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ABSTRACT
In this paper, we study an online scheduling problem
where we consider malleable jobs—jobs that can be
scheduled to run on any number of processors on a
parallel computer. Under the assumptions of our par-
ticular model, we show that when m, the number of
processors, is three that the competitive ratio of the op-
timal online algorithm must be between 1

8(5+
√
73) ≈

1.693 and 2.123. We also give an algorithm for the
model with constant overhead penalty that approaches
an asymptotic competitive ratio of 4/3.

1. INTRODUCTION
Online algorithms process the input of a problem as a
sequence of requests. Each piece of input must be han-
dled individually before moving on to the next; hence,
the algorithm must make assignments and decisions with-
out knowing information about future requests.

After all requests have been processed, there will most
likely be decisions that were not optimal in hindsight.
This suboptimal performance is usually measured by a
competitive ratio, the most common performance met-
ric used when analyzing online algorithms. Formally,
let σ denote an input sequence processed by online al-
gorithm A, and let A(σ) and OPT (σ) denote the cost
of σ incurred by A and the optimal solution, respec-
tively. The competitive ratio of A for a minimization
problem is defined as

CA = max
σ

{
A(σ)

OPT(σ)

}
.
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Informally, CA is the worst case ratio, over all input
sequences, between the cost of the online algorithm and
the cost of the optimal. Note that the closer CA is to
1, the better the algorithm (an online algorithm with
CA = 1 always performs optimally).

In our particular problem, we consider online algorithms
that distribute the workload of a computer over multi-
ple processors. As the number of processors used in
modern computers continues to increase, it is vital to
implement scheduling algorithms that distribute a com-
puter’s workload among these processors effectively.
Since this workload must usually be distributed on the
fly (e.g., as a person is actively using a computer), it
makes sense to study these scenarios in the context of
online algorithms.

There are several different paradigms of online schedul-
ing that have been studied, each with slightly differ-
ent assumptions and features. In our specific model,
we consider scheduling malleable jobs, which have the
ability to run in parallel on any number of processors,
as opposed to non-malleable jobs, which must run in
parallel on a fixed number of machines given by the
input of the problem.

When a job is scheduled to run on multiple processors,
we would expect an overall speedup in its execution
time. We can also usually assume that the more ma-
chines we utilize when scheduling a job, the greater this
speedup will be; however, we must also consider that
parallel implementations require extra "bookkeeping"
tasks, such as setting up a parallel algorithm, thread
synchronization, and communication between machines



during execution. The time accumulated through main-
taining these additional tasks is referred to as overhead.
As we increase the number of processors we utilize, the
greater this overhead time will be.

To capture this tradeoff, we assume that if an online al-
gorithm schedules a job j with processing requirement
pj and overhead penalty cj to run on kj processors, the
overall execution time of the job becomes pj/kj+(kj−
1)cj , where pj/kj models the processing speedup and
(kj−1)cj attempts to capture the added overhead time.
Allowing the overhead penalty cj to vary from job to
job models the fact that some tasks will be harder to
run in parallel and will require more overhead time.
For the algorithm we provide for m = 2 (the num-
ber of machines), we will use a less general model and
assume c1 = c2 = . . . = cn. For the results we pro-
vide when m = 3, we will use the more general model
with job-dependent overhead. This model was first ex-
amined in [4], and although alternative models may be
considered, this model has recently been empirically
validated using standard benchmarks [5].

Formally stated, the input to our problem is a sequence
σ of n jobs, where each job j is given by a processing
requirement pj and an overhead penalty cj . An online
algorithm A must sequentially handle the jobs in σ one
at a time, assigning each job both a start time sj ≥ 0

and a number of processors kj ∈ {1, 2, . . . ,m} to run
on. A can make current assignments based on the pre-
viously crafted schedule, but these prior decisions may
not be altered. We do not allow A to "backfill", i.e.,
schedule jobs in areas of idle time that occurred earlier
in the schedule; hence, if A’s assignment of job j uses
machine h, sj must be greater than the completion time
of the last job running on h in the current schedule (be-
fore j is scheduled). We do not consider release times
or precedence constraints (other than sequential order).

