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ABSTRACTIn this paper, we attempt to explore mathemat-ical structures of tonal music from the 18th and19th centuries. We review the known mathemati-cal/musical structures and, noting lacking featuresof this geometrical construct as a useful model oftonal harmony, we propose generalizations that maybe better suited to tonal music. We bring sev-eral mathematical devices to bear on the Tonnetz(or Tone Network) in new ways, including Cay-ley graphs and Coxeter hyperbolic representations.We conclude with three-dimensional geometric mod-els that represent the four-note seventh chords whichare ubiquitous in 18th and 19th century music.
1. INTRODUCTIONThe intellectual endeavor to codify and clarify mu-sic in mathematical terms dates at least to the an-cient Greeks and the Pythagoreans. Composers ofthe Medieval and Renaissance periods developedtechniques that a modern mathematician wouldrecognize by principles of symmetry and transfor-mation. As late as the 17th and 18th centuries,great scienti�c minds such as Newton and Eulerturned their attention to music theory as well. How-ever during the 18th century, music theory beganto develop into an academic area independent ofits scienti�c roots. With the work of Rameau [1], atheory of tonal harmony gained strength and heldsway until the end of the 19th century. The mu-sic of this era | known to musicologists as thecommon practice period or the tonal period | wasbased upon a theoretical underpinning that was
�I would like to thank my advisor, Dr. Eric Barth, for theopportunity to do this research; I have entered a world ofresearch that I have found both enjoyable and educational.His support and input was invaluable into this product.
Proceedings of the 2011 Midstates Conference on Undergraduate Research

in Computer Science and Mathematics

largely independent of explicit mathematical inu-ence.
With the birth of post-tonal and atonal music atthe close of the 19th century, the established har-monic order failed. Theorists turned again to math-ematics for organizing principles around which tobuild a new theoretical framework. At the turnof the 20th century, one inuential direction (pre-saged in the work of Leonard Euler two centuriesprior [10]) was that of Otto Riemann [1], whosetwo-dimensional geometric representation of fun-damental harmonic structures, the Tonnetz, (Ger-man for \Tone Network"), gave rise to a rich Neo-Riemannian theory of set-theoretic transformationsin pitch-class space. This has proven to be ex-tremely fertile ground for music analysis. The grouptheoretical work begun by Lewin [3] has many con-temporary scholars.
In the current work, we look for applications of Rie-mann's Tonnetz to the tonal music of the commonpractice period. We review the known mathemat-ical structure of the Tonnetz and, noting awkwardfeatures of this geometrical model, propose gen-eralizations and modi�cations that may be bettersuited to tonal music. We bring several mathe-matical devices to bear on the Tonnetz in novelways, including Cayley graphs and Coxeter hy-perbolic representations. We conclude with three-dimensional geometric models that represent four-note seventh chords which are vital in compositionsof the 18th and 19th centuries.
1.1 AlgebraWhile mathematical constructs have been used tostudy music since ancient times, the use of grouptheory is a relatively new and powerful approachto this topic [3]. We gather a few key de�nitionsthat will be used below [5][7].



Definition 1. Let G be a set together with a bi-nary operation that assigns to each ordered pair(a; b) of elements of G an element in G denotedby ab: We say G is a group under this operation ifthe following properties are satis�ed:
1. Associativity. The operation is associative; thatis, (ab)c = a(bc) for all a; b; c 2 G:
2. Identity. There is an element e in G such thatae = ea = a for all a 2 G: We call e theidentity element.
3. Inverses. For each element A in G; there isan element b in G such that ab = ba = e.
Definition 2. If a subset H of a group G is it-self a group under the operation of G; we say thatH is a subgroup of G. A group G is cyclic if it isof the form hai = fanjn 2 Zg and we say that a isa generator of the group.

