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ABSTRACT 
This paper focuses on the prefix sum 

algorithm. The goal of the paper is to develop 

a parallel prefix sum algorithm that is faster 

than the sequential algorithm. Takes parts of 

an algorithm created by Dan Grossman [1] 

and combined them with a new step in the 

algorithm that was developed by the author to 

create a different approach to solving the 

prefix sum algorithm. There are concurrency 

problems that can occur when trying to write 

this algorithm. The solution to these problems 

will be given as they appear, along with a 

new algorithm developed by the author. 

1. INTRODUCTION 

Inspiration for this paper comes from Dan 

Grossman’s paper on parallel algorithm [1]. 

In particular, the prefix sum algorithm that he 

describes will be analyzed here, considering 

many issues in much greater detail. The idea 

for the prefix sum algorithm was taken from 

Dan Grossman’s Java code [1], and was then 

developed, through extensive testing and 

modifications. 

The overall goal is to create a prefix sum that 

will be significantly faster than the simple 

sequential algorithm. The prefix sum 

algorithm is used in an implementation of the 

quick sort algorithm and pack operations. 

Pack operations solve problems like: “Given 

an array input, produce an array output 

containing only those elements of input that 

satisfy some property, and in the same order 

they appear in input” [1]. Along with 

applications in algorithms the prefix sum 

algorithm demonstrates important issues in 

parallel programming. 

The paper will start out by introducing what 

the Prefix sum algorithm is and defining the 

two different types of summing that can 

occur. Presented next will be the sequential, 

recursive, and parallel algorithms, concluding 

with results on how the parallel function 

compares to the sequential function. 

2. PREFIX SUM ALGORITHM 

This section starts by introducing the 

exclusive and inclusive prefix sum. It then 

analyzes the difference between using an in-

place algorithm and creating one or more new 

arrays of non-constant size. We will see in all 

cases that the in-place algorithm is better than 

creating additional arrays.  

Prefix sum takes an array and computes a 

running total (or prefix) of every element in 

the given array.  There are two types of prefix 

sums. One behaves as follows: 

Original: [5, 6, 7, 8] 

Prefix Sum: [0, 5, 11, 18] 

This is known as an exclusive prefix sum, in 

which position i in the prefix sum array is the 

sum of all the values in the original array up 

to but not including position i. The second 

prefix sum behaves as follows: 

Original: [5, 6, 7, 8] 

Prefix Sum: [5, 11, 18, 26] 

This is known as an inclusive prefix sum, in 

which position i in the prefix sum array is the 

sum of all the values in the original array up 

to and including position i. The two sums are 

related by a simple shift of the values in the 

array. To change the inclusive prefix sum into 

the exclusive, shift all of the values to the 

right in the array, and define the first value as 

0.  



One option to consider when designing any 

algorithm is whether additional structures 

(e.g. arrays) will be required that are larger 

than Θ(1) in the problem size. Algorithms 

that require no such structures, but rather 

modify the original structures as needed, are 

called in-place algorithms. Algorithms that 

require additional structures often involve 

many expensive memory allocation 

operations. Typically parallel algorithms are 

used on very large amounts of data, meaning 

that memory allocation is an important issue 

to consider.  

2.1 Sequential Algorithm 

The sequential algorithms for both the 

exclusive and inclusive prefix sum will be 

presented in this section. The sequential 

algorithm is the base case that later 

algorithms will be tested against. The easier 

of the two algorithms is the inclusive prefix 

sum as you will see below. As mentioned 

before both of these algorithms are in-place 

algorithms, meaning they will mutate the 

array. The Java code for the inclusive prefix 

sum is as follows: 

 
1 inclusivePrefixSum(array) { 
2 for ( i = 1; i < array.length; i++) { 
3  array[i] += array[i-1]; 
4 } 
5 } 

 

The Java code for the exclusive prefix sum is: 