We use competitive analysis to measure the performance
of our algorithms, where the objective is the makespan
of the schedule, or the completion time of the job which
finishes last, for our cost function. Formally, let CA(σ)
and C∗(σ) be the makespan of σ as scheduled by the
online algorithm A and the optimal solution, respec-
tively. We say that A is asymptotically ω-competitive
if for all σ,CA(σ) ≤ ωC∗(σ)+t, where tmust be con-
stant relative to σ. If there is no additive term t, we say

that the strong competitive ratio of A is ω.

In this paper, we prove that any online algorithm for
the job-dependent overhead model must have a strong
competitive ratio of at least 1

8(5+
√
73) ≈ 1.693 when

m = 3. This is an improvement over the trivial lower
of bound of 5/3, which was proved for the constant
overhead model in [10] but still applies for the job-
dependent overhead model. We also provide an algo-
rithm for the constant overhead model when m = 2

that approaches an asymptotic competitive ratio of 4/3.
This algorithm’s competitive ratio depends on a param-
eter ε, which is fixed from the beginning of the algo-
rithm. The closer ε is set to 0, the closer the asymptotic
competitive ratio of the algorithm gets to 4/3, but the
additive term t (discussed earlier) becomes larger, so
there is somewhat of a tradeoff. We also note that when
ε = 2, this algorithm is identical to SET when m = 2

[10] and identical to the 3/2-competitive algorithm in
[9] when ε = 1. Finally, we give a 2.123-competitive
algorithm for the job-dependent overhead model when
m = 3, thus showing the competitive ratio for the opti-
mal online algorithm must be between 1.693 and 2.123

when m = 3.

2. BACKGROUND
Online scheduling was first studied by Graham in 1966
[7]. He considered a simple model, where jobs in a
multiprocessor environment must simply be assigned a
start time and a single processor to run on. Graham
analyzed the basic algorithm list scheduling, which as-
signs jobs to be scheduled as early as possible as soon
as they become available for scheduling, and showed
its competitive ratio to be 2− 1/m (where, once again,
m is the number of processors). Since then, several
different models have been considered, as well as fur-
ther investigation of Graham’s "traditional" model. It
has been shown for when m = 2 and m = 3 in this
traditional model, list scheduling is optimal using com-
petitive analysis [6].

Interestingly, this is not the case when m = 4, i.e.,
there are algorithms for this traditional model that are
better than 7/4-competitive (for instance, the algorithm
in [3]). In fact, to the best of our knowledge, it is
still an open question as to what is the competitive ra-
tio of the optimal online algorithm for m = 4. This
points to the fact that even in the most basic schedul-



ing problems, the simple addition of a single processor
can add layers of complexity, and in turn, has resulted
in research that attempts to improve on already seem-
ingly tight bounds. For instance, the main focus of [3]
was to tighten the lower and upper bounds for tradi-
tional model when m = 4 from 1.7071 and 1.7374 to a
slightly improved 1.7310 and 1.7333. Even since then,
the lower bound was again raised to

√
3 ≈ 1.7321 in

[2]. We point this out to simply show that even though
the results presented in this paper (namely, our bound
for the job-dependent overhead model when m = 3)
might at first seem unnecessarily complex to achieve
such a small tightening of bounds, results of this flavor
are fairly common in the realm of online scheduling.

Turning our attention to our problem, the studied algo-
rithms for both the constant and non-constant overhead
models are fairly straightforward. The model with con-
stant overhead has received more attention due to its
simplicity. Havill and Mao examined the basic algo-
rithm shortest execution time or SET, which has com-
petitive ratio 4(m − 1)/m and 4m/(m + 1) for when
m is even and odd, respectively [10]. This is currently
the best known algorithm when considering m → ∞
for the constant overhead model. Havill and Mao also
provided lower bounds that show any online algorithm
for the constant overhead model must have strong com-
petitive ratio at least 3/2 and 5/3 for when m = 2 and
m = 3, respectively. Dutton and Mao studied the al-
gorithm earliest completion time or ECT, which sched-
ules jobs such that their completion times are as early
as possible [4]. They showed that ECT has competitive
ratios 2, 9/4, 20/9, for m = 2, 3, and 4.

