
The Shared Shortest Path Problem in Graphs

Zeal Jagannatha
Ohio Wesleyan University

Delaware, OH 43015
zfjagann@owu.edu

Nicole Peterson
Ashland University
Ashland, OH 44805

npeterso@ashland.edu

Sean Quigley
University of Michigan
Ann Arbor MI 48109
seanpquig@gmail.com

Brooks Emerick
Shippensburg University
Shippensburg, PA 17257

emerick@math.udel.edu

Christopher Earl
Ohio Wesleyan University

Delaware, OH 43015
cwearl@owu.edu

Sean McCulloch
Ohio Wesleyan University

Delaware, OH 43015
stmccull@owu.edu

ABSTRACT
Our research into the Shared Shortest Path Prob-
lem (SSPP) attempts to route a number of paths,
called journeys, in a graph where journeys share
costs of common edges. There are several different
ways to view the problem, measured by differing
optimum solutions.

Our first type of solution attempts to minimize to-
tal cost, which is known to be NP-Complete. To
satisfy this condition, we used an approach based
on the Minimum Spanning Tree. Generally, this
approach finds reasonably cost effective solutions,
but more effective solutions can be found using
other approaches. Our second metric is to treat
each journey as an independent agent and attempt
to find a Nash Equilibrium (NE) for the graph.
From previous research on Congestion Games, we
learned that NE always exist for our problem, and
created an algorithm that finds them quickly, in
practice. Additionally, while attempting to gener-
alize Nash Equilibria, we investigated how Strong
Nash Equilibria can also be applied to our problem.
While this is one of the more effective optimality
conditions, we found that it is likely NP-Complete,
both to verify, and to find. In addition, we found
that Strong Nash Equilibria do not always exist in
graphs. As a result, we chose not to study this
approach in detail, but have left it as a field for
further study.

1. INTRODUCTION
1.1 Problem Definition
A well studied problem in graph theory is the ques-
tion of the optimum way to find the path between

Proceedings of the 2011 Midstates Conference on Undergraduate Research

in Computer Science and Mathematics

two vertices in a weighted graph, which we call a
journey. This journey is a pair of vertices which
we seek to connect with some path. When the
problem involves routing the journey such that the
path connecting it has minimum cost, it is the well-
known Shortest Path Problem. A generalization of
this problem is to attempt to find the optimum way
to route a group of paths through a graph where
journeys share costs of common edges. This is the
idea behind our problem: Given a graph G=(V,E)
and a set of journeys J ⊆ V 2, we seek to find the
“optimal” subset of E that connects all end points
of journeys specified by elements J. To be more spe-
cific, a solution to the SSPP is a set S ⊆ E such
that ∀(v, w) ∈ J there exists a path P ∈ S such
that P starts at v and ends at w and S satisfies
some optimality condition.

This definition of our problem avoids defining op-
timality, so that we can have several different in-
terpretations of it. This allows us to apply our so-
lutions to a wider variety of real-life problems. We
have found many ways of interpreting optimality,
each with its own optimality condition and prac-
tical basis. One possible condition introduces a
metric that minimizes total cost. Other conditions
find solutions that are optimal for each journey or
group of journeys, independent of other journeys.
These methods for evaluating the problem often
conflict, and must be approached separately, with
different algorithms emphasizing different criteria.
As a result, they give completely different results in
most graphs. In practice, we have designed com-
putational approaches for several different condi-
tions that give results which emphasize the quali-
ties of each condition, and outperform naive solu-
tions based on the classic Shortest Path Problem.

1.2 About our Images
We use example images to aid the comprehension
of concepts presented in the paper. To illustrate
different journeys, varying dot styles are used for
the edges which these journeys travel through. For
edges that have no journeys over them, a solid line
is used. For all other journeys, various (non-solid)
dot styles are used. In the case that an edge has
been deleted, the edge and its associated cost will
be lightened, so that they will not appear as dark
as other edges.

For convenience, labels are placed beside each im-
age showing what dot style each journey has and
what their cost is (if any). Optionally, this label
may only be placed once for each figure, since the
dot style remains constant throughout each figure.

