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ABSTRACT

In this paper, we attempt to explore mathemat-

ical structures of tonal music from the 18th and

19th centuries. We review the known mathemati-

cal/musical structures and, noting lacking features

of this geometrical construct as a useful model of

tonal harmony, we propose generalizations that may
be better suited to tonal music. We bring sev-

eral mathematical devices to bear on the Tonnetz

(or Tone Network) in new ways, including Cay-

ley graphs and Coxeter hyperbolic representations.

We conclude with three-dimensional geometric mod-
els that represent the four-note seventh chords which
are ubiquitous in 18th and 19th century music.

1. INTRODUCTION

The intellectual endeavor to codify and clarify mu-
sic in mathematical terms dates at least to the an-
cient Greeks and the Pythagoreans. Composers of
the Medieval and Renaissance periods developed
techniques that a modern mathematician would
recognize by principles of symmetry and transfor-
mation. As late as the 17th and 18th centuries,
great scientific minds such as Newton and Euler
turned their attention to music theory as well. How-
ever during the 18th century, music theory began
to develop into an academic area independent of
its scientific roots. With the work of Rameau [1], a
theory of tonal harmony gained strength and held
sway until the end of the 19th century. The mu-
sic of this era — known to musicologists as the
common practice period or the tonal period — was
based upon a theoretical underpinning that was
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largely independent of explicit mathematical influ-
ence.

With the birth of post-tonal and atonal music at
the close of the 19th century, the established har-
monic order failed. Theorists turned again to math-
ematics for organizing principles around which to
build a new theoretical framework. At the turn
of the 20th century, one influential direction (pre-
saged in the work of Leonard Euler two centuries
prior [10]) was that of Otto Riemann [1], whose
two-dimensional geometric representation of fun-
damental harmonic structures, the Tonnetz, (Ger-
man for “Tone Network”), gave rise to a rich Neo-
Riemannian theory of set-theoretic transformations
in pitch-class space. This has proven to be ex-
tremely fertile ground for music analysis. The group
theoretical work begun by Lewin [3] has many con-
temporary scholars.

In the current work, we look for applications of Rie-
mann’s Tonnetz to the tonal music of the common
practice period. We review the known mathemat-
ical structure of the Tonnetz and, noting awkward
features of this geometrical model, propose gen-
eralizations and modifications that may be better
suited to tonal music. We bring several mathe-
matical devices to bear on the Tonnetz in novel
ways, including Cayley graphs and Coxeter hy-
perbolic representations. We conclude with three-
dimensional geometric models that represent four-
note seventh chords which are vital in compositions
of the 18th and 19th centuries.

1.1 Algebra

While mathematical constructs have been used to
study music since ancient times, the use of group
theory is a relatively new and powerful approach
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DEFINITION 1. Let G be a set together with a bi-
nary operation that assigns to each ordered pair
(a,b) of elements of G an element in G denoted
by ab. We say G is a group under this operation if
the following properties are satisfied:

1. Associativity. The operation is associative; that

is, (ab)c = a(bc) for all a,b,c € G.

2. Identity. There is an element e in G such that
ae = ea = a for all a € G. We call e the
identity element.

3. Inverses. For each element A in G, there is
an element b in G such that ab = ba = e.

DEFINITION 2. If a subset H of a group G is it-
self a group under the operation of G, we say that
H is a subgroup of G. A group G is cyclic if it is
of the form (a) = {a"|n € Z} and we say that a is
a generator of the group.

We will call the cyclic subgroup (a) in the group G
the cycle generated by a. We will explore relations
between tonality and dihedral groups.

DEFINITION 3. A dihedral group of order 2n is
the group generated by two elements: a and b under
the three following conditions:

e a" =ce,
o b2 =e¢, and

e abab = e,

where e is the identity element. We refer to the

dihedral group of order 2n as Dy,.

