parents is heritable in some way by the offspring,
then it is possible that the phenotype’s initial fit-
ness is not fixed, but rather depends on the phe-
notype’s fitness in the previous generation. In this
way, we may generalize the Hawk-Dove model to
allow for inheritance of fitness as well as phenotype
from one generation to the next.

For instance, dominance hierarchies have been shown
to affect reproductive success in free-ranging groups
of deer [2]. Since antler size is an honest signal of
quality in contest situations, as shown in [9], [15],
one might expect to find a relation between social
rank and antler length in mature stags. However,
no such correlation has been observed [2], [8]. One
way to account for this is to view deer as employing
the following contest strategy, “retreat if opponent
is of higher quality, escalate otherwise.” In this

way, individual contest behavior can be separated
from overall reproductive success. That is to say,
the behavioral phenotype, aggressive vs. passive, is
actually determined by a secondary hereditary phe-
notype, the length and complexity of the antlers
[8]. Status, on the other hand, is more closely cor-
related with body size and nutritional state [2], [8].
Body size in deer is hereditary, is correlated with
greater overall reproductive success, and has been
shown to both reinforce, and be reinforced by, rank
within the group [1], [2], [3], [8], [14]. Hence, in
this case, an argument can be made that both the
fitness of an individual and the individual’s behav-
ioral phenotype are independently inherited from
the parent.

In this paper we examine the implications of allow-
ing inheritance of fitness in the Hawk-Dove model.
In particular, we focus on the case where inheri-
tance of fitness between generations is proportional.
That is, each successive generation will inherit a
fixed percentage of the fitness of its parent. We
show that there are notable differences between
this model and the basic one. For instance, the
stable states of the population are shown to de-
pend on the relative values of the coefficients of
proportional inheritance for each phenotype. If
these coefficients are equal, the population equilib-
rium is identical to that of the basic model. If the
inheritance coefficients are different, however, then
the model attains new population equilibriums not
achievable by a similarly parametrized basic Hawk-
Dove model. Further, convergence to the equilib-
rium population state is demonstrated to be highly
oscillatory in the generalized model and a bifurca-
tion curve is shown to exist in the parameter space
about which periodic orbits are achieved. The ex-
istence of such periodic orbits is unexpected since
they rarely show up in game theoretic models, even
those that allow multiple phenotypes. This gives
an intriguing connection between our generaliza-
tion of Smith’s model and other population mod-
els that display periodic orbits such as logistic or
Lotka-Volterra models.

Another interesting aspect of our analysis lies sim-
ply in the observation that the generalized model
does not “blow up.” After all, by allowing for pro-
portional inheritance we are, in effect, adding a
positive feedback to the system. Simply put, if in
any generation one phenotype has a higher fitness
than the other, then this difference in fitness will
tend to be exaggerated in the next generation since



initial fitness of the offspring is proportional to re-
productive fitness of the parent. This is analogous
to situations in which the “haves” end up having
more and the “have nots” having less. The fact
that this added feedback does not destabilize the
system indicates that frequency-based models may
be resilient to certain perturbations in assumptions
of genetic inheritance mechanisms.

Yet perhaps the similarities that exist between the
two models are more interesting than the differ-
ences. For instance, we show for the generalized
model that any population at frequency equilib-
rium must also be at fitness equilibrium, so that in
the long term the model must return to the basic
case where the initial fitness of each generation is
constant. This gives a mathematical explanation
for how a uniform initial fitness for all generations
can arise naturally in frequency-dependent evolu-
tionary models and need not be assumed.

In what follows, we first give a brief overview of the
basic Hawk-Dove model following Maynard-Smith
[11]. Next we discuss the effects of allowing propor-
tional inheritance of fitness from one generation to
the next. In particular, we focus on finding equi-
libria and determining their stability. Lastly, we
show the results of numerical implementation of
our model.

2. THE HAWK-DOVE GAME
The setting of the Hawk-Dove game comprises of
three main components: (1) the players and their
characteristics, (2) the assumptions regarding how
the game will be played, and (3) the payoff param-
eters, presented in the form of a payoff matrix.