Guo and Kang were the first to consider the model with
job-dependent overhead [8]. They gave an algorithm
for m = 2 that is φ-competitive (where φ = (1 +√
5)/2, or the golden ratio). They also showed that

this is the optimal online algorithm for m = 2. Most
recently, Havill provided a simpler φ-competitive algo-
rithm for the model with job-dependent overhead and
algorithms that are asymptotically 3/2 and 5/3 compet-
itive for m = 2 and 3, respectively, for the constant
overhead model [9].

We will finally mention that an alternative model that
differs from both our model and the traditional model
is multiprocessor scheduling with rejection, or MSR,

studied by Bartal et al. in [1]. This model is identical
to the traditional model studied by Graham, but with
added feature that jobs may be "rejected" at the cost of a
job-dependent penalty. Although not entirely identical,
one can observe that this seems to resemble our job-
dependent overhead model. In fact, the optimal online
algorithm for MSR when m = 2 is also φ-competitive.
However, the competitive ratio of the optimal online
algorithm for m = 3 is still undetermined for MSR,
with the range currently being 1.839 to 2. We point
this out simply because MSR seems to be a simplified
version of our job-dependent overhead model. If this
intuition proves to be true, it is unlikely that the bounds
for the job-dependent overhead model for m = 3 will
be easily tightened given the current state of research
for MSR.

3. LOWER BOUND
We begin by providing a lower bound on the competi-
tive ratio of any online algorithm for the job-dependent
overhead model when m = 3.

THEOREM 1. The strong competitive ratio for any
online algorithm for the job-dependent overhead model
must be at least ω = 1

8(5+
√
73) ≈ 1.693 whenm = 3.

PROOF. The proof will be framed as a contest be-
tween an adversary and an arbitrary algorithm A. We
will be begin by defining two recurring types of jobs
that will be issued by the adversary the proof, which
will be denoted as Type I and Type II. Both job types
will be defined by a set of pre-conditions and post-
conditions. Throughout the proof, if a job is denoted
as a Type I or II job, it can be verified that the pre-
conditions defined by the job’s respective type are met.
We will argue in the definition of each job type why the
post-conditions must hold, and so these arguments will
be excluded from the body of the proof.

Notationally, let ji = (pi, ci) denote a job ji with pro-
cessing requirement pi and overhead ci. Let Cj de-
note the makespan of A’s schedule after job j has been
scheduled, and let Ej be the earliest time the next job
can start execution after j has been scheduled. Let T [j]
be the execution time of job j based on how it was
assigned by A. We will use B as an arbitrarily large
constant. Finally, we note that if a job is denoted by
sub- and super-scripts, e.g. jyx , then kyx will denote how



many processors jyx is assigned to.

We are now ready to define Type I and Type II jobs.
We first provide general intuition behind the definition
of each job type. Type I jobs can be viewed as "filler"
jobs with arbitrarily large overhead constants and there-
fore must be assigned to one processor in order to stay
competitive. They are designed to fill the idle time run-
ning concurrently with a job assigned to two processors
at the end of the current schedule before the Type I job
is issued by the adversary. It is important that their pro-
cessing requirement is the exact same as the idle time
they are intended to fill (so from that point on in the
proof, we can work with an evenly loaded schedule),
but it is even more important that these jobs are long
enough so that A will be at least ω-competitive if A
chooses not to fill the idle time.

Type II jobs also have arbitrarily large overhead con-
stants, so they too must be assigned to only one pro-
cessor. A Type II job can viewed as relatively large job
with more processing requirement than the makespan
of the current schedule before it is issued by the ad-
versary. Thus the optimal schedule will have "saved" a
processor for this job to run on from the very beginning
of the schedule, only utilizing the other two processors
for the rest of the jobs. Meanwhile, A will be forced to
schedule the Type II job on a already loaded machine
since the adversary will have forced A to use all three
processors for the jobs issued before the Type II job.
We now provide the formal definitions.