1.2 Music Theory

Pitch is an auditory phenomenon in which the brain
analyzes the frequency of sound heard and assigns
it a musical tone. For our purposes, the psycho-
perceptual aspects of pitch will be neglected — we
will consider a pitch to be characterized by its fre-
quency. In Western music, we assign pitches a let-
ter, with or without an accidental (sharp or flat),
and an octave. For our purposes, we will use pitch
classes, which ignore octave differences between
pitches, and an equal tempered scale, which consid-
ers, for instance, Db and Cf as the same pitch. The
result is a collection of twelve pitch classes, labeled

alphabetically A to G and including Ab, Bb, Db, Eb
and Gb. This collection is simply one octave of the
piano keyboard. From a mathematical standpoint,
we assign numerical values to the pitch classes and
work with modular arithmetic modulo 12. By con-
vention, we assign C:=0,Db:=1, ..., B:=11. We
refer to the interval between two pitch classes as
the distance between two pitch classes, that is, the
minimum number of semi-tones between pitches.

A chord is a collection pitch classes, and we assign
the names trichord for a three-note chord and a
tetrachord for a four-note chord. We will indicate a
collection of pitch classes by [z1, z9, ...] where each
x; represents the numerical value assigned to that
pitch class.

2. THETONNETZ

2.1 Major and minor triads

Major and minor triads are the basis of music the-
ory, so studying how they are related can illumi-
nate more complicated musical structures. A triad
is a trichord where the intervals between adjacent
pitches comprise either three or four semitones —
the minor third or major third intervals, respec-
tively. In the major triad, the pitches are arranged
so that we have a minor third stacked above a ma-
jor third. For example, the C-major triad contains
the pitch classes C, E and G. Any permutation or
multiplicity of these notes is considered a C-major
triad, (like [7,0,7,4] or [4,7,0]), but out of conve-
nience, we will consider CEG ([0,4, 7]) the canoni-
cal C-major triad. A minor triad is the stacking of
a major third above a minor third. So the C-minor
triad is CEbG ([0, 3, 7]). In each case, we regard C
(or 0) as the root of the triad. By fiat, we refer to
an M-major triad as M and an M-minor triad as
m, where M and m represent the pitch class name
of the root of the chord.

2.2 Chords on the Tone Clock

Approaching triads as stacking of thirds clearly
shows a relation between the major and minor tri-
ads. They are related by a flipping, permutation
or “inversion” of the intervals. We will explore the
effects of flipping intervals using a polygonal rep-
resentations around a tone clock. The tone clock is
a representation of the 12 pitch classes of Western
music arranged chromatically around a circle, anal-
ogous to the hours of an analog clock [8]. We can
represent a chord of any size (up to twelve notes)
as a single, simple (no edges intersect), convex (all
interior angles are less than 180 degrees) polygon



by connecting every pitch in the chord with ex-
actly two edges. We do so in such a way so that
an n-chord will have n edges and n vertices.

We can represent our major and minor triads as
triangles as in Figure [}

Figure 1: Tone clock representation of C
(left) and a (right).

We can see that there is a relation between the
two triangles. If we reflect the C' triangle across
the axis running through D and Ab, which bisects
our major third interval between C and E, then
the result is an a triangle, the parallel minor triad.
There are two more relations we can find — if we
reflect the triangle across the axis bisecting C and
G, then we result in ¢, and if we reflect the triangle
across the axis bisecting E and G, then we result
in the relative minor, and e. We take note of these
reflections over others because they result in trans-
formations that are familiar to music theory from
the common practice period.

2.3 PLR transformations

We give labels to the above canonical transforma-
tions that refer to their underlying musical rela-
tions: P is the parallel minor transformation, R,
the relative minor transformation, and L for the
leading-tone motion, or moving the root of the ma-
jor triad down a half-step. These transformations
hold for any major or minor triad and will always
relate to it parallel and relative minor transforma-
tions and its leading-tone minor. We define these
transformations as the following:

P: M+ (m-—3)
L: M+ (m+4)
R: M+ m

It can be explicitly defined through modular arith-

metic as:
P: [z,x+4,z+7]
[z, o+ 4,2+ 9]
L: [z,x2+4,2+47]

mod 12

“lr—1lLz+4,2+7 mod 12
R: [z,xz+4,z+T7]
< [z, +3,x+7 mod 12

These three reflections are chosen for their voice-
leading. Parsimonious voice-leading is when one
chord is transformed into another chord by mov-
ing only one pitch and by as small an interval as
possible. We see the difference between C ([0, 4, 7])
and L(C) = e ([4,7,11]) has one voice moving one
semi-tone. Any other reflection of a major trian-
gle other than the P, L and R reflection would
involve moving two or more voices, which is be-
yond parsimonious transformation. Here, we note
that P moves one voice two semi-tones. We will
later show how P is the composition of L and R
transformations.