We will call the cyclic subgroup hai in the group Gthe cycle generated by a: We will explore relationsbetween tonality and dihedral groups.
Definition 3. A dihedral group of order 2n isthe group generated by two elements: a and b underthe three following conditions:
� an = e;
� b2 = e; and
� abab = e;

where e is the identity element. We refer to thedihedral group of order 2n as Dn:
1.2 Music TheoryPitch is an auditory phenomenon in which the brainanalyzes the frequency of sound heard and assignsit a musical tone. For our purposes, the psycho-perceptual aspects of pitch will be neglected | wewill consider a pitch to be characterized by its fre-quency. In Western music, we assign pitches a let-ter, with or without an accidental (sharp or at),and an octave. For our purposes, we will use pitchclasses, which ignore octave di�erences betweenpitches, and an equal tempered scale, which consid-ers, for instance, D[ and C] as the same pitch. Theresult is a collection of twelve pitch classes, labeled

alphabetically A to G and including A[; B[; D[; E[and G[. This collection is simply one octave of thepiano keyboard. From a mathematical standpoint,we assign numerical values to the pitch classes andwork with modular arithmetic modulo 12. By con-vention, we assign C:= 0; D[ := 1; : : : ; B:= 11: Werefer to the interval between two pitch classes asthe distance between two pitch classes, that is, theminimum number of semi-tones between pitches.
A chord is a collection pitch classes, and we assignthe names trichord for a three-note chord and atetrachord for a four-note chord. We will indicate acollection of pitch classes by [x1; x2; :::] where eachxi represents the numerical value assigned to thatpitch class.
2. THE TONNETZ
2.1 Major and minor triadsMajor and minor triads are the basis of music the-ory, so studying how they are related can illumi-nate more complicated musical structures. A triadis a trichord where the intervals between adjacentpitches comprise either three or four semitones |the minor third or major third intervals, respec-tively. In the major triad, the pitches are arrangedso that we have a minor third stacked above a ma-jor third. For example, the C-major triad containsthe pitch classes C, E and G. Any permutation ormultiplicity of these notes is considered a C-majortriad, (like [7; 0; 7; 4] or [4; 7; 0]), but out of conve-nience, we will consider CEG ([0; 4; 7]) the canoni-cal C-major triad. A minor triad is the stacking ofa major third above a minor third. So the C-minortriad is CE[G ([0; 3; 7]). In each case, we regard C(or 0) as the root of the triad. By �at, we refer toan M-major triad as M and an M-minor triad asm, where M and m represent the pitch class nameof the root of the chord.
2.2 Chords on the Tone ClockApproaching triads as stacking of thirds clearlyshows a relation between the major and minor tri-ads. They are related by a ipping, permutationor \inversion" of the intervals. We will explore thee�ects of ipping intervals using a polygonal rep-resentations around a tone clock. The tone clock isa representation of the 12 pitch classes of Westernmusic arranged chromatically around a circle, anal-ogous to the hours of an analog clock [8]. We canrepresent a chord of any size (up to twelve notes)as a single, simple (no edges intersect), convex (allinterior angles are less than 180 degrees) polygon



by connecting every pitch in the chord with ex-actly two edges. We do so in such a way so thatan n-chord will have n edges and n vertices.
We can represent our major and minor triads astriangles as in Figure 1.

Figure 1: Tone clock representation of C(left) and a (right).
We can see that there is a relation between thetwo triangles. If we reect the C triangle acrossthe axis running through D and A[, which bisectsour major third interval between C and E, thenthe result is an a triangle, the parallel minor triad.There are two more relations we can �nd | if wereect the triangle across the axis bisecting C andG, then we result in c; and if we reect the triangleacross the axis bisecting E and G, then we resultin the relative minor, and e: We take note of thesereections over others because they result in trans-formations that are familiar to music theory fromthe common practice period.
2.3 PLR transformationsWe give labels to the above canonical transforma-tions that refer to their underlying musical rela-tions: P is the parallel minor transformation, R,the relative minor transformation, and L for theleading-tone motion, or moving the root of the ma-jor triad down a half-step. These transformationshold for any major or minor triad and will alwaysrelate to it parallel and relative minor transforma-tions and its leading-tone minor. We de�ne thesetransformations as the following:

P : M $ (m� 3)
L : M $ (m+ 4)
R : M $ m

It can be explicitly de�ned through modular arith-

metic as:
P : [x; x+ 4; x+ 7]