 
1 exclusivePrefixSum(array) { 
2 tempOld = array[0]; 
3 array[0] = 0; 
4 for ( i = 1; i < array.length; i++) { 
5  tempNew = array[i]; 
6  array[i] = tempOld + array[i-1]; 
7  tempOld = tempNew; 
8 } 
9 } 
 

2.2 Recursive Algorithm 

The recursive algorithm presented here is a 

slight modification of the algorithm taken 

from Dan Grossman [1]. This algorithm 

works in two parts; the first part is called the 

up-pass and the second is called the down-

pass. The recursive algorithm does not create 

a speedup from the sequential, but is rather an 

intermediate step that is used to get to the 

parallel algorithm. The exclusive and 

inclusive algorithm will both use the same 

up-pass, but will have slightly different 

down-pass algorithms. 

2.2.1 Up-pass 

The up-pass is a recursive algorithm that can 

be thought of as a two stage process, the 

breakdown and the buildup. In the following 

Java code, the breakdown is simply the 

recursive calls of the function. The buildup is 

the popping of the implicit stack created by 

those recursive calls. 

 
1  upPass(array, lo, hi) { 
2 //Base Case 
3 If (hi-lo <= 0) { 
4  return array[hi]; 
5 } else { 
6  upPass(array, lo, (hi+lo)/2); 
7  right = upPass(array, 

  (hi+lo)/2+1, hi); 
8   
9 array[hi] = array[(hi+lo)/2] + 

right; 
10  return array[hi]; 
11 } 
12  } 

 

The breakdown will take an array and break it 

down into each of its elements individually. 

In the diagram below the array starts at size 8 

then is broken into two arrays of 4 and so on. 

Note that the “splitting” of the array depicted 

here is simply for visualization purposes. In 

practice, no new arrays are created. Rather, 

the algorithm simply references different 

ranges of the original array using an upper 

and a lower index.  



 
Figure 2.1 Breakdown Step 

For the buildup, which involves popping of 

the recursive stack, it starts with the 

individual element and returns that element. 

This step is the base case for our recursive 

function.  At every step other than the base 

case, we add the two numbers that are given 

to us by the left and the right recursive call, 

and store that value at the highest position in 

the current range. The following figure 

illustrates the process. Again, though the 

array appears to be split, this is simply a 

visual aid. The “splitting” is actually handled 

through the lo and hi parameters. Remember 

that both the exclusive and inclusive prefix 

sum use the same up-pass. 

 
Figure 2.2 Buildup Step 

2.2.2 Exclusive Down-pass 

The down-pass takes the array that is 

modified in the up-pass and creates the final 

prefix sum. The down-pass is the part of the 

algorithm that determines if the function is an 

exclusive or inclusive sum. First I will show 

the exclusive algorithm, since it is easier to 

understand. The Java code for the exclusive 

sum algorithm is as follows. 

 
1  exclusiveDownPass(array, lo, hi) { 
2  //Recursive Case 
3  If (hi-lo != 0) { 

4   temp = array[hi]; 
5   array[hi] += array[(hi+lo)/2]; 
6   array[(hi+lo)/2] = temp; 
7    
8  exclusiveDownPass(array, lo, 

(hi+lo)/2); 
9  exclusiveDownPass(array, 

(hi+lo)/2+1, hi); 
10 } 
11 } 

 

For the exclusive sum the down-pass has to 

do less work than the up-pass. It only has the 

breakdown step. There is no need for the 

buildup step because all of the work is done 

before the recursive calls are made. Just like 

the up-pass, the array is broken down into 

different ranges with each recursive call; this 

will be represented by the blocks in the 

diagram that follows. As before, these are just 

ranges of the original array, not new arrays. 

The first step before the down-pass is to 

change the last value in the array to zero. This 

step is very important for the algorithm to 

work. 