2.4 Formation of the dihedral group

THEOREM 1. The functions P, L and R under
composition as they act on the major and minor
triads generate a group.

Proof: In the proof of this theorem we follow the
general scheme of Crans et al [5]. We first take
note that P?(M) = L?*(M) = R*(M) = M and
P?(m) = L?(m) = R*(m) = m, thus we have an
identity function, which we identify as e. Because
each of our generating functions are involutions,
we can see that the inverse of any composition
is the “reverse” composition, i.e. (PLR)(RLP) =
(RLRP)(PRLR) = €. Thus every function has an
inverse. To show closure, we define a function to
be in the group if it is a composition of P, L and R.
Because each function defined has the same domain
and the range is a subset of the domain, each func-
tion is well-defined. Thus the set is closed under
compositions. Because compositions of functions
are always associative, we have a group structure
generated by P, L and R under composition.

By convention, we will refer to the group gener-
ated by P, L and R under composition as the PLR
group. Now we will proceed to show that P is a
composition of L and R and thus the PLR group
can be generated by L and R.



COROLLARY 1. The PLR group is generated by
L and R.

Proof: We must show that P is the composition
of L and R. We observe that if we alternate R and
L, we cycle through all 24 major and minor triads:

C,a,F,d,Bb,g, Eb,c,
Ab, f,Db,bb, Gb, eb, B, ab,
E. db, A, gb,D,b,G,e,C.

The seventh iteration of this alternating function,
shown in bold above, gives us P, thus we note that
P =RLRLRLR. Thus P is a composition of L and
R and thus the group can be simply be generated
by L and R. |

Finally, we classify the PLR group as a dihedral
group.

THEOREM 2. The PLR group is isomorphic to
the dihedral group of order 24, Dio.

Proof: First we will show that the elements of the
PLR group are {R(LR)",(LR)"|0 <n < 11}. We
determined that every element in the group can be
generated by compositions of L and R. Because L
and R are idempotent, we only consider composi-
tions where L and R are alternating (we may re-
place RoR or Lo L with the identity function). We
have also discovered from the previous corollary
that (LR)'? is the identity function. Thus we will
only consider compositions of alternating L and R
functions that are less 24 elements long (we can
replace (LR)'? with the identity). Now, consider a
function where the right-most component function
is L : (LR)*L. This function can be represented in
the way we want, where the the right-most function
is R:

(LR)'? = ¢
(LR)\"L =R

(LR)*L = (RL)"'*R

Thus the elements of the PLR group are

{R(LR)",(LR)" | 0 < n < 11}. We have exactly
24 elements in this group. As we recall from the
definition of dihedral group, D15 is the group gener-
ated by two elements, s and ¢, such that s'? = =
eand tst = s L [5]. If welet s = LR and t = L, we
will satisfy these relations: (LR)'? = L? = € and
L(LR)L = RL. Thus PLR = D5. |

2.5 Geometric representation

The common geometric representation of the PLR
functions is the Oettigan-Riemann Tonnetz, also
known as the Neo-Riemannian Tonnetz [5]. The
Tonnetz is a two-dimensional array where the ver-
tices represent pitch classes and triangles represent
the major and minor triads. We will arrange this
diagram so each triangle is equilateral, horizontal
edges will represent an interval of seven semi-tones
(a perfect fifth), and diagonal edges will represent
thirds, those in the north-east direction (/) repre-
senting a major third and in the south-east direc-
tion (\) a minor third, as seen in Figure The
three pitches that form the vertices of a given tri-
angle in the Tonnetz define a major or minor triad:
CEG forms C, EGB forms e, etc.