$ [x; x+ 4; x+ 9] mod 12
L : [x; x+ 4; x+ 7]

$ [x� 1; x+ 4; x+ 7] mod 12
R : [x; x+ 4; x+ 7]

$ [x; x+ 3; x+ 7] mod 12

These three reections are chosen for their voice-leading. Parsimonious voice-leading is when onechord is transformed into another chord by mov-ing only one pitch and by as small an interval aspossible. We see the di�erence between C ([0; 4; 7])and L(C) = e ([4; 7; 11]) has one voice moving onesemi-tone. Any other reection of a major trian-gle other than the P; L and R reection wouldinvolve moving two or more voices, which is be-yond parsimonious transformation. Here, we notethat P moves one voice two semi-tones. We willlater show how P is the composition of L and Rtransformations.
2.4 Formation of the dihedral groupTheorem 1. The functions P; L and R undercomposition as they act on the major and minortriads generate a group.
Proof : In the proof of this theorem we follow thegeneral scheme of Crans et al [5]. We �rst takenote that P 2(M) = L2(M) = R2(M) = M andP 2(m) = L2(m) = R2(m) = m; thus we have anidentity function, which we identify as �: Becauseeach of our generating functions are involutions,we can see that the inverse of any compositionis the \reverse" composition, i.e. (PLR)(RLP ) =(RLRP )(PRLR) = �: Thus every function has aninverse. To show closure, we de�ne a function tobe in the group if it is a composition of P; L and R:Because each function de�ned has the same domainand the range is a subset of the domain, each func-tion is well-de�ned. Thus the set is closed undercompositions. Because compositions of functionsare always associative, we have a group structuregenerated by P; L and R under composition.
By convention, we will refer to the group gener-ated by P; L and R under composition as the PLRgroup. Now we will proceed to show that P is acomposition of L and R and thus the PLR groupcan be generated by L and R:



Corollary 1. The PLR group is generated byL and R:
Proof : We must show that P is the compositionof L and R: We observe that if we alternate R andL; we cycle through all 24 major and minor triads:

C; a; F; d;B[; g; E[; c;
A[; f;D[; b[;G[; e[; B; a[;
E; d[; A; g[;D; b;G; e; C:

The seventh iteration of this alternating function,shown in bold above, gives us P; thus we note thatP = RLRLRLR: Thus P is a composition of L andR and thus the group can be simply be generatedby L and R:
Finally, we classify the PLR group as a dihedralgroup.
Theorem 2. The PLR group is isomorphic tothe dihedral group of order 24, D12:

Proof : First we will show that the elements of thePLR group are fR(LR)n; (LR)nj0 � n � 11g: Wedetermined that every element in the group can begenerated by compositions of L and R: Because Land R are idempotent, we only consider composi-tions where L and R are alternating (we may re-place R�R or L�L with the identity function). Wehave also discovered from the previous corollarythat (LR)12 is the identity function. Thus we willonly consider compositions of alternating L and Rfunctions that are less 24 elements long (we canreplace (LR)12 with the identity). Now, consider afunction where the right-most component functionis L : (LR)kL: This function can be represented inthe way we want, where the the right-most functionis R:
(LR)12 = �
(LR)11L = R

(LR)kL = (RL)11�kR
Thus the elements of the PLR group arefR(LR)n; (LR)n j 0 � n � 11g. We have exactly24 elements in this group. As we recall from thede�nition of dihedral group,D12 is the group gener-ated by two elements, s and t; such that s12 = t2 =� and tst = s�1 [5]. If we let s = LR and t = L; wewill satisfy these relations: (LR)12 = L2 = � andL(LR)L = RL: Thus PLR � D12:

2.5 Geometric representationThe common geometric representation of the PLRfunctions is the Oettigan-Riemann Tonnetz, alsoknown as the Neo-Riemannian Tonnetz [5]. TheTonnetz is a two-dimensional array where the ver-tices represent pitch classes and triangles representthe major and minor triads. We will arrange thisdiagram so each triangle is equilateral, horizontaledges will represent an interval of seven semi-tones(a perfect �fth), and diagonal edges will representthirds, those in the north-east direction (/) repre-senting a major third and in the south-east direc-tion (n) a minor third, as seen in Figure 2. Thethree pitches that form the vertices of a given tri-angle in the Tonnetz de�ne a major or minor triad:CEG forms C, EGB forms e; etc.
The Tonnetz tessellates the plane perfectly, as isthe nature of equilateral triangles. Because pitch-classes are cyclic (isomorphic to Z12) and becausewe are moving by perfect �fths (equivalent to adding7 mod 12), major thirds (adding 4 mod 12) andminor thirds (adding 3 mod 12), the ordering ofmajor and minor triads will begin to repeat. Thatis to say, anywhere a C is located, it will always besurrounded by G, E, A, F, A[ and E[ in the verysame orientation. A parallelogram formed by 12major and 12 minor triangles will be in the samearrangement in relation to the triangles around it.The edges of the parallelogram contains the samestring of pitch classes: C-E-A[-C and C-A-G[-E[-Cin the diagram. If we glue the edges of the paral-lelogram so that the edges \match up", we form atorus. Shared edges indicate two chords are relatedby P; L or R: Speci�cally, moving across the hori-zontal axis indicates a parallel relation, across themajor third diagonal (/) indicates a relative rela-tion, and across the minor diagonal (n) indicatesan L relation.
Following Waller [9], we represent this torus as anundirected graph with vertices representing majorand minor triads and an edge indicating a sharededge as shown in Figure 3. The result: four concen-tric cycles with interspersed bridges between thecycles. A close look at where the PLR functionsare located reveals the concentric cycles are gener-ated by alternating P and L and the bridges rep-resent an R function. We can adjust Waller's torusso that P and R form generating cycles (creatingthree concentric circles), as shown in Figure 4, andmost interestingly, alternating L and R which willgenerate a single cycle (as L and R generate the



Figure 2: The Neo-Riemmanian Tonnetz de-picts the pitch classes and resulting majorand minor triads (triangles) so that geomet-ric proximity is related the transformationsP , L and R.

entire group).
An alternate geometric expression that may indi-cate the existence of a more general group struc-ture, is the use of Coxeter kaleidoscoping [4]. ACoxeter group is generated by n elementsfr1; r2; : : : ; rng: Each generator has order two (r2i =e) and the order of each pair has the followingproperties: if the order of (rirj) is mij ; then theorder of (rjri) is also mij ; mii = 1 and mij � 2for i 6= j: It is common to represent the group interms of a Coxeter matrix, a symmetric n� n ma-trix with elementsmij , or a Coxeter-Dynkin graph,a graph with n vertices representing the group el-ements and paths representing orders greater than2. Because our generating functions (P; L and R)are idempotent, we can explore the Coxeter groupstructure generated by P; L and R:
Through the calculation of cycles in the PLR group,

Figure 3: Waller's torus is a graphical rep-resentation of the transformations P , L andR.
we notice that PL has order 3, PR has order 4 andLR has order 12, as is seen in the Waller torus.Thus we have the following Coxeter matrix repre-sentation:

M =
2
4
1 3 43 1 124 12 1

3
5 :

The value of the path between vertices correspondsto the angle between the mirrors in a kaleidoscoperepresentation: the angle between mirrors ri andrj is �=mij radians. So in our case, we have atriangle of mirrors with angles �=3; �=4 and �=12:We notice that this totals to 2�=3; implying ourtriangle is hyperbolic. What results is this model,represented using the Poincar�e disc model as shownin Figure 5.
Around each vertex in the three-functioned model,we have cycles of 24, 8 or 6 triangles. These di-rectly correspond to alternating L and R; P andR or P and L as we noted earlier with the tradi-tional Tonnetz. We also note that the kaleidoscop-ing Coxeter group reveals a common arrangementof chords into those separated by perfect �fths, of-ten called \the circle of �fths."



Figure 4: Three-ringed torus provides anequivalent perspective to Waller's Torus.