The first step of the down-pass itself is to 

store the value at the high position in the 

range (exclusiveDownPass line 4). Then add 

the value at the halfway point to the high 

position’s value (exclusiveDownPass line 5, 

Figure 2.3 short dashed black arrow). The 

halfway point is determined by the equation 

(hi+lo)/2, where the hi and lo value are the 

upper and lower index of the range. The 

division used here is integer division. This 

value is stored in the high position 

(exclusiveDownPass line 5, Figure 2.3 solid 

black arrow). Next, take the earlier value 

stored from the high position and replace the 

value at the half way point with it 

(exclusiveDownPass line 6, Figure 2.3 long 

dashed black arrow). Repeat this process until 

there is just one element in the range.  

2.2.3 Exclusive Prefix Sum: Summary 

The Java code for the exclusive prefix sum is 

as follows: 

 



1 exclusivePrefixSum(array) { 
2 upPass(array, 0, array.length-1); 
3 array[array.length-1] = 0; 
4 exclusivedownPass(array, 0, 

array.length-1); 
5 } 

 

 
Figure 2.3 Exclusive Down-pass 

At this point the array is the exclusive prefix 

sum of the original array. 

 
Figure 2.4 Exclusive Down-pass Results 

2.2.4 Inclusive Down-pass 

Next I will look at the algorithm for the 

inclusive prefix sum. Since there is a 

relationship between the inclusive and 

exclusive prefix sum, we could use it here to 

make a slight change to the exclusive 

algorithm. To do this, simply store the last 

value in the array after the up-pass. Next add 

a for loop after the exclusive down-pass that 

shifts all the elements to the left. Then put the 

stored value at the end of the array to solve 

this problem. But this would be very 

inefficient because we have already iterated 

through the array once and now have to do it 

again. On large amounts of data this will 

cause a large slowdown in the speed. 

Instead we will change the base case. The 

base case will now store the value to the left 

of where it did in the exclusive algorithm. 

The new Java code is: 

 
1  inclusiveDownPass(array, lo, hi) { 
2 //Base Case 
3 If (hi-lo == 0) { 

4  If (hi != 0) { 
5   array[hi-1] = array[hi]; 
6  } 
7 } else { 
8  temp = array[hi]; 
9  array[hi] += array[(hi+lo)/2];  
10  array[(hi+lo)/2] = temp; 
11  
12 inclusiveDownPass(array, lo, 

(hi+lo)/2); 
13 inclusiveDownPass(array, 

(hi+lo)/2+1, hi); 
14 } 
15 } 

 

The following diagram shows how the 

inclusive down-pass works. It is exactly the 

same as the exclusive down-pass except it has 

a different base case that is added to the end. 

The 26 is added using the following inclusive 

prefix sum section. 

 
Figure 2.5 Inclusive Down-pass 

2.2.5 Inclusive Prefix Sum: Summary 

Some minor changes to the prefix sum are 

also required. The altered Java code looks 

like this: 

 
1 inclusivePrefixSum(array) { 
2 upPass(array, 0, array.length-1); 
3 int temp = array[array.length-1]; 
4 array[array.length-1] = 0; 
5 downPass(array, 0, array.length-1); 
6 array[array.length-1] = temp; 
7 } 

 

2.3 Parallel Algorithm 

This section demonstrates how to transform a 

recursive algorithm into a parallel algorithm. 



First there will be a brief explanation of the 

difference between the Java Thread class and 

Fork/Join framework. Then the process used 

to convert a recursive algorithm into a 

parallel algorithm, using the Fork/Join 

framework, will be presented. This process is 

used on the inclusive prefix sum algorithm. A 

new algorithm is then developed for the 

inclusive prefix sum algorithm. 

Before the creation of the Fork/Join 

framework, Java programmers wrote multi-

threaded programs with the Thread class (or 

closely-related Runnable interface). The 

problem with the Thread class is it has a lot of 

overhead associated with the creation of each 

thread. This made it so that parallel 

algorithms requiring large numbers of threads 

were unlikely to achieve a speedup. The 

Fork/Join framework changes that. The 

Fork/Join framework is from the new JDK 7 

release on July 7, 2011. It does not eliminate 

the overhead completely, but significantly 

lessens it. The three classes I use in the 

algorithms below are: ForkJoinPool, 

RecursiveAction, and RecursiveTask. 