“Hawk” and “Dove” are not literally the two types
of animals present in the population, but are the
behavioral phenotypes of individuals in a single
species population. More specifically, in any given
contest between two individuals in a Hawk-Dove
population, one can exhibit any or all of the three
following behaviors:

(i) Display: a player presents itself as a contes-
tant for the resource.

(ii) Escalate: a player engages in attacking and
attempts to injure its opponent.

(iii) Retreat: a player gives up the resource to its
opponent and flees.

Hawk is the strategy that will escalate until either
(1) its opponent retreats or (2) Hawk sustains an
injury, at which point it retreats and gives up the
resource. Dove is the strategy that starts by dis-
playing, but retreats as soon as its opponent esca-
lates.

Besides delineating the behavioral characteristics
of each phenotype, it is equally important to state
the typical assumptions of the model. First of all,
any individual in the population is either a Hawk
or a Dove, not both. Second, the distribution of
Hawks and Doves in the population is measured
by their frequency, not the raw number of indi-
viduals. As such, in order to avoid unnecessary
complications, the population is assumed to be in-
finite. Third, we assume there is random mixing of
phenotypes before each contest. Fourth, the gener-
ations are discrete and there is no overlap between
a parent’s generation and its offspring’s. Fifth, re-
production is asexual and strategies are inherited
from the parent. Lastly, the offspring of both phe-
notypes have a common initial fitness, denotedW0,
and this initial fitness remains constant over all
generations. Note that it is this last assumption
that will be modified in subsequent sections.

In contesting over a resource, a Hawk will prevail
over a Dove due to the fact that the aggressiveness
of the former is favored over the passiveness of the
latter. However, if two Hawks face each other, their
mutual aggressive behavior will result in injury to
one opponent, reducing the average fitness of the
pair. A contest between a pair of Doves will result
in no injury to either player, but rather a reduced
increase in fitness due to the fact that both players
will have to share the resource.

The matrix below summarizes the expected pay-
off, E(X,Y ), in the form of Darwinian fitness of
strategy X against Y:

H D

H (V − C)/2 V

D 0 V/2

Here V is the value of the resource being contested
for, which is also the increase in fitness, while C is
the cost to fitness due to injury. For instance, the
payoff E(H,H) = (V − C)/2 represents the aver-
age payoff to a Hawk when it engages in a contest



against another Hawk: 50% of the time it will in-
crease its fitness by V , and for the rest of the time
it will sustain injury and decrease its fitness by C.

Let p be the frequency of the Hawk phenotype in
the population. The fitness of Hawk, denoted by
WH, is equal to the sum of the initial fitness W0

and the average change in fitness after the contest.
This averaged change for Hawk is the sum of the
weighted average of the expected payoffs of Hawk
against Hawk and Hawk against Dove. Similarly,
we can express the fitness of Dove WD in the same
way. Hence, the expressions for bothWH andWD
are:

WH = W0 + pE(H,H) + (1− p)E(H,D) (1)

WD = W0 + pE(D,H) + (1− p)E(D,D) . (2)

Since the strategies are hereditary and are passed
on from one generation to the next (either geneti-
cally or via some other mechanism), the frequency
of Hawk in the next generation is given by

p′ =
pWH

pWH + (1− p)WD
. (3)

2.1 Dynamics of the Hawk-Dove Game
Let p(n) denote the frequency of Hawk in the nth

generation. Similarly, let WH(n) and WD(n) de-
note the after-contest fitnesses of the Hawk and
Dove phenotypes in the nth generation. If ini-
tial frequency of Hawks, p(0), is predetermined,
then equations (1)–(3) together determine uniquely
the sequence p(0), p(1), p(2), . . . that gives the fre-
quency of Hawks in any generation. This sequence
is given recursively by

p(n+ 1) =
p(n)WH(n)

p(n)WH(n) + (1− p(n))WD(n)
(4)

where the expressions for WH and WD can be
reduced from (1) and (2) to the following form

WH(n) = W0 + V − p(n)(V + C)/2

WD(n) = W0 + (1− p(n))V/2 .
(5)

Applying (5) to (4) gives

p(n+ 1) =
2W0 + 2V − (V + C)p(n)

2W0 + V − Cp(n)2
p(n) . (6)

A population equilibrium is achieved when p(n) =
p(n+ 1) = p∗. If we ignore the trivial equilibrium

p∗ = 0, then equation (6) reduces to

C(p∗)2 − (V + C)p∗ + V = 0

which has solutions p∗ = V/C, 1. If V < C, then
p∗ = V/C is strictly between 0 and 1 and gives a
unique nontrivial equilibrium. On the other hand,
if V ≥ C, then the system has only the trivial
equilibriums p∗ = 0, 1. In this case, the cost due to
injury is less then the value of the resource, hence
there is no downside to aggressive behavior, and
Hawk will eventually dominate the population.