1.3 Possible Optimality Conditions
When thinking about each of the optimality condi-
tions, it is helpful to have a frame of reference with
which to compare them. For this, we used the sim-
ple Shortest Path problem. We chose to use this
as our basis because it is more intuitive to some-
one with little experience studying the SSPP, and
also because it is easy to compute efficiently. Using
this as the basis for comparison for our graphs al-
lowed us to compare algorithms to so called ‘basic’
solutions, or solutions that were found using the
Shortest Path approach.

The Shared Shortest Path Problem is defined as
the problem of finding the optimal way to route a
set of journeys through a weighted graph. As we
mentioned above, the word“optimal” is not strictly
defined, so there are many different criteria which
we can apply to find solutions.

One possible optimality condition is simply the
minimal cost metric, which seeks to minimize the
total cost of the edges used by any journey in the
entire graph, regardless of each journey’s cost. This
has applications in network design where there is
a central authority overseeing the design of a net-
work. For example, if we wanted to build a highway
system that connected several major cities while
minimizing the cost of materials, we could apply
this approach to find a cost-effective solution to
this situation. We would simply represent each of
the people that want to travel between cities as a
journey, and then route these in the current net-
work of roads. The result of the algorithm would
be some way of organizing the journeys so that
they were minimal cost. The edges that are used

A B

C D

1

11

1

A B

C D

1

11

1

(a)

(b)

A

B

D

C

B

D

C

A

A

B

D

C

B

D

C

A

1

1

1

1

1.5

0.5

0.5

0.5

Journey Cost

Journey Cost

Figure 1: An example where the Nash Equi-
librium is not minimal cost. (a) is one of the
minimal cost solutions, but (b) is the stable
Nash Equilibrium.

by many journeys, that is, the roads that would be
most heavily demanded by the population, should
be the ones that highways are built along. This
would allow us to build highways along these paths,
reducing transportation costs along them, in addi-
tion to building costs for the highway.

An alternate goal would be to find a configuration
of journeys that attempts to find “stable” solutions
from which journeys are unlikely to deviate. Solu-
tions of this sort are graphs that have the property
that no single journey can find a better path on its
own, and are called Nash Equilibria [5]. The main
application of this approach would be to try to de-
sign a network system so that independent agents
in the graph are in stable configurations, and would
be content with their paths. This is mainly used
when there is no single authority responsible for
finding minimal cost solutions, and the agents are
allowed to act independently and, perhaps selfishly.
As a result, solutions that attempt to approximate
this method may not necessarily be minimal cost,
but instead may pay a higher cost so that each
agent is in a minimal cost path. Figure 1 illus-
trates the fact that these two solution methods are
sometimes mutually exclusive.

Another way to attempt to find these solutions is
through Strong Nash Equilibria. This is a much

more complicated problem, as it has been shown
that finding Strong Nash Equilibria in general is
Σp
2-Complete [3]. In addition, there exist graphs

that do not have Strong Nash Equilibria at all for
our problem, as demonstrated below. For these
reasons, we have done a preliminary investigation
into Strong Nash Equilibria, but more work re-
mains to be done.

2. RELATED WORK
A variety of work has been done that applies to the
SSPP. Much of this work has been done in the field
of Game Theory. One concept that is very closely
tied in with the SSPP is that of Nash Equilibria [5].
Nash Equilibria are extremely useful when trying
to analyze and find equilibrium-based solutions. A
Nash Equilibrium is a configuration in which no
journey can change its path to find a lower cost
solution. It has been proven that NE always exist
for our problems, using the concept of Congestion
Games [7]. Congestion Games are games in which
each player has a finite set of resources whose costs
depend solely on the number of players using them.
Rosenthal proved that this class of games always
has Nash Equilibria by use of a potential function
based on the resources and the number of players
using them [7].