To create the parallel algorithm is fairly 

simple for the exclusive prefix sum. It is just 

a matter of rewriting the recursive algorithm 

above using the Java Fork/Join framework. 

An outline of this process is provided below: 

1. Change the recursive methods into 

classes that implement either 

RecursiveTask<E> or 

RecursiveAction 

a. The parameters now become 

parameters in the constructor 

b. The body of the recursive 

method is put into the compute 

method 

c. Change the recursive calls so 

that they create a new instance 

of the class 

d. Add in the fork, compute and 

join methods so that the 

method works properly 

2. Create a instance of the ForkJoinPool 

class called fjPool 

3. Change the method that calls the 

recursive methods so that it now 

creates a new instance of the class and 

runs it using fjPool.invoke(with the 

method as a class inserted here) 

 

Before further considering this process in the 

prefix sum problem, we will consider a much 

simpler problem as an example: summing all 

numbers in an array. This example is 

discussed in detail in Dan Grossman’s paper 

[1]. Starting with the recursive algorithm for 

summing an array: 

 
1  sumArray(array) { 
2  return sumArrayHelper(array, 0, 

array.length-1); 
3  } 
4 
5  sumArrayHelper(array, lo, hi) { 
6 if (hi-lo == 0) { 
7  return array[hi]; 
8 } else { 
9 left = sumArrayHelper(array, 

lo, (hi+lo)/2); 
10 right = sumArrayHelper(array, 

(hi+lo)/2+1, hi); 
11 
12  return (left + right); 
13 } 
14 } 
 

Using the steps above the code is rewritten to 

look like the code below: 

 
1  fjPool = new ForkJoinPool(); 
2 
3  sumArray(array) { 
4 return fjPool.invoke(new 

SumArrayHelper(array, 0, 
array.length-1)); 

5  } 
6 
7  class SumArrayHelper(array, lo, hi) 

extends RecursiveTask<Integer>{ 
8 int[] array; 
9 int lo, hi; 



10 
11 SumArrayHelper(array, lo, hi) { 
12  this.array = array; 
13  this.lo = lo; 
14  this.hi = hi; 
15 } 
16 
17 compute() { 
18  if (hi-lo == 0) { 
19   return array[hi]; 
20  } else { 
21 left = new  

SumArrayHelper(array, 
lo, (hi+lo)/2); 

22 right = new  
SumArrayHelper(array, 
(hi+lo)/2+1, hi); 

23      
24 left.fork(); 
25 rightAns = right.compute(); 
26 leftAns = left.join(); 
27   
28 return (leftAns + rightAns); 
29  } 
30 } 
31  } 

 

2.3.1 Concurrency Problem: Inclusive Prefix 

Sum 

The inclusive algorithm has a few 

concurrency issues when changed into a 

parallel algorithm using the steps above. The 

part that is particularly interesting is: array[hi-

1] = array[hi]; This line’s actual execution 

can be represented in the following manner: 

 

temp = array[hi]; 

array[hi-1] = temp; 

 

Suppose we would like to find the inclusive 

prefix sum of the array [1, 2, 3, 4]. First, the 

up-pass will have changed this array to be [1, 

3, 3, 10]. Then the down pass will recursively 

call itself until it has four threads running at 

once on the array [0, 1, 3, 6]. Each thread has 

a hi value for each position in the array. The 

thread with hi equal to zero will do nothing. 

The rest will attempt to execute the line of 

code above. This is where the problem 

occurs. If all of the threads execute in the 

order of the hi value (the order of 1, 2, 3), 

then there is no problem. However, since the 

threads are running in parallel this is not 

guaranteed. So if the threads execute in any 

other order we have a problem. For instance, 

if the order of hi values was 2, 3, 1 then the 

resulting array would be [3, 3, 6, 6]. The final 

output for the prefix sum will then be [3, 3, 6, 

10]. This is not the correct answer; the 

inclusive prefix sum algorithm needs to be 

rewritten. 

