
Refining the Parallel Prefix Sum Algorithm
Ernie Heyder

Wittenberg University
105 West McCreight

Springfield, Ohio 45504

s13.eheyder@wittenberg.edu

ABSTRACT
This paper focuses on the prefix sum

algorithm. The goal of the paper is to develop

a parallel prefix sum algorithm that is faster

than the sequential algorithm. Takes parts of

an algorithm created by Dan Grossman [1]

and combined them with a new step in the

algorithm that was developed by the author to

create a different approach to solving the

prefix sum algorithm. There are concurrency

problems that can occur when trying to write

this algorithm. The solution to these problems

will be given as they appear, along with a

new algorithm developed by the author.

1. INTRODUCTION

Inspiration for this paper comes from Dan

Grossman’s paper on parallel algorithm [1].

In particular, the prefix sum algorithm that he

describes will be analyzed here, considering

many issues in much greater detail. The idea

for the prefix sum algorithm was taken from

Dan Grossman’s Java code [1], and was then

developed, through extensive testing and

modifications.

The overall goal is to create a prefix sum that

will be significantly faster than the simple

sequential algorithm. The prefix sum

algorithm is used in an implementation of the

quick sort algorithm and pack operations.

Pack operations solve problems like: “Given

an array input, produce an array output

containing only those elements of input that

satisfy some property, and in the same order

they appear in input” [1]. Along with

applications in algorithms the prefix sum

algorithm demonstrates important issues in

parallel programming.

The paper will start out by introducing what

the Prefix sum algorithm is and defining the

two different types of summing that can

occur. Presented next will be the sequential,

recursive, and parallel algorithms, concluding

with results on how the parallel function

compares to the sequential function.

2. PREFIX SUM ALGORITHM

This section starts by introducing the

exclusive and inclusive prefix sum. It then

analyzes the difference between using an in-

place algorithm and creating one or more new

arrays of non-constant size. We will see in all

cases that the in-place algorithm is better than

creating additional arrays.

Prefix sum takes an array and computes a

running total (or prefix) of every element in

the given array. There are two types of prefix

sums. One behaves as follows:

Original: [5, 6, 7, 8]

Prefix Sum: [0, 5, 11, 18]

This is known as an exclusive prefix sum, in

which position i in the prefix sum array is the

sum of all the values in the original array up

to but not including position i. The second

prefix sum behaves as follows:

Original: [5, 6, 7, 8]

Prefix Sum: [5, 11, 18, 26]

This is known as an inclusive prefix sum, in

which position i in the prefix sum array is the

sum of all the values in the original array up

to and including position i. The two sums are

related by a simple shift of the values in the

array. To change the inclusive prefix sum into

the exclusive, shift all of the values to the

right in the array, and define the first value as

0.

One option to consider when designing any

algorithm is whether additional structures

(e.g. arrays) will be required that are larger

than Θ(1) in the problem size. Algorithms

that require no such structures, but rather

modify the original structures as needed, are

called in-place algorithms. Algorithms that

require additional structures often involve

many expensive memory allocation

operations. Typically parallel algorithms are

used on very large amounts of data, meaning

that memory allocation is an important issue

to consider.

2.1 Sequential Algorithm

The sequential algorithms for both the

exclusive and inclusive prefix sum will be

presented in this section. The sequential

algorithm is the base case that later

algorithms will be tested against. The easier

of the two algorithms is the inclusive prefix

sum as you will see below. As mentioned

before both of these algorithms are in-place

algorithms, meaning they will mutate the

array. The Java code for the inclusive prefix

sum is as follows:

1 inclusivePrefixSum(array) {
2 for (i = 1; i < array.length; i++) {
3 array[i] += array[i-1];
4 }
5 }

The Java code for the exclusive prefix sum is:

1 exclusivePrefixSum(array) {
2 tempOld = array[0];
3 array[0] = 0;
4 for (i = 1; i < array.length; i++) {
5 tempNew = array[i];
6 array[i] = tempOld + array[i-1];
7 tempOld = tempNew;
8 }
9 }

2.2 Recursive Algorithm

The recursive algorithm presented here is a

slight modification of the algorithm taken

from Dan Grossman [1]. This algorithm

works in two parts; the first part is called the

up-pass and the second is called the down-

pass. The recursive algorithm does not create

a speedup from the sequential, but is rather an

intermediate step that is used to get to the

parallel algorithm. The exclusive and

inclusive algorithm will both use the same

up-pass, but will have slightly different

down-pass algorithms.