3. 3D GENERALIZATIONThe two-dimensional Tonnetz, with associated graphs,hyperbolic representations, and group theoretic struc-ture are very rich in mathematics. Our objec-tion is that the implied musical content (for ex-ample the nearness of C major and e minor, de-picted graphically in the Tonnetz and functionallyby the transformation L) does not match the musi-cal practice of tonal music, where the fundamentalrelationships involve cadences with chords whosethe roots move by intervals of fourths and �fths.What is more, the restriction to major and mi-nor triads is much too limited to describe tonalmusic, where tetrachords are ubiquitous. As earlyas the beginning of the 19th century, the funda-mental chord types in common usage were iden-ti�ed by the descriptive music theorist GottfriedWeber: three triads (major, minor, diminished)and four tetrachords (dominant, minor, major, andhalf-diminished) [1]. In an e�ort to bring these con-siderations into better agreement, we explore gen-eralizations of the Tonnetz to four-note structures.
Edward Gollin in 1998 examined an example ofa three-dimensional expansion of the Tonnetz [6].In two dimensions, we have two axes along whichtones progress by a major third and a perfect �fth,respectively. A third direction, which can be spec-i�ed as a vector di�erence between the two axes inthe plane, progresses by a minor third.

Figure 5: Hyperbolic Coxeter kaleidoscopein a Poincar�e disc of P; L and R. Major-triadtriangles are labeled with capital letters andminor-triad triangles are labeled with lower-case letters.
The three-dimensional Tonnetz has three axes; the�rst two axes are the same as the traditional Ton-netz and the third axis along which tones progressby a minor seventh interval (10 semi-tomes). Wesituate the third axis so that one unit is on theperpendicular bisector of one tone length along theperfect �fth axis. This, with many other extra di-rections, creates a tetrahedral tessellation of Eu-clidean space that represent seventh chords, tetra-chords that is composed of major and minor inter-vals. In particular, we create six distinct tetrahe-dra of the following forms:
1. * CEGB[, with coplanar CEG and B[ aboveand between C and G
2. CEGB[ with coplanar CE and coplanar GB[that are skew and CE is below GB[
3. * ACE[G, with coplanar CE[G and A belowand between C and G
4. ACE[G, with coplanar AC and coplanar E[Gthat are skew and AC is below E[G
5. * CE[GB[, with coplanar CE[G and B[ aboveand between C and G
6. CE[GB[, with coplanar E[GB[ and C belowand between E[ and B[



Figure 6: Three Dimensional Tonnetz show-ing two representations of the same domi-nant seventh chord, described in cases 1 and2 in text.
Tetrahedra 1 and 2, which has the form of a ma-jor third, minor third and minor third in ascendingorder ([0; 4; 7; 10]), are both known as a dominantseventh chord (C7) as shown in Figure 6. Tetrahe-dra 3 and 4 have the form of a minor third, minorthird and major third ([9; 0; 3; 7]), and are calledhalf-diminished seventh chords (A�7) as shown inFigure 7. The form of a minor third, major thirdand minor third ([0; 3; 7; 10]) is a minor seventhchord (C-7), which are the forms taken by tetrahe-dra 5 and 6, shown in Figure 8. Each of these formshas a unique manifestation in three-dimensionalspace and thus each quality of chord appears inexactly two forms of tetrahedra. In this discus-sion, we will consider only the �rst of each variety(*).
Gollin explores how the dominant seven and half-diminished seventh chords are related. Using\edge-ips" and \vertex-ips", he discovers that transfor-mations of the 24 dominant and half-diminishedseventh chords create a dihedral group of order 24,exactly isomorphic to the PLR group [6]. How-ever, this treatment omits the minor seventh chordwhich is very often seen in the common practiceperiod. Thus, we will attempt to �nd relationsamong all three varieties of tetrahedra. In this ex-ploration, we attempt to maintain the quality ofparsimonious voice-leading. In our set of 36 sev-

Figure 7: Three Dimensional Tonnetz show-ing two representations of the same half-diminished seventh chord, described in cases3 and 4 in text.
enth chords, there are exactly four operations thatwill move one voice exactly one semi-tone and willresult in another element in the set:

P1 : M7$ M � 7
P2 : M�7$ M�7
R1 : M7$ (M � 3)�7
R2 : M�7$ (M + 3)�7;

or explicitly,
P1 : [x; x+ 4; x+ 7; x+ 10]