2.3.2 Exclusive Sum Algorithm 

The exclusive prefix sum algorithm does not 

have the same issues as the inclusive prefix 

sum because it does not attempt to modify 

elements outside of its range of reference. 

The hi value in the range is the only value 

being changed in the exclusive prefix sum 

algorithm. 

 

2.3.3 Resolving Inclusive Prefix Sum 

Concurrency Problem 

While there is some published literature on 

many of the prefix sum issues discussed so 

far in this paper, there does not appear to be 

any discussion on resolving these 

concurrency issues in the down-pass of the 

inclusive prefix sum algorithm. Thus the 

following down-pass algorithm was 

developed. Again the same up-pass is used as 

in the exclusive prefix sum algorithm. Along 

with splitting the array in half, an extra value 

is passed recursively to calculate the correct 

prefix sum. The value that is passed in will be 

referred to as num, so that it is easier to keep 

track of what is going on. In the diagram the 

num is always in bold. To start the algorithm 

set num to the high value in the array. The 

down-pass uses the following Java code: 

 
1  inclusiveDownPass2(num, array, lo, hi) { 
2 //Base Case 
3 If (hi-lo != 0) { 
4  temp = num – array[(hi+lo)/2]; 



5  mid = array[(hi+lo)/2]; 
6 array[(hi+lo)/2] = array[hi] –  

temp; 
7 
8 downPass(mid, array, lo,  

(hi+lo)/2); 
9 downPass(temp, array,  

(hi+lo)/2+1, hi); 
10 } 
11 } 

 

Figure 2.6 Inclusive Down-pass 2 

In the above diagram the temp value is always 

in italics. The solid black lines represent how 

the temp value is calculated 

(inclusiveDownPass2 line 4). The dashed 

black lines represent how the mid position in 

the array is calculated (inclusiveDownPass2 

line 6). The function will keep evaluating 

until it has one item in its range then it stops. 

At this point the array is an inclusive prefix 

sum of the original array. 

 
Figure 2.7 Inclusive Down-pass 2 Results 

The Java code for the inclusive prefix sum is 

as follows: 

 
1 prefixSum(array) { 
2 upPass(array, 0, array.length-1); 
3 downPass(array[array.length-1], 

array, 0, array.length-1); 

4 } 

 

2.4 Cutoff Algorithm 

Just making an algorithm run in parallel does 

not automatically provide a speedup. The 

overhead associated with creating so many 

new threads makes the parallel algorithm 

slower than the sequential one, even with the 

use of the lightweight threads of the Java 

Fork/Join framework. To remedy this, a 

sequential cutoff is inserted at 500 elements. 

A sequential cutoff is a base case that stops 

the creation of new parallel threads in an 

algorithm and continues the algorithm in 

serial.  

The sequential cutoff for the exclusive 

algorithm is at 500 elements for both the up 

and down-pass. When the cutoff is reached 

the algorithm will simply call the recursive 

version of the algorithm. This will remove the 

overhead of creating new threads.  

For the inclusive algorithm there is a slightly 

quicker algorithm that requires us to change 

the up and down-pass algorithm slightly. For 

the up-pass the cutoff will make it so that the 

bottom elements will hold the sum of 500 

elements each. This will not change their 

position in the array, just the process used to 

sum them. The sum of the 500 elements will 

be done iteratively and will not modify any of 

the other elements other than the rightmost 

element (the 500
th

 element). This element acts 

like the parent value for all of the 500 

elements. Each of the parent values created 

like this will be put back into the recursive 

algorithm that was already developed and 

everything will function like normal.  