2.2.1 Up-pass

The up-pass is a recursive algorithm that can

be thought of as a two stage process, the

breakdown and the buildup. In the following

Java code, the breakdown is simply the

recursive calls of the function. The buildup is

the popping of the implicit stack created by

those recursive calls.

1 upPass(array, lo, hi) {
2 //Base Case
3 If (hi-lo <= 0) {
4 return array[hi];
5 } else {
6 upPass(array, lo, (hi+lo)/2);
7 right = upPass(array,

 (hi+lo)/2+1, hi);
8
9 array[hi] = array[(hi+lo)/2] +

right;
10 return array[hi];
11 }
12 }

The breakdown will take an array and break it

down into each of its elements individually.

In the diagram below the array starts at size 8

then is broken into two arrays of 4 and so on.

Note that the “splitting” of the array depicted

here is simply for visualization purposes. In

practice, no new arrays are created. Rather,

the algorithm simply references different

ranges of the original array using an upper

and a lower index.

Figure 2.1 Breakdown Step

For the buildup, which involves popping of

the recursive stack, it starts with the

individual element and returns that element.

This step is the base case for our recursive

function. At every step other than the base

case, we add the two numbers that are given

to us by the left and the right recursive call,

and store that value at the highest position in

the current range. The following figure

illustrates the process. Again, though the

array appears to be split, this is simply a

visual aid. The “splitting” is actually handled

through the lo and hi parameters. Remember

that both the exclusive and inclusive prefix

sum use the same up-pass.

Figure 2.2 Buildup Step

2.2.2 Exclusive Down-pass

The down-pass takes the array that is

modified in the up-pass and creates the final

prefix sum. The down-pass is the part of the

algorithm that determines if the function is an

exclusive or inclusive sum. First I will show

the exclusive algorithm, since it is easier to

understand. The Java code for the exclusive

sum algorithm is as follows.

1 exclusiveDownPass(array, lo, hi) {
2 //Recursive Case
3 If (hi-lo != 0) {

4 temp = array[hi];
5 array[hi] += array[(hi+lo)/2];
6 array[(hi+lo)/2] = temp;
7
8 exclusiveDownPass(array, lo,

(hi+lo)/2);
9 exclusiveDownPass(array,

(hi+lo)/2+1, hi);
10 }
11 }

For the exclusive sum the down-pass has to

do less work than the up-pass. It only has the

breakdown step. There is no need for the

buildup step because all of the work is done

before the recursive calls are made. Just like

the up-pass, the array is broken down into

different ranges with each recursive call; this

will be represented by the blocks in the

diagram that follows. As before, these are just

ranges of the original array, not new arrays.

The first step before the down-pass is to

change the last value in the array to zero. This

step is very important for the algorithm to

work.

The first step of the down-pass itself is to

store the value at the high position in the

range (exclusiveDownPass line 4). Then add

the value at the halfway point to the high

position’s value (exclusiveDownPass line 5,

Figure 2.3 short dashed black arrow). The

halfway point is determined by the equation

(hi+lo)/2, where the hi and lo value are the

upper and lower index of the range. The

division used here is integer division. This

value is stored in the high position

(exclusiveDownPass line 5, Figure 2.3 solid

black arrow). Next, take the earlier value

stored from the high position and replace the

value at the half way point with it

(exclusiveDownPass line 6, Figure 2.3 long

dashed black arrow). Repeat this process until

there is just one element in the range.

2.2.3 Exclusive Prefix Sum: Summary

The Java code for the exclusive prefix sum is

as follows:

1 exclusivePrefixSum(array) {
2 upPass(array, 0, array.length-1);
3 array[array.length-1] = 0;
4 exclusivedownPass(array, 0,

array.length-1);
5 }

Figure 2.3 Exclusive Down-pass

At this point the array is the exclusive prefix

sum of the original array.

Figure 2.4 Exclusive Down-pass Results

2.2.4 Inclusive Down-pass

Next I will look at the algorithm for the

inclusive prefix sum. Since there is a

relationship between the inclusive and

exclusive prefix sum, we could use it here to

make a slight change to the exclusive

algorithm. To do this, simply store the last

value in the array after the up-pass. Next add

a for loop after the exclusive down-pass that

shifts all the elements to the left. Then put the

stored value at the end of the array to solve

this problem. But this would be very

inefficient because we have already iterated

through the array once and now have to do it

again. On large amounts of data this will

cause a large slowdown in the speed.