The Tonnetz tessellates the plane perfectly, as is
the nature of equilateral triangles. Because pitch-
classes are cyclic (isomorphic to Z12) and because
we are moving by perfect fifths (equivalent to adding
7 mod 12), major thirds (adding 4 mod 12) and
minor thirds (adding 3 mod 12), the ordering of
major and minor triads will begin to repeat. That
is to say, anywhere a C is located, it will always be
surrounded by G, E, A, F, Ab and Eb in the very
same orientation. A parallelogram formed by 12
major and 12 minor triangles will be in the same
arrangement in relation to the triangles around it.
The edges of the parallelogram contains the same
string of pitch classes: C-E-Ab-C and C-A-Gb-Eb-C
in the diagram. If we glue the edges of the paral-
lelogram so that the edges “match up”, we form a
torus. Shared edges indicate two chords are related
by P, L or R. Specifically, moving across the hori-
zontal axis indicates a parallel relation, across the
major third diagonal (/) indicates a relative rela-
tion, and across the minor diagonal (\) indicates
an L relation.

Following Waller [9], we represent this torus as an
undirected graph with vertices representing major
and minor triads and an edge indicating a shared
edge as shown in Figure[3| The result: four concen-
tric cycles with interspersed bridges between the
cycles. A close look at where the PLR functions
are located reveals the concentric cycles are gener-
ated by alternating P and L and the bridges rep-
resent an R function. We can adjust Waller’s torus
so that P and R form generating cycles (creating
three concentric circles), as shown in Figure 4] and
most interestingly, alternating L and R which will
generate a single cycle (as L and R generate the
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Figure 2: The Neo-Riemmanian Tonnetz de-
picts the pitch classes and resulting major
and minor triads (triangles) so that geomet-
ric proximity is related the transformations
P, L and R.

entire group).

An alternate geometric expression that may indi-
cate the existence of a more general group struc-
ture, is the use of Coxeter kaleidoscoping [4]. A
Coxeter group is generated by n elements
{r1,79,...,mn}. Each generator has order two (17 =
e) and the order of each pair has the following
properties: if the order of (r;r;) is m;;, then the
order of (rjr;) is also my;, my = 1 and my; > 2
for ¢+ # j. It is common to represent the group in
terms of a Coxeter matrix, a symmetric n X n ma-
trix with elements 1m;;, or a Coxeter-Dynkin graph,
a graph with n vertices representing the group el-
ements and paths representing orders greater than
2. Because our generating functions (P, L and R)
are idempotent, we can explore the Coxeter group
structure generated by P, L and R.

Through the calculation of cycles in the PLR group,

Figure 3: Waller’s torus is a graphical rep-
resentation of the transformations P, L and
R.

we notice that PL has order 3, PR has order 4 and
LR has order 12, as is seen in the Waller torus.
Thus we have the following Coxeter matrix repre-
sentation:

1 3 4
M=(3 1 12
4 12 1

The value of the path between vertices corresponds
to the angle between the mirrors in a kaleidoscope
representation: the angle between mirrors r; and
rj is m/m;; radians. So in our case, we have a
triangle of mirrors with angles 7 /3, 7/4 and 7 /12.
We notice that this totals to 27/3, implying our
triangle is hyperbolic. What results is this model,
represented using the Poincaré disc model as shown
in Figure [5]

Around each vertex in the three-functioned model,
we have cycles of 24, 8 or 6 triangles. These di-
rectly correspond to alternating L and R, P and
R or P and L as we noted earlier with the tradi-
tional Tonnetz. We also note that the kaleidoscop-
ing Coxeter group reveals a common arrangement
of chords into those separated by perfect fifths, of-
ten called “the circle of fifths.”



Figure 4: Three-ringed torus provides an
equivalent perspective to Waller’s Torus.

3. 3D GENERALIZATION

The two-dimensional Tonnetz, with associated graphs,
hyperbolic representations, and group theoretic struc-

ture are very rich in mathematics. Our objec-
tion is that the implied musical content (for ex-
ample the nearness of C major and e minor, de-
picted graphically in the Tonnetz and functionally
by the transformation L) does not match the musi-
cal practice of tonal music, where the fundamental
relationships involve cadences with chords whose
the roots move by intervals of fourths and fifths.
What is more, the restriction to major and mi-
nor triads is much too limited to describe tonal
music, where tetrachords are ubiquitous. As early
as the beginning of the 19th century, the funda-
mental chord types in common usage were iden-
tified by the descriptive music theorist Gottfried
Weber: three triads (major, minor, diminished)
and four tetrachords (dominant, minor, major, and
half-diminished) [1]. In an effort to bring these con-
siderations into better agreement, we explore gen-
eralizations of the Tonnetz to four-note structures.