Here is an example of what the process will 

be for the array of 12 and a cutoff of 3. The 

breakdown has not been illustrated since it is 

similar to the last one. The buildup starts with 

iteratively summing the bottom 3 elements in 

each of the ranges. This is illustrated in the 

very first step of the diagram. Every step after 

that is done recursively, by the popping of the 

stack. 



 
Figure 2.8 Cutoff Up-pass 

The following is a modified version of the up-

pass so that it uses a cutoff as the base case.  

 
1  upPass(array, lo, hi) { 
2 //Base Case 
3 If (hi-lo <= 500) { 
4  int sum = 0; 
5  for (int i = lo; I <= hi; i++) { 
6   sum += array[i]; 
7 } 
8 array[hi] = sum; 
9 return array[hi]; 
10 } else { 
11  upPass(array, lo, (hi+lo)/2); 
12 right = upPass(array,  

(hi+lo)/2+1, hi); 
13   
14 array[hi] = array[(hi+lo)/2] +  

right; 
15  return [hi]; 
16 } 
17 } 

 

In order for the cutoff to work properly the 

down-pass cutoff must be the same as the up-

pass cutoff. The cutoff can either be used in 

both passes or not at all. All of the values 

under the cutoff will be created iteratively, 

using a for loop, that just adds the previous 

term to the current term. This is why we did 

not do this in the up-pass step earlier. The 

only case that has to be done differently is the 

first element in the array; this element does 

not change at all. Here is the Java code for the 

down-pass with the cutoff: 

 
1  downPass(array, lo, hi) { 
2 //Base Case 
3 if (hi-lo <= 500) { 
4  if ( lo != 0) { 
5   array[lo] += array[lo-1]; 
6  } 

7  for (int i = lo+1; i< hi; i++) { 
8   array[i] += array[lo-1]; 
9  } 
10 } else { 
11 int temp = num –  

array[(hi+lo)/2]; 
12  int mid = array[(hi+lo)/2]; 
13 array[(hi+lo)/2] = array[hi] –  

temp; 
14 downPass(mid, array, lo,  

(hi+lo)/2); 
15 downPass(mid, array,  

(hi+lo)/2+1, hi); 
16 } 
17 } 

 

3. EXPERIMENTAL SETUP 

Here is some information about the computer 

I used to run the programs on. The computer 

is a Dell N5010. It has an Intel® Core™ i3 

CPU, 2.53 GHz. 4 GB of RAM (3.8 GB 

usable). Operating System is a 64-bit. 

4. RESULTS 

Now it is time to analyze the final function 

against what we started with. The goal of this 

paper was to create an inclusive prefix sum 

algorithm that is more efficient than the 

sequential algorithm.  

Note that the overhead involved in running 

the algorithm in parallel is logarithmic in the 

problem size, but constant in the number of 

processors. That is, for a given problem size, 

the number of parallel threads created 

remains constant regardless of the actual 

number of processors available. In addition, 

the number of parallel threads created is quite 

large, such that even hundreds of processors 

could be effectively applied to this algorithm 

with no increase in the cost of parallelization. 

Thus an increase in processors applied to this 

problem leads to an inevitable speedup.  

Due to the limited number of processors 

available for use in these tests, I was unable 

to reach the point at which the speedup of 

parallelism overcomes the constant cost of 

parallelism over the sequential algorithm. 



The cutoff of 500 elements was chosen to 

follow the process used by Dan Grossman. In 

testing I was unable to find a speed-up in any 

cases that I tried so I decided to leave the 

cutoff at 500 to mirror what has already been 

tested. 

 

4.1 Applications 

The prefix sum inclusive algorithm can be 

used in a few parallel algorithms. One 

algorithm is called pack. The pack solves the 

problem: “given an array input, produce an 

array output containing only those elements 

of input that satisfy some property, and in the 

same order they appear in input.” [1] For 

example one pack function would takes an 

array and a number, and then returns an array 

of all values greater than that number. 

Another use of the prefix sum is in the 

parallel quick sort algorithm. 
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