Instead we will change the base case. The

base case will now store the value to the left

of where it did in the exclusive algorithm.

The new Java code is:

1 inclusiveDownPass(array, lo, hi) {
2 //Base Case
3 If (hi-lo == 0) {

4 If (hi != 0) {
5 array[hi-1] = array[hi];
6 }
7 } else {
8 temp = array[hi];
9 array[hi] += array[(hi+lo)/2];
10 array[(hi+lo)/2] = temp;
11
12 inclusiveDownPass(array, lo,

(hi+lo)/2);
13 inclusiveDownPass(array,

(hi+lo)/2+1, hi);
14 }
15 }

The following diagram shows how the

inclusive down-pass works. It is exactly the

same as the exclusive down-pass except it has

a different base case that is added to the end.

The 26 is added using the following inclusive

prefix sum section.

Figure 2.5 Inclusive Down-pass

2.2.5 Inclusive Prefix Sum: Summary

Some minor changes to the prefix sum are

also required. The altered Java code looks

like this:

1 inclusivePrefixSum(array) {
2 upPass(array, 0, array.length-1);
3 int temp = array[array.length-1];
4 array[array.length-1] = 0;
5 downPass(array, 0, array.length-1);
6 array[array.length-1] = temp;
7 }

2.3 Parallel Algorithm

This section demonstrates how to transform a

recursive algorithm into a parallel algorithm.

First there will be a brief explanation of the

difference between the Java Thread class and

Fork/Join framework. Then the process used

to convert a recursive algorithm into a

parallel algorithm, using the Fork/Join

framework, will be presented. This process is

used on the inclusive prefix sum algorithm. A

new algorithm is then developed for the

inclusive prefix sum algorithm.

Before the creation of the Fork/Join

framework, Java programmers wrote multi-

threaded programs with the Thread class (or

closely-related Runnable interface). The

problem with the Thread class is it has a lot of

overhead associated with the creation of each

thread. This made it so that parallel

algorithms requiring large numbers of threads

were unlikely to achieve a speedup. The

Fork/Join framework changes that. The

Fork/Join framework is from the new JDK 7

release on July 7, 2011. It does not eliminate

the overhead completely, but significantly

lessens it. The three classes I use in the

algorithms below are: ForkJoinPool,

RecursiveAction, and RecursiveTask.

To create the parallel algorithm is fairly

simple for the exclusive prefix sum. It is just

a matter of rewriting the recursive algorithm

above using the Java Fork/Join framework.

An outline of this process is provided below:

1. Change the recursive methods into

classes that implement either

RecursiveTask<E> or

RecursiveAction

a. The parameters now become

parameters in the constructor

b. The body of the recursive

method is put into the compute

method

c. Change the recursive calls so

that they create a new instance

of the class

d. Add in the fork, compute and

join methods so that the

method works properly

2. Create a instance of the ForkJoinPool

class called fjPool

3. Change the method that calls the

recursive methods so that it now

creates a new instance of the class and

runs it using fjPool.invoke(with the

method as a class inserted here)

Before further considering this process in the

prefix sum problem, we will consider a much

simpler problem as an example: summing all

numbers in an array. This example is

discussed in detail in Dan Grossman’s paper

[1]. Starting with the recursive algorithm for

summing an array:

1 sumArray(array) {
2 return sumArrayHelper(array, 0,

array.length-1);
3 }
4
5 sumArrayHelper(array, lo, hi) {
6 if (hi-lo == 0) {
7 return array[hi];
8 } else {
9 left = sumArrayHelper(array,

lo, (hi+lo)/2);
10 right = sumArrayHelper(array,

(hi+lo)/2+1, hi);
11
12 return (left + right);
13 }
14 }

Using the steps above the code is rewritten to

look like the code below:

1 fjPool = new ForkJoinPool();
2
3 sumArray(array) {
4 return fjPool.invoke(new

SumArrayHelper(array, 0,
array.length-1));

5 }
6
7 class SumArrayHelper(array, lo, hi)

extends RecursiveTask<Integer>{
8 int[] array;
9 int lo, hi;

10
11 SumArrayHelper(array, lo, hi) {
12 this.array = array;
13 this.lo = lo;
14 this.hi = hi;
15 }
16
17 compute() {
18 if (hi-lo == 0) {
19 return array[hi];
20 } else {
21 left = new