Edward Gollin in 1998 examined an example of
a three-dimensional expansion of the Tonnetz [6].
In two dimensions, we have two axes along which
tones progress by a major third and a perfect fifth,
respectively. A third direction, which can be spec-
ified as a vector difference between the two axes in
the plane, progresses by a minor third.

Figure 5: Hyperbolic Coxeter kaleidoscope
in a Poincaré disc of P, L and R. Major-triad
triangles are labeled with capital letters and
minor-triad triangles are labeled with lower-
case letters.

The three-dimensional Tonnetz has three axes; the
first two axes are the same as the traditional Ton-
netz and the third axis along which tones progress
by a minor seventh interval (10 semi-tomes). We
situate the third axis so that one unit is on the
perpendicular bisector of one tone length along the
perfect fifth axis. This, with many other extra di-
rections, creates a tetrahedral tessellation of Eu-
clidean space that represent seventh chords, tetra-
chords that is composed of major and minor inter-
vals. In particular, we create six distinct tetrahe-
dra of the following forms:

1. * CEGBb, with coplanar CEG and Bb above
and between C and G

2. CEGBb with coplanar CE and coplanar GBb
that are skew and CE is below GBb

3. * ACEbG, with coplanar CEbG and A below
and between C and G

4. ACEb»G, with coplanar AC and coplanar EbG
that are skew and AC is below EbG

5. * CEbGBY, with coplanar CEbG and Bb above
and between C and G

6. CEbGBb, with coplanar EhGBb and C below
and between Eb and Bb
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Figure 6: Three Dimensional Tonnetz show-
ing two representations of the same domi-
nant seventh chord, described in cases 1 and
2 in text.

Tetrahedra 1 and 2, which has the form of a ma-
jor third, minor third and minor third in ascending
order (]0,4,7,10]), are both known as a dominant
seventh chord (C7) as shown in Figure [6] Tetrahe-
dra 3 and 4 have the form of a minor third, minor
third and major third ([9,0,3,7]), and are called
half-diminished seventh chords (A97) as shown in
Figure [71 The form of a minor third, major third
and minor third ([0,3,7,10]) is a minor seventh
chord (C-7), which are the forms taken by tetrahe-
dra 5 and 6, shown in Figure[§] Each of these forms
has a unique manifestation in three-dimensional
space and thus each quality of chord appears in
exactly two forms of tetrahedra. In this discus-
sion, we will consider only the first of each variety

(*)-

Gollin explores how the dominant seven and half-
diminished seventh chords are related. Using “edge-
flips” and “vertex-flips”, he discovers that transfor-
mations of the 24 dominant and half-diminished
seventh chords create a dihedral group of order 24,
exactly isomorphic to the PLR group [6]. How-
ever, this treatment omits the minor seventh chord
which is very often seen in the common practice
period. Thus, we will attempt to find relations
among all three varieties of tetrahedra. In this ex-
ploration, we attempt to maintain the quality of
parsimonious voice-leading. In our set of 36 sev-

D & A & [ @
Bb ®* F & (C = .
F¢ & & ® Ay * pp @
L L] - L]
E L ] B L ] - [ ]
C . G - D . -
Ab  *capEh Bb ®* F ®
- - L]
C# L] - L]
[ * E * 8 °
Bbh * f c ® g ®
L - - L]
- - A .
E - B L =] - -
C hd G - D - A L ]
L] L] &+ -

AT Bl

Figure 7: Three Dimensional Tonnetz show-
ing two representations of the same half-
diminished seventh chord, described in cases
3 and 4 in text.

enth chords, there are exactly four operations that
will move one voice exactly one semi-tone and will
result in another element in the set:

Pl: M7+ M-—7
P2: M—T7+¢ MOT
Rl: M7+ (M—3)—17
R2: M—T+ (M +3)97,

or explicitly,

Pl: [z,z+4,z+ 7,2+ 10]

< [z, z+3,24+ 7,2+ 10] mod 12
P2: [z,x+3,z+ 7,2+ 10]

< [z, z+3,z+ 6,z +10] mod 12
Rl: [z,x+4+4,z+ 7,2+ 10]

& [z,x+4,2+7,2+9] mod 12

R2: [z,x+43,z+ 7,2+ 10]

“lrz+1l,z+3,z+ 7,2+ 10] mod 12.