An even more rigorous form of Nash Equilibria
is the Strong Nash Equilibria [2], abreviated as
SNE, which refers to solutions in which no group of
players can change their decisions to benefit every
member of the group. While these solutions have
usually a lower total cost than Nash Equilibria,
Strong Nash Equilibria do not always exist. Fig-
ure 2 gives an example of a situation where coali-
tions of two journeys can cyclically defect leading
to an infinite sequence of defections. Additionally,
Strong Nash Equilibria are likely NP-Complete to
find.

In the graph in Figure 2, any attempt to find a
Strong Nash Equilibrium in the graph fails, since
move than one journey can alter their path to find
a new, lower cost path at any time. A walkthrough
of the defections is given below.

In Graph (a), both journeys A → E and A →
G can defect to find a better path, through edge
(A,C), reducing their costs to 4 and 3, respectively.
This gives us Graph (b) This leaves journey A→ F
alone and with an increased cost, giving it incentive
to defect. With the help of A→ E, it does defect,
so both A→ E and A→ F share edge (A,B). This

A

B C D

GE F

4
4

4

2 2

21

1 1

A

B C D

GE F

4 4
4

2 2

21

1 1

A

B C D

GE F

4
44

2 2

21

1 1A F

A E
A G

A E

A G

A F

A E
A F

A G
Defect

Defect

Defect

A F

A E
A G

A F

A E
A G

JourneyJourney

Journey

CostCost

Cost

3

5

4

5

4

3

4

3

5

(a) (b)

(c)

Figure 2: Any configuration of journeys in
this graph allows us to defect two journeys
at once to achieve a better cost for both.
Thus, a Strong Nash Equilibria does not ex-
ist.

is depicted in Graph (c). Finally, journeys A→ F
and A → G can defect to reduce their costs once
again, resulting in Graph (a). This circular loop
of defections is sufficient proof that Strong Nash
Equilibria do not exist in all graphs.

3. FINDING SOLUTIONS
Since there are a variety of ways to approach this
problem, we attempted to apply computational meth-
ods to each approach to generate results empha-
sizing each of our optimality criteria. For each of
the optimality conditions, we investigated several
approaches to solutions, and evaluated them for
quality and efficiency.

3.1 Spanning Tree
The main approach we took to the minimal cost
criteria is the Spanning Tree Approximation, that
lowers the maximum bound on the cost of a solu-
tion by removing unnecessary edges from the graph.
When implementing this solution, we were unable
to give absolute minimal solutions in polynomial
time since that problem reduces to the Steiner Tree
Problem1. However, we were able to provide rea-
1Since solutions may be disjoint, finding minimal cost so-
lutions actually reduces to finding Steiner Forests, a gen-
eralization of the Steiner Tree Problem which is also NP-
Complete.[1]

9

Apply Spanning Tree
Algorithm

A B

D

E

C

G

F

3

8

10

4

2

3
10 2

10

4

10

7

(a) Using Shortest Paths

Cost

A F 3

8

13

D

G

B

C

A B

D

E

C

G

F

3

8

10
4

2

3
10 2

10

4
10

9 7

(b) Using Spanning Tree

A F 1.666

7.166

12.166

D

G

B

C

Journey

CostJourney

Figure 3: In this graph, the spanning tree
allows us a quick way of reducing the cost of
a solution.

sonable solutions that do significantly better than
basic solutions and do so in a very short amount of
time2. Given a particular weighted graph G and set
of journeys J, the Spanning Tree Approximation
finds the Minimum Spanning Tree of G and then
routes the journeys in J on this Spanning Tree,
forcing more journeys to share. Figure 3 shows
an example of this. Notice how giving each jour-
ney just one way to connect forces sharing along
common edges (AB, AE, BF, CE), leading to a
reduction in each journey’s cost relative to the ba-
sic Shortest Path solution. In general, it has been
shown that this approximation will give a maxi-
mum total cost of twice the optimal solution’s cost
[4].

The motivation behind our Spanning Tree heuristic
is the realization that the total cost of a solution
is just the sum of all edges used by any journey.
Our heuristic tries to minimize that sum by us-
ing the Minimum Spanning Tree of the graph. Be-
cause each journey in a Spanning Tree has only one
possible path to connect its endpoints, the compu-
tational complexity of the approach is greatly re-
duced, and journeys were forced into sharing with
other journeys, since there were significantly fewer
paths which each journey had the option to take.