2.2 Stability of p* = V / C
Let F denote the real valued function given by

F (x) =
(2W0 + 2V )x− (V + C)x2

2W0 + V − Cx2
.

By (6) we have p(n + 1) = F (p(n)). Moreover,
the equilibrium p∗ = V/C is a fixed point of F .
The equilibrium is said to be stable if for all δ in a
neighborhood of p∗, we have |F (p∗ + δ)− p∗| < δ.
That is, if the system is perturbed from its equilib-
rium a distance δ, then in the next generation the
frequency will be less than δ units away from the
equilibrium. Since F is smooth near p∗, the mean
value theorem gives, for every δ sufficiently small
in absolute value, a value c between p∗ and p∗ + δ
such that

F (p∗ + δ)− F (p∗) = δ F ′(c) .

Since F (p∗) = p∗, the equilibrium is stable if and
only if |F ′(x)| < 1 for all x in a δ-neighborhood
of p∗. By continuity of F , this is equivalent to
requiring that |F ′(p∗)| < 1. But we can check that

F ′(p∗) =
2CW0

2CW0 + V (C − V )

which is clearly less than 1 in absolute value given
that V < C.

3. PROPORTIONAL INHERITANCE OF FIT-
NESS

As before, let p(n) denote the frequency of Hawks
in the nth generation. Let WH(n) and WD(n)
denote the after-contest fitnesses of the Hawk and
Dove populations, respectively. We add the fol-
lowing inheritance assumption: the starting fitness
of the (n+ 1)st generation is directly proportional
to the after-contest fitness of the nth generation.
Letting α, β ∈ [0, 1] denote the corresponding pro-
portional inheritance constants of Hawk and Dove,



respectively, the inheritance assumption is then ex-
pressed by the following equations:

WH(n) = αWH(n− 1) + V − p(n)
V + C

2
WD(n) = βWD(n− 1) + (1− p(n))V/2 .

(7)

Notice the difference between (7) and (5): where
the previous equations had constant initial fitness
in the nth generation, now the initial fitness is de-
termined by the after-contest fitness of the previ-
ous generation and the proportionality coefficients
α and β. The replicator equation in this model
remains unchanged from (4):

p(n+1) =
p(n)WH(n)

p(n)WH(n) + (1− p(n))WD(n)
. (8)

3.1 Equilibria
We wish to find the equilibria of this system. The
stability of the equilibria will be discussed in the
following section. Suppose the system is at frequency-
equilibrium so that p(n) = p(n+ 1) = p∗ for all n,
where p∗ is fixed in [0, 1]. Then (8) implies

p∗ =
WH(n)p∗

p∗WH(n) + (1− p∗)WD(n)
(9)

for all n. If we assume p∗ ̸= 0, 1 (i.e., p∗ is a non-
trivial equilibrium), then (9) implies WH(n) =
WD(n) for all n. Subtracting the equations in
(7) then gives the following expression for the fre-
quency equilibrium:

p∗ =
V

C
+

2

C
(α− β)WH(n) . (10)

In case α ̸= β, equation (10) implies that WH(n)
(and therefore also WD(n)) does not depend on
n. That is, assuming α ̸= β, if the system is at
frequency equilibrium, then the system must also
be at fitness equilibrium. On the other hand, if
α = β, then (7) implies that

WH(n) = αWH(n− 1) + V − p∗
V + C

2
. (11)

This equation will have a unique stable fixed point
W ∗ provided α < 1. Moreover, the fixed point W ∗

will be positive if and only if the constant term
from (11) is positive, which is equivalent to the
condition

p∗ <
2V

V + C
. (12)

Since (10) reduces to p∗ = V/C in the case α = β,
we see that the inequality in (12) reduces to V <

C. But this is precisely the condition required for
p∗ = V/C ∈ (0, 1).

Thus, we see that for α, β < 1 the system given by
equations (7)–(8) has a fixed point given by p(n) =
p∗, WH(n) = WD(n) = W ∗.