We consider one further (pseudo-parsimonious) func-
tion, L, which transforms M7 < (M + 4)97. This
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Figure 8: Three Dimensional Tonnetz show-
ing the two representations of a minor sev-
enth chord described in cases 5 and 6 in text.

function moves the root of the dominant seventh
chord down two semi-tones and moves the seventh
of the half-diminished chord up two semi-tones.
With these five functions, we can create an edge-
colored mapping of the 36 seventh chords in our
set with each function representing a unique color,
each vertex representing a chord and each edge in-
dicating a functional relation. This mapping, we
will see, fits nicely on the surface of a torus, simi-
larly to the Waller’s Tonnetz fits around a torus.

The interesting point about the two edge-colored
maps we have seen, Waller’s Tonnetz torus and the
Seventh chord torus, is the inconsistency in the
optimization of coloring. With edge-coloring we
call upon Vising’s theorem: a graph can be edge-
colored in either the maximum degree of the graph,
or one more than that [2]. The maps with the for-
mer coloring are called Class 1 graphs while the lat-
ter are Class 2. We see that in Waller’s torus, each
vertex is degree three and the graph is considered
Class 1. However, the Seventh chord torus has in-
consistent degrees, dominant and half-diminished
seventh chord vertices are degree three while the
minor seventh chords are degree 4. The way that
the graph is colored according to our five functions,
it would appear that this is a Class 2 graph. Yet,
there is a recoloring, pictured below, that optimizes
edge colors at four, indicating we truly have a Class
1 graph.

4. CONCLUSION

In conclusion, it would appear that there is some
sort of relational structure of the tomality repre-
sented in minor, dominant and half-diminished sev-
enth chords. The relations, however, do not paral-
lel the two-dimensional examples of the major and
minor triads. Although a group or graphical struc-
ture may not be immediately apparent through
parsimonious relations, the relation between the
chords is still rich for study and exploration.

4.1 Future exploration

Our work in attempting to generalize the
Neo-Riemannian Tonnetz has turned out to be a
deep and rich field of exploration. We leave this
work with possibly more questions that we had at
the beginning of the project, leading us down av-
enues of greater exploration.

We have implied that the parsimonious relations
of the two-dimensional Tonnetz could be coinci-
dentally Class 1. So the question becomes, is there
a four colored edge-coloring of the edges 36 seventh
chord vertices that corresponds to the musical re-
alization of parsimonious and potentially pseudo-
parsimonious voice leading? And if so, what are
those functions and do they create a group with
the operation of composition? Is it possible that
the involutionary feature of P, L and R in the Ton-
netz was merely a special characteristic of working
in two dimensions or perhaps that we were only
relating two flavors of chords? Could we possi-
bly find a relation that involved compound func-
tions that cycle through the three flavors of seventh
chords we are analyzing, and cycle in the reverse
when the inverse function is used? For example,
what if function F transformed M7 — M -7 —
Mo7 — (M — 4)77 Is this function actually rele-
vant in the common practice period, or does it only
make mathematical sense?

We may also be curious about our other geomet-
ric representations of the P, L and R. Because the
major and minor triads are composed of stacked
thirds, is there analogous representations using the
Tounnetz with other third-stacking chords, like sev-
enth chords? Can we find some seventh chord ana-
logues to the tone clock, perhaps a tone sphere
and using tetrahedral chords? If we can find invo-
lutionary functions relating these seventh chords,
is there some kind of hyperbolic three-dimensional
kaleidoscope that could contain the reflections of
the tetrahedron that is reflected across a hyper-



Figure 10: Graph of seventh chords edge-colored in four colors.
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Figure 9: Graph of seventh chords edge-colored in five colors.
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bolic plane?
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