SumArrayHelper(array,
lo, (hi+lo)/2);

22 right = new
SumArrayHelper(array,
(hi+lo)/2+1, hi);

23
24 left.fork();
25 rightAns = right.compute();
26 leftAns = left.join();
27
28 return (leftAns + rightAns);
29 }
30 }
31 }

2.3.1 Concurrency Problem: Inclusive Prefix

Sum

The inclusive algorithm has a few

concurrency issues when changed into a

parallel algorithm using the steps above. The

part that is particularly interesting is: array[hi-

1] = array[hi]; This line’s actual execution

can be represented in the following manner:

temp = array[hi];

array[hi-1] = temp;

Suppose we would like to find the inclusive

prefix sum of the array [1, 2, 3, 4]. First, the

up-pass will have changed this array to be [1,

3, 3, 10]. Then the down pass will recursively

call itself until it has four threads running at

once on the array [0, 1, 3, 6]. Each thread has

a hi value for each position in the array. The

thread with hi equal to zero will do nothing.

The rest will attempt to execute the line of

code above. This is where the problem

occurs. If all of the threads execute in the

order of the hi value (the order of 1, 2, 3),

then there is no problem. However, since the

threads are running in parallel this is not

guaranteed. So if the threads execute in any

other order we have a problem. For instance,

if the order of hi values was 2, 3, 1 then the

resulting array would be [3, 3, 6, 6]. The final

output for the prefix sum will then be [3, 3, 6,

10]. This is not the correct answer; the

inclusive prefix sum algorithm needs to be

rewritten.

2.3.2 Exclusive Sum Algorithm

The exclusive prefix sum algorithm does not

have the same issues as the inclusive prefix

sum because it does not attempt to modify

elements outside of its range of reference.

The hi value in the range is the only value

being changed in the exclusive prefix sum

algorithm.

2.3.3 Resolving Inclusive Prefix Sum

Concurrency Problem

While there is some published literature on

many of the prefix sum issues discussed so

far in this paper, there does not appear to be

any discussion on resolving these

concurrency issues in the down-pass of the

inclusive prefix sum algorithm. Thus the

following down-pass algorithm was

developed. Again the same up-pass is used as

in the exclusive prefix sum algorithm. Along

with splitting the array in half, an extra value

is passed recursively to calculate the correct

prefix sum. The value that is passed in will be

referred to as num, so that it is easier to keep

track of what is going on. In the diagram the

num is always in bold. To start the algorithm

set num to the high value in the array. The

down-pass uses the following Java code:

1 inclusiveDownPass2(num, array, lo, hi) {
2 //Base Case
3 If (hi-lo != 0) {
4 temp = num – array[(hi+lo)/2];

5 mid = array[(hi+lo)/2];
6 array[(hi+lo)/2] = array[hi] –

temp;
7
8 downPass(mid, array, lo,

(hi+lo)/2);
9 downPass(temp, array,

(hi+lo)/2+1, hi);
10 }
11 }

Figure 2.6 Inclusive Down-pass 2

In the above diagram the temp value is always

in italics. The solid black lines represent how

the temp value is calculated

(inclusiveDownPass2 line 4). The dashed

black lines represent how the mid position in

the array is calculated (inclusiveDownPass2

line 6). The function will keep evaluating

until it has one item in its range then it stops.

At this point the array is an inclusive prefix

sum of the original array.

Figure 2.7 Inclusive Down-pass 2 Results

The Java code for the inclusive prefix sum is

as follows:

1 prefixSum(array) {
2 upPass(array, 0, array.length-1);
3 downPass(array[array.length-1],

array, 0, array.length-1);

4 }

2.4 Cutoff Algorithm

Just making an algorithm run in parallel does

not automatically provide a speedup. The

overhead associated with creating so many

new threads makes the parallel algorithm

slower than the sequential one, even with the

use of the lightweight threads of the Java

Fork/Join framework. To remedy this, a

sequential cutoff is inserted at 500 elements.

A sequential cutoff is a base case that stops

the creation of new parallel threads in an

algorithm and continues the algorithm in

serial.

The sequential cutoff for the exclusive

algorithm is at 500 elements for both the up

and down-pass. When the cutoff is reached

the algorithm will simply call the recursive

version of the algorithm. This will remove the

overhead of creating new threads.