2Both practically, and in Big-O terms.

In example below, we begin with a graph and find
its Spanning Tree. Once this has been done, we
reroute each journey in the new graph. Since this
new graph has fewer edges than the original graph,
we reduce the upper bound on the total shared
cost. In this case, we reduce the cost of all of
the journeys, however, this is not always the case.
There are cases in which we can actually force a
journey to travel along a less profitable path when
we find the minimum spanning tree.

3.2 DEASE Algorithm
Another way to minimize costs is to attempt to
encourage or force sharing between journeys. The
DEASE (Delete Edge And Share Edge) algorithm
does this by forcing large coalitions to form in the
graph. It forms these coalitions by deleting edges
that are used by smaller coalitions or individual
paths. This forces the journeys to defect to differ-
ent paths, forming larger coalitions, and reducing
the total cost.

Pseudo-code for the algorithm is:

Route each journey initialy by finding its un-
shared shortest path.
repeat

Mark any edges that are shared by more than
one journey.
Keep track of each journey’s current shared
cost.
Delete the edge that has the most journeys on
it.(This will result in any journey that used
that edge to no longer have a path.)
Reroute the affected journeys, using a stan-
dard unshared shortest path algorithms (such
as Dijkstra’s algorithm) taking into account
the new shared costs of each edge.
Compare the current costs of each journey to
their old costs before the deletion
Move any journeys that improved from their
old position to their new one.
Replace the deleted edge back in the graph.

until All shared edges have been deleted once.

In the example above, we can see how the algo-
rithm forces coalitions of journeys to form. It does
this by selecting an edge that is shared, in this
case, the one in the top-center of the graph, and
deletes it, rerouting any affected journeys. The
journeys are rerouted and find a new path that is
still shared. We then add back in the deleted edge,
to reform the original graph, however, since the
new path for both journeys is cheaper than their

A

I J

B

C
D

G H

E F

9

11

12

8

6

12

4

7

5
A

C D

B

E F

(a)

Using shortest paths:

17

21

25

A

C D

B

E F

After deleting edge (I, J)
and rerouting:

16

20

17

A

I J

B

C
D

G H

E F

9

11

12

8

6

12

4

7

5

(b)

Total: 63

Total: 53

Apply
DEASE

Algorithm

Journey Cost

Journey Cost

Figure 4: An example of DEASE algorithm.

former path, they remain on the new path rather
than moving back to the old path.

The algorithm then selects another edge to delete,
in this case, the edge directly below the previously
deleted edge. Once this edge is deleted, the left-
most journey defects down to the journey below it,
forcing the other affected journey to return to its
original path. Since if the rightmost journey had
defected first, the left one may have rejoined it, we
can see that the order of the defections matters. In
a similar way, the order of the deletions matters.
We have left these concerns to futher study.

3.3 Nash Equilibria
If our optimality condition is to find a Nash Equi-
librium, we need a different approach from the pre-
vious, although the Spanning Tree and DEASE
heuristics may make good starting points. The
Nash Equilibria Algorithm (NEA) will find Nash
Equilibria in graphs by repeatedly asking each jour-
ney whether or not it can defect to a better solution
until no journey can, and we have reached a Nash
Equilibrium. With help from the field of Conges-
tion Games, we have proven that this algorithm
can always find a Nash Equilibrium in any graph.
Unlike the Spanning Tree approximation, the NEA
must be given an initial configuration of paths that
connect each journey’s end point and start point.
This can be obtained through a number of ways,

A

D

F

C

B

E

1 1

1 1

10
10

10

Orange defects.

A

D

F

C

B

E

1 1

1 1

10 1010

Green defects.

A

D

F

C

B

E

1 1

1 1

10 1010

They both defect.

A E

B F

Figure 5: A graph in which there are more
than one Nash Equilibria.

such as, finding their shortest single paths or find-
ing a spanning tree for example. If the algorithm is
given the same graph and a different initial config-
uration or a different order of deviations is chosen,
two different Nash Equilibria can be found. This
is true whenever more than one Nash Equilibria
exist in a graph, which is a common property of
most graphs. Figure 4 shows an example of this
behavior.