To solve for this fixed point, notice that the equa-
tions in (7) together imply

W ∗ =
V (1− p∗)

2(1− β)
=

2V − (V + C)p∗

2(1− α)
(13)

which gives us the following expression for the fre-
quency equilibrium:

p∗ =
V (1 + α− 2β)

C(1− β) + V (α− β)
. (14)

After substituting this expression back into (13) we
obtain

W ∗ =
V/2

1− β

(
1− V (1 + α− 2β)

C(1− β) + V (α− β)

)
. (15)

At this point we would like to find conditions on
our parameters in order to guarantee that these
solutions are realistic. Namely, we must insure that
0 < p∗ < 1 and W ∗ > 0. Notice, however, that
p∗ < 1 is equivalent to W ∗ > 0. Hence, we need
only concern ourselves with insuring that 0 < p∗ <
1.

We will have p∗ > 0 if the numerator and denomi-
nator in (14) are either both positive or both neg-
ative. The equation V (1 + α − 2β) = 0, given by
setting the numerator equal to 0, is a line in the
αβ-plane passing through the points (0, 1/2) and
(1, 1). Likewise, the equation given by the denom-
inator, C(1− β) + V (α − β) = 0, is a line passing
through the points (0, C/(C + V )) and (1, 1).

Under the assumption that V < C, it is easily ver-
ified that 0 < p∗ < 1 if and only if (α, β) lies in
the region R1 = {(α, β) | β < α/2 + 1/2} (i.e.,
the point lies below both lines from the previous
paragraph). On the other hand, if V > C, then
we see that 0 < p∗ < 1 if and only if (α, β) lies in
the region R2 = {(α, β) | β > α/2 + 1/2}. These
regions are shown in Figure 1.

In this way, the parameter space is decomposed
into two regions, R1 and R2, in which realistic
equilibriums exist depending on whether V < C
or V > C, respectively.
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Figure 1: Regions of the parameter space
corresponding to realistic equilibrium val-
ues.

3.2 Stability
We now seek to answer the question of stability of
the fixed points given in the previous section. As a
first step we rewrite the defining equations (7) and
(8) as a system of three recursive equations

xn+1 = F (xn, yn, zn)

yn+1 = G(xn, yn, zn)

zn+1 = H(xn, yn, zn)

where the functions F , G, and H are given by

F (x, y, z) =
xy

xy + (1− x)z

G(x, y, z) = αy +
xy(V − C)/2 + (1− x)zV

xy + (1− x)z

H(x, y, z) = βz +
(1− x)zV/2

xy + (1− x)z
.

The point (p∗,W ∗,W ∗) given by (14) and (15) is
then a fixed point of this system.

The system is linearized via the Jacobian matrix:

J =

 ∂F/∂x ∂F/∂y ∂F/∂z
∂G/∂x ∂G/∂y ∂G/∂z
∂H/∂x ∂H/∂y ∂H/∂z


That is, if we denote the perturbation from equi-
librium by x′n = xn − p∗, y′n = yn − W ∗, and
z′n = zn − W ∗, then the perturbation in the next
generation is given, up to a first approximation, by

 x′n+1
y′n+1
z′n+1

 = J |(p∗,W ∗,W ∗)

 x′n
y′n
z′n


Moreover, the fixed point (p∗,W ∗,W ∗) is stable if
and only if the eigenvalues of J |(p∗,W ∗,W ∗) are all
less than 1 in absolute value (for more details see
[5], Section 2.9).