Type I Jobs: We will denote Type I jobs as jIn where
jn is the job scheduled immediately before jIn. Let
k1, k2, . . . , kn be the current assignments made by A
before jIn was issued.

Pre-conditions:

1. kn = 2.

2. Ejn−1 = Cjn−1 , or jn is the only jobA has sched-
uled thus far.

3. The overhead term of jIn is B.

4. Let the processing requirement of jIn be p, where
(p+ Cjn)/Cjn ≥ ω.

5. p = T [jn]

Post-conditions:

1. A must schedule jIn to run concurrently with jn
on one machine. Since jIn’s overhead term is arbi-
trarily large, kIn must be 1 if A wants to remain ω-
competitive. Pre-conditions 2, 4, and 5 ensure that
if jIn is scheduled after jn, i.e, on one of the two
machines that jn is running on, then the adver-
sary can stop and A will be at least ω-competitive
(see Fig. 1a). Note that we need not consider the
makespan of the optimal schedule since if (p +

Cjn)/Cjn ≥ ω, then certainly (p+Cjn)/C∗ ≥ ω,
where C∗ is the makespan of the optimal sched-
ule.

2. Pre-conditions 2 and 5 ensure that Ej
I
n = Cj

I
n =

Cjn , or rather, the makespan of the current sched-
ule does not change after scheduling jIn concur-
rently with jn, and all three machines are equally
loaded (i.e., all three machines have the same com-
pletion times).

Type II Jobs: We will denote Type II jobs as jIIn,g. If the
job scheduled immediately before jIIn,g is not a Type I
job, then jn was the job scheduled immediately before
jIIn,g. Otherwise, jn is the job scheduled immediately
before the Type I job preceding jIIn,g. In either case, let
kn = g.

Pre-conditions:

1. The overhead term of jIIn,g is B.

2. Cjn = Ejn . Note that even if jn is followed by a
Type I job, Cjn will still be the earliest start time
for jIIn,g due to the post-conditions of Type I jobs.

3. Let the processing requirement of jIIn,g be p, where
(p+Cjn)/C∗ ≥ ω, where C∗ is the makespan of
the optimal schedule so far.

Post-conditions:

1. The adversary stops after issuing jIIn,g and A is
at least ω-competitive. Pre-condition 1 ensures
that jIIn,g must be scheduled on 1 processor. Pre-
conditions 2 and 3 together ensure that the best



schedule A can possibly create has makespan p+
Cjn and thatAwill be at least ω-competitive when
the adversary stops.

C∗ will be created differently based on the schedule be-
fore jIIn,g is issued. If a Type II job is issued, C∗ will
always put jIIn,g on one processor running from the be-
ginning of the schedule. To denote how the optimal
schedule assigns jobs on the remaining two machines,
let m1 and m2 be the machines to which jIIn,g is not as-
signed, and let M∗1 and M∗2 be the set of optimal job
assignments that are processed on m1 and m2, respec-
tively (see Fig. 1b). Note that M∗1 ∩M∗2 6= ∅ if the
optimal algorithm assigns any jobs to two processors,
i.e., running on both m1 and m2. We also note that the
order in which the optimal makes the assignments in
M∗1 and M∗2 does not matter.

We now are ready to show how an adversary can force
A to be at least ω-competitive. The adversary begins
by issuing job j1 = (1, c1) where c1 = 3−ω

6ω ≈ .128.
If A assigns k1 = 1, then the adversary stops. Since
the optimal schedule assigns k1 = 3, A has incurred
makespan 1/(1/3+2c1) = ω times the optimal sched-
ule’s makespan, and thus A is at least ω-competitive.
We now consider the cases where k1 = 3 and k1 = 2

separately.