$ [x; x+ 3; x+ 7; x+ 10] mod 12
P2 : [x; x+ 3; x+ 7; x+ 10]

$ [x; x+ 3; x+ 6; x+ 10] mod 12
R1 : [x; x+ 4; x+ 7; x+ 10]

$ [x; x+ 4; x+ 7; x+ 9] mod 12
R2 : [x; x+ 3; x+ 7; x+ 10]

$ [x+ 1; x+ 3; x+ 7; x+ 10] mod 12:

We consider one further (pseudo-parsimonious) func-tion, L; which transforms M7 $ (M + 4)�7: This



Figure 8: Three Dimensional Tonnetz show-ing the two representations of a minor sev-enth chord described in cases 5 and 6 in text.
function moves the root of the dominant seventhchord down two semi-tones and moves the seventhof the half-diminished chord up two semi-tones.With these �ve functions, we can create an edge-colored mapping of the 36 seventh chords in ourset with each function representing a unique color,each vertex representing a chord and each edge in-dicating a functional relation. This mapping, wewill see, �ts nicely on the surface of a torus, simi-larly to the Waller's Tonnetz �ts around a torus.
The interesting point about the two edge-coloredmaps we have seen, Waller's Tonnetz torus and theSeventh chord torus, is the inconsistency in theoptimization of coloring. With edge-coloring wecall upon Vising's theorem: a graph can be edge-colored in either the maximum degree of the graph,or one more than that [2]. The maps with the for-mer coloring are called Class 1 graphs while the lat-ter are Class 2. We see that in Waller's torus, eachvertex is degree three and the graph is consideredClass 1. However, the Seventh chord torus has in-consistent degrees, dominant and half-diminishedseventh chord vertices are degree three while theminor seventh chords are degree 4. The way thatthe graph is colored according to our �ve functions,it would appear that this is a Class 2 graph. Yet,there is a recoloring, pictured below, that optimizesedge colors at four, indicating we truly have a Class1 graph.

4. CONCLUSIONIn conclusion, it would appear that there is somesort of relational structure of the tonality repre-sented in minor, dominant and half-diminished sev-enth chords. The relations, however, do not paral-lel the two-dimensional examples of the major andminor triads. Although a group or graphical struc-ture may not be immediately apparent throughparsimonious relations, the relation between thechords is still rich for study and exploration.
4.1 Future explorationOur work in attempting to generalize theNeo-Riemannian Tonnetz has turned out to be adeep and rich �eld of exploration. We leave thiswork with possibly more questions that we had atthe beginning of the project, leading us down av-enues of greater exploration.
We have implied that the parsimonious relationsof the two-dimensional Tonnetz could be coinci-dentally Class 1. So the question becomes, is therea four colored edge-coloring of the edges 36 seventhchord vertices that corresponds to the musical re-alization of parsimonious and potentially pseudo-parsimonious voice leading? And if so, what arethose functions and do they create a group withthe operation of composition? Is it possible thatthe involutionary feature of P, L and R in the Ton-netz was merely a special characteristic of workingin two dimensions or perhaps that we were onlyrelating two avors of chords? Could we possi-bly �nd a relation that involved compound func-tions that cycle through the three avors of seventhchords we are analyzing, and cycle in the reversewhen the inverse function is used? For example,what if function F transformed M7 ! M�7 !M�7 ! (M � 4)7? Is this function actually rele-vant in the common practice period, or does it onlymake mathematical sense?
We may also be curious about our other geomet-ric representations of the P, L and R. Because themajor and minor triads are composed of stackedthirds, is there analogous representations using theTonnetz with other third-stacking chords, like sev-enth chords? Can we �nd some seventh chord ana-logues to the tone clock, perhaps a tone sphereand using tetrahedral chords? If we can �nd invo-lutionary functions relating these seventh chords,is there some kind of hyperbolic three-dimensionalkaleidoscope that could contain the reections ofthe tetrahedron that is reected across a hyper-



Figure 9: Graph of seventh chords edge-colored in �ve colors.

Figure 10: Graph of seventh chords edge-colored in four colors.



bolic plane?
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