The characteristic polynomial of J |(p∗,W ∗,W ∗) is of
degree 3 and sufficiently complicated to preclude
solving for the eigenvalues in the general case. In-
stead, we will use the Jury test, which produces a
finite set of conditions such that all conditions are
satisfied if and only if the fixed point is stable. In
our case, if we write the characteristic polynomial
of J |(p∗,W ∗,W ∗) as

χJ(λ) = a3 + a2λ+ a1λ
2 + λ3

(were we have multiplied by −1 in order to make
the polynomial monic), then the Jury test gives the
following conditions for stability (see p. 59 in [5]):

1 + a1 + a2 + a3 > 0 (16)

1− a1 + a2 − a3 > 0 (17)

1 > |a3| (18)

|b3| > |b1| (19)

|c3| > |c2| (20)

where

b1 = a2 − a3a1 b2 = a1 − a3a2 b3 = 1− a23

c2 = b3b2 − b1b2 c3 = b23 − b21 .

At first, it should be pointed out the terms in the
above inequalities can be shown to depend on the
ratio r = V/C, rather than on V or C indepen-
dently. However, the inequality in (16) is indepen-
dent of r as well, and can be reduced to

(1− β)(1 + α− 2β) > 0 .

This implies that all stable fixed points must cor-
respond to parameters (α, β) ∈ R1. Recall that for
points in R1 to be realistic equilibria we must also
have V < C. The inequalities in (17), (18), and
(20) are similarly shown to be satisfied in region
R1.

The inequality in (19), however, is not satisfied on
the full region, R1, but rather on a subregion. In
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Figure 2: Division of R1 into stable and un-
stable regions.

fact, for fixed r > 1 the quantity z = |b3/b1| defines
a surface over R1 which intersects the plane z = 1
in a smooth curve.

Projecting onto the αβ-plane, we obtain a function
β = γr(α). This curve defines the subregion R1,r ⊆
R1 that corresponds to stable fixed points of the
system (see Figure 2). We find the point αr at
which this curve intersects the α-axis by solving for
α in |b3/b1|β=0 = 1. Since this quantity is given by

|b3/b1|β=0 =
α+ r

2α2 + α(1 + r)

we find that

αr =
1

4
(
√

8r + r2 − r) .

The equation for the curve γr(α) is somewhat un-
wieldy. However, it can be shown that γr(α) is
always below the line β = (α−αr)/(1−αr), which
is the straight line connecting (αr, 0) to (1, 1). As
r → 1 we have αr → 1/2. On the other hand, as
r → ∞ we have αr → 1 and the region of stability,
R1,r, approaches the full region R1.

The line α = β is inside R1,r for all r, hence the
system is stable for all choices of 0 < α = β < 1.
In fact, the eigenvalues of the Jacobian matrix can
be found explicitly in this case. They are

λ = α, α±
√

α2 − α

from which we verify |λ| < 1 directly. Further-

more, the existence of complex eigenvalues implies
that this system will display oscillatory behavior
near the equilibria (see [5], p. 25). This is verified
numerically in the next section.

In addition, since the system changes stability when
passing through the curve β = γr(α), we expect to
find periodic orbits in this vicinity. This, too, is
verified in the next section.

4. NUMERICAL SIMULATION
To verify the analytical results given above, we
show the results of numerical implementation of
the generalized model. As discussed above, realis-
tic, non-trivial equilibria exist only when V < C.
As such, all models are run under this assumption.

Figure 3: Frequency over time for p(0) =
0.225, V = 4, C = 5, α = 0.64, and β = 0.64.

Figure 3 is representative of the frequency behavior
of the model when α = β. As stated previously,
the line α = β is always inside R1,r, which means
the system is always stable for choices of 0 < α =
β < 1. For this simulation we take V = 4 and
C = 5, hence the stable equilibrium value in this
case is p∗ = 0.8. One thing to notice here is the
presence of oscillations as the frequency approaches
the equilibrium. This kind of behavior is due to the
existence of complex eigenvalues and is not present
in the standard model.

Figures 4 and 5 show the behavior of the model
as the inheritance parameters leave the diagonal
α = β and approach the bifurcation curve. Both
the frequency and the fitness are shown. Notice
the increase in oscillations from Figure 3. Notice
also, that the equilibrium value here is different



Figure 4: Frequency over time for p(0) = 0.8,
V = 4, C = 5, α = 0.83, and β = 0.64.

from that in Figure 3 due to equation (14) and the
fact that α ̸= β. A similar picture results even if
we start with p(0) = p∗. That is, the model be-
gins in frequency-equilibrium, but does not remain
there. This is due to the fact that the fitnesses
WH and WD do not begin at their equilibrium
values. In the long term, however, the population
evolves to these equilibrium fitness values and at
that point the population has a fixed initial fitness
for all generations.