Case 1, k1 = 3: The adversary continues by issuing
j2 = (5/2, 1/5). We consider the assignment of j2 in
three sub-cases:

Sub-case 1.1, k2 = 1: The adversary stops. Since
a better schedule can be created by assigning k1 =

3 and k2 = 3, A has incurred a makespan at least
(17/6 + 2c1)/(47/30 + 2c1) ≈ 1.6944 > ω times
the optimal schedule’s makespan, and thus A is at least
ω-competitive.

Sub-case 1.2, k2 = 2: The adversary continues by issu-
ing Type I job jI2 = (29/20, B), and so it follows that
A must schedule jI2 concurrently with j2 if it wishes to
stay ω-competitive. The adversary then finally issues
Type II job jII2,2 = (29/10, B), M∗1 = {k2 = 2, k1 =

1}, and M∗2 = {k2 = 2, kI2 = 1}, and thus A will also
be ω-competitive in this case.

Sub-case 1.3, k2 = 3: The adversary continues by

issuing Type II job jII2,3 = (5/2, B), where M∗1 =

{k1 = 1} and M∗2 = {k2 = 1}, and thus A will be
ω-competitive in this case.

Case 2, k1 = 2: Case 2 is very similar to case 1, but
with sufficient difference that we will argue it explic-
itly. The adversary continues by issuing Type I job
jI1 = (c1 + 1/2, B), and thus it follows that A will
schedule jI1 concurrently with j1 in order to stay ω-
competitive. Note that Ej

I
1 = 1/2 + c1. The adver-

sary continues by issuing j3 = (p3, 2/9) where p3 =
1
9(

25
2 + 3

√
73
2 ) ≈ 2.812. We consider the assignment of

j3 in three sub-cases:

Sub-case 2.1, k3 = 1: The adversary stops. Since
the optimal algorithm assigns k3 = 3, A has incurred
makespan (1/2+ c1+ p3)/(1/2+ c1+ p3/3+4/9) ≈
1.711 > ω times the optimal schedule’s makespan, and
thus A will be at least ω-competitive.

Sub-case 2.2, k3 = 2: The adversary continues by issu-
ing Type I job jI3 = (p3/2 + 2/9, B), and so it follows
that that A must jI3 must schedule concurrently with j3
is it wishes to stay ω-competitive. The adversary then
finally issues Type II job jII3,2 = (16(11 +

√
73), B),

M∗1 = {k3 = 2, kI1 = 1, k1 = 1}, and M∗2 = {k3 =

2, kI3 = 1}, and thus A will also be ω-competitive in
this case.

Sub-case 2.3, k3 = 3: The adversary continues by
issuing Type II job jII3,3 = (p3, B), M∗1 = {k1 =

1, kI1 = 1}, and M∗2 = {k3 = 1}, and thus A will
be ω-competitive in this case.

4. ALGORITHMS
4.1 Constant Overhead
We present an algorithm for the problem with constant
overhead on two machines. We use the same defini-
tion of I(j) as established in [9], where I(j) is the
amount of "blocked-in" idle time (i.e., time where an
idle processor sits waiting for the other processor to
complete its current job) created by assigning kj = 2.
Set 0 < ε ≤ 2. Our algorithm assigns:

kj =

{
1 if pj ≤ (6− 2ε)c+ (2− ε)I(j)
2 otherwise

where sj is assigned to be as early as possible. Note
this is identical to the 3/2-competitive algorithm in [9]
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Figure 1: Fig.1a demonstrates how a Type I job must be assigned. Observe that jIn takes exactly the same amount of time as jn running on

two machines. The dash-outlined jIn shows the schedule configuration that pre-conditions 2, 4, and 5 ensure will be at least ω-competitive. Fig.1b

exemplifies a possible optimal configuration after assigning a Type II job. Note how jII1,3 runs on one processor from the beginning. In this case,

M∗
1 = {k1 = 2, k2 = 1} and M∗

2 = {k1 = 2, k3 = 1}.

if ε = 1, and identical to 2-competitive algorithm SET
[10] if ε = 2.

THEOREM 2. If ε < 2, then the asymptotic compet-
itive ratio of our algorithm for the constant overhead
problem when m = 2 is (4− ε)/(3− ε). If ε = 2, then
the strong competitive ratio of our algorithm is 2.