For the inclusive algorithm there is a slightly

quicker algorithm that requires us to change

the up and down-pass algorithm slightly. For

the up-pass the cutoff will make it so that the

bottom elements will hold the sum of 500

elements each. This will not change their

position in the array, just the process used to

sum them. The sum of the 500 elements will

be done iteratively and will not modify any of

the other elements other than the rightmost

element (the 500
th

 element). This element acts

like the parent value for all of the 500

elements. Each of the parent values created

like this will be put back into the recursive

algorithm that was already developed and

everything will function like normal.

Here is an example of what the process will

be for the array of 12 and a cutoff of 3. The

breakdown has not been illustrated since it is

similar to the last one. The buildup starts with

iteratively summing the bottom 3 elements in

each of the ranges. This is illustrated in the

very first step of the diagram. Every step after

that is done recursively, by the popping of the

stack.

Figure 2.8 Cutoff Up-pass

The following is a modified version of the up-

pass so that it uses a cutoff as the base case.

1 upPass(array, lo, hi) {
2 //Base Case
3 If (hi-lo <= 500) {
4 int sum = 0;
5 for (int i = lo; I <= hi; i++) {
6 sum += array[i];
7 }
8 array[hi] = sum;
9 return array[hi];
10 } else {
11 upPass(array, lo, (hi+lo)/2);
12 right = upPass(array,

(hi+lo)/2+1, hi);
13
14 array[hi] = array[(hi+lo)/2] +

right;
15 return [hi];
16 }
17 }

In order for the cutoff to work properly the

down-pass cutoff must be the same as the up-

pass cutoff. The cutoff can either be used in

both passes or not at all. All of the values

under the cutoff will be created iteratively,

using a for loop, that just adds the previous

term to the current term. This is why we did

not do this in the up-pass step earlier. The

only case that has to be done differently is the

first element in the array; this element does

not change at all. Here is the Java code for the

down-pass with the cutoff:

1 downPass(array, lo, hi) {
2 //Base Case
3 if (hi-lo <= 500) {
4 if (lo != 0) {
5 array[lo] += array[lo-1];
6 }

7 for (int i = lo+1; i< hi; i++) {
8 array[i] += array[lo-1];
9 }
10 } else {
11 int temp = num –

array[(hi+lo)/2];
12 int mid = array[(hi+lo)/2];
13 array[(hi+lo)/2] = array[hi] –

temp;
14 downPass(mid, array, lo,

(hi+lo)/2);
15 downPass(mid, array,

(hi+lo)/2+1, hi);
16 }
17 }

3. EXPERIMENTAL SETUP

Here is some information about the computer

I used to run the programs on. The computer

is a Dell N5010. It has an Intel® Core™ i3

CPU, 2.53 GHz. 4 GB of RAM (3.8 GB

usable). Operating System is a 64-bit.

4. RESULTS

Now it is time to analyze the final function

against what we started with. The goal of this

paper was to create an inclusive prefix sum

algorithm that is more efficient than the

sequential algorithm.

Note that the overhead involved in running

the algorithm in parallel is logarithmic in the

problem size, but constant in the number of

processors. That is, for a given problem size,

the number of parallel threads created

remains constant regardless of the actual

number of processors available. In addition,

the number of parallel threads created is quite

large, such that even hundreds of processors

could be effectively applied to this algorithm

with no increase in the cost of parallelization.

Thus an increase in processors applied to this

problem leads to an inevitable speedup.

Due to the limited number of processors

available for use in these tests, I was unable

to reach the point at which the speedup of

parallelism overcomes the constant cost of

parallelism over the sequential algorithm.

The cutoff of 500 elements was chosen to

follow the process used by Dan Grossman. In

testing I was unable to find a speed-up in any

cases that I tried so I decided to leave the

cutoff at 500 to mirror what has already been

tested.

4.1 Applications

The prefix sum inclusive algorithm can be

used in a few parallel algorithms. One

algorithm is called pack. The pack solves the

problem: “given an array input, produce an

array output containing only those elements

of input that satisfy some property, and in the

same order they appear in input.” [1] For

example one pack function would takes an

array and a number, and then returns an array

of all values greater than that number.

Another use of the prefix sum is in the

parallel quick sort algorithm.

5. REFERENCES
[1] Grossman, Dan. "A Sophomoric Introduction to Shared-

Memory Parallelism and Concurrency." Diss.

University of Washington, 2011. Web.

<http://www.cs.washington.edu/homes/djg/teachingMat

erials/spac/sophomoricParallelismAndConcurrency.pdf

>.