Figure 5: Fitness over time for p(0) = 0.8,
V = 4, C = 5, α = 0.83, and β = 0.64.

Figure 6 shows the periodic orbits that character-
ize the behavior of the model for parameters on
the bifurcation curve. In this case there is no long
term stability in the population, though the oscil-
lations are regular about the equilibrium. Plots
of the fitnesses WH and WD show similar oscil-
lations. Notice that the model parameters in this
case are very close to those in Figure 4. This indi-
cates that the bifurcation curve is a Hopf-like bifur-
cation, wherein periodic orbits occur in a narrow
window about the bifurcation, with stability being
reattained upon perturbation of the system in the
appropriate direction.

Figure 6: Frequency over time for p(0) =
0.787, V = 4, C = 5, α = 0.85, and β = 0.63.
Note: a perturbation has been introduced
at time 1500.

Figure 7: Fitness over time for V = 4, C = 5,
α = β = 1.



Though we did not discuss it above, it is interesting
to note the behavior of the model when we set α =
β = 1. That is, we assume that fitness is fully and
directly inherited from one generation to the next.
In this case, equation (14) implies that p∗ = V/C.
Taking the limit as α, β → 1 in (13) we see that
W ∗ = ∞. Moreover, equation (11) shows that the
asymptotic behavior of the fitness is linear with
slope given by

V − p∗
V + C

2
=

V

2

(
1− V

C

)
.

This behavior is confirmed numerically in Figure
7. Because the fitness can never achieve an in-
finite value, the system is never at equilibrium.
Hence, the frequency of individuals in the popula-
tion never stabilizes and, instead, always oscillates
about is equilibrium as shown in Figure 8.

Figure 8: Frequency over time for V = 4, C =
5, α = β = 1. Notice the persistence of the
oscillations: the model has been computed
to 30,000 generations.

5. CONCLUSION
By allowing proportional inheritance of fitness in
the Hawk-Dove game we obtain a more complex
system that displays both bifurcation and oscilla-
tory phenomena. We showed that the steady states
of the system depend on the relative value of the
inheritance parameters. The standard non-trivial
population equilibrium V/C is achieved only when
these parameters are equal. Furthermore, and as
long as the inheritance parameters stay sufficiently
far away from the bifurcation curve in the parame-
ter space, similar equilibrium values will be sought

out by the system wherein fitness values for Hawk
and Dove converge to steady states. For points
in the parameter space near the bifurcation curve,
the system displays periodic behavior and cannot
obtain equilibrium.

These results have potential implications for pop-
ulations that have previously been described using
frequency-dependent models assuming a constant
initial fitness (cf. [11], Ch. 6-9). For instance,
while there is no a priori reason to allow different
inheritance parameters to correspond to different
display behavior, such an assumption could pro-
vide one explanation for why such populations are
not always observed to be at equilibrium: inher-
itance parameters near the bifurcation curve lead
to oscillations about the equilibrium rather than
fast convergence as in the standard model.

The biological implications of this generalization
for particular populations could also be the sub-
ject of further study. Good candidates for such a
study would be populations, like deer, that exhibit
status hierarchies in which individual status has a
direct relationship to fitness and in which status is
independent of display behavior.

The Hawk-Dove game is a simple model and is
most often used as a first example to demonstrate
the particular phenomena that can arise when us-
ing frequency-dependent models to describe bio-
logical populations. Because of this, it would be
interesting to see how allowing proportional inher-
itance of fitness affects the dynamics of more com-
plicated models which incorporate more than two
strategies. For instance, preliminary numerical in-
vestigations show a dramatic increase in oscilla-
tory phenomena when proportional inheritance of
fitness is introduced in the Hawk-Dove-Retaliator
model (cf. [11], p. 17).

In addition, it would be interesting to see if a simi-
lar analysis is possible for more general inheritance
functions. This would show the extent to which
the behavior of frequency-based models remains
the same under changes in assumptions of genetic
inheritance mechanisms.
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