The algorithm to perform this is quite simple:

Start:
for each journey J do

Find the current shared cost of each edge
Reroute J, using a standard Shortest Path al-
gorithm on the graph with these updated edge
costs.
if J can reduce its cost by switching to a dif-
ferent path then

Record the improved cost
end if

end for
if any journey can reduce its cost by switching
to another path then

Defect the journey that has the largest change
in cost
Goto Start

else
Since no journey can improve, we are in a Nash
Equilibrium.

end if

B

C

A

10

10

3 3
3

5

5

CB
A C 13

10

B

C

A

10

10

3
3

3

5

5

A C
CB

11.5
9.5

B

C

A

10

10

3 3

3

5

5

A C
CB

11
8

Defects

Defects
A C

CB

Journey Cost Journey Cost

Journey Cost

Figure 6: An example of the NEA. The
starting configuration is given from the
shortest paths for each journey.

Using a result in previous game theory work [7],
we can prove that this algorithm always converges.
This is done by providing a potential function of
the solution the total cost and allowing each player
to deviate and observing the change in potential.
Since the potential always decreases, but is bounded
below, it must converge.

4. FUTURE WORK
Although we have found an algorithm that always
finds Nash Equilibria for our graphs, we have not
been able to find either a bound on run-time or find
bounds on the costs of configurations it produces.
Both of these are goals for future work.

Strong Nash Equilibria are intuitively Σp
2-Complete

for our problem since it is necessary to check each
subset of journeys to even verify a particular con-
figuration is a Strong Nash Equilibrium3. However,
we have not proven that SNE are Σp

2-Complete to
find or verify for our problem. In addition, we
do not know if there are sufficient conditions for
Strong Nash Equilibria to occur in graphs. If there
is some sufficient condition, can it be found algo-
rithmically? If so, what is the complexity of such
an algorithm? These are all questions we hope to
answer through future research.

Finally, we would like to broaden the scope of the
3Of which there are 2|J|

SSPP. In our case, we only examined graphs for the
SSPP, but it can also be applied to Euclidian Ge-
ometry to give us the Euclidian Steiner Tree Prob-
lem [6], which has further applications in network
design.

5. ACKNOWLEDGEMENTS
Support for this work was provided in part by the
National Science Foundations Research Experience
for Undergraduates, grant numbers 0648751 and
1003992. Support was also provided by Ohio Wes-
leyan University’s Summer Science Research Pro-
gram.

In addition, we would like to thank Ronald Fenelus,
whos valuable opinions provided us with much of
the insight for this project.

6. REFERENCES
[1] R. Ravi A. Agrawal, P. Klein. When trees

collide: An approximation algorithm for the
generalized steiner tree problem on networks.
Technical Report CS-90-32, Brown University,
Providence, RI, 1990.

[2] R. Aumann. Acceptable points in general
cooperative n-person games. Contributions to
the Theory of Games, 4, 1959.

[3] F. Scarcello G. Gottlob, G. Greco. Pure nash
equilibria: Hard and easy games. Journal of
Artificial Intelligence Research, 24:195–220,
2005.

[4] P. Plassmann M. Bern. The steiner problem
with edge lengths 1 and 2. Information
Processing Letters, 32(1):171–176, 1989.

[5] J. Nash. Equilibrium points in n-person
games. Proceedings of the National Academy
of Sciences, 36(1):48–49, 1950.

[6] et al. P. Crescenzi. Minimum geometric steiner
tree. A Compendium of NP Optimization
Problems, 2000.

[7] R. W. Rosenthal. A class of games possessing
pure-strategy nash equilibria. International
Journal of Game Theory, 2(1):65–67, 1973.

	Introduction
	Problem Definition
	About our Images
	Possible Optimality Conditions

	Related Work
	Finding Solutions
	Spanning Tree
	DEASE Algorithm
	Nash Equilibria

	Future Work
	Acknowledgements
	References