PROOF. We begin by making an argument symmet-
ric to the proof of Theorem 1 in [9], and likewise, we
adapt the same notation. Let t11 denote the time in the
online algorithm where a job is executing on one pro-
cessor concurrently with idle time, and let t21 be time
in the online algorithm in which two jobs are both ex-
ecuting on one machine concurrently with each other.
Let J2 = {j : kj = 2} (split on two processors). De-
note t̂11 to be the open t11 time at the end of the online
algorithms’s final schedule, and let t̃11 = t11 − t̂11. Ob-
serve that

∑
j∈J2 I(j) = t̃11. Let C and C∗ denote the

makespan of the online algorithm and the optimal so-
lution, respectively. We know that

C∗ ≥ 1

2

∑
j

pj

=
1

2

t11 + 2t21 +
∑
j∈J2

pj

 . (1)

From the online algorithm, we know that

∑
j∈J2

pj >
∑
j∈J2

((6− 2ε)c+ (2− ε)I(j))

= (6− 2ε)|J2|c+ (2− ε)t̃11 . (2)

Thus the makespan of the online algorithm’s schedule
is

C = t̃11 + t21 +
∑
j∈J2

(pj
2

+ c
)
+ t̂11

= t̃11 + t21 +
1

2

∑
j∈J2

pj + |J2|c+ t̂11

<

(
4− ε
6− 2ε

)
t̃11 + t21

+

(
4− ε
6− 2ε

)∑
j∈J2

pj + t̂11 by (2)

=

(
4− ε
6− 2ε

)
t11 + t21

+

(
4− ε
6− 2ε

)∑
j∈J2

pj +

(
2− ε
6− 2ε

)
t̂11

≤ 4− ε
3− ε

1

2
t11 + t21 +

1

2

∑
j∈J2

pj

+

(
2− ε
6− 2ε

)
t̂11

≤
(
4− ε
3− ε

)
C∗ +

(
2− ε
6− 2ε

)
t̂11 by (1) .

We now bound t̂11 given a fixed ε using an adversary
argument. To create a schedule in which t̂11 is as big
as possible, an adversary will first issue j1 with p1 =

(6 − 2ε)c. The adversary continues to issue jobs with
the maximum amount of processing requirement such
that each job will be assigned to 1 processor, i.e., if jn
is the nth job issued by the adversary, then pn = (6 −
2ε)c+ (2− ε)I(n). Let T (n) be the amount of t̂11 time
after the algorithm has scheduled the nth job issued by
the adversary, or more formally, T (n) = pn − I(n).



Observe that T (n − 1) = I(n) for all n ≥ 2 and that
T (1) = (6 − 2ε)c. Since T (n) depends on I(n), we
can define T (n) recursively. Hence, it can be seen that
T (n) = pn− I(n) = ((6− 2ε)c+(2− ε)T (n− 1))−
T (n− 1) = (1− ε)T (n− 1) + (6− 2ε)c. The closed
form solution to this recurrence is:

T (n) =
2(ε− 3)((1− ε)n − 1)c

ε

Let limn→∞ T (n) = R; hence, R is the upper bound
of t̂11. Observe that since 0 < ε ≤ 2, R will be finite.
Thus it follows that

C ≤
(
4− ε
3− ε

)
C∗ +

(
2− ε
6− 2ε

)
t̂11

≤
(
4− ε
3− ε

)
C∗ +

(
2− ε
6− 2ε

)
R

We note that although the asymptotic competitive ratio
of the algorithm approaches 4/3 as ε → 0, R → ∞ as
ε → 0. Also observe that if ε = 2, the additive term
becomes 0 and the competitive ratio is 2.

4.2 Job-dependent Overhead
We now present an algorithm for the more general model
(i.e., where the overhead term is dependent on each job)
when m = 3.

Assign sj to be as early as possible. Let I3(j) be the
longer of the two blocked in “idle times" created by
assigning kj = 3. More formally, let f(i, j) be the last
completion time of a job on machine i before job j is
assigned. Thus I3(j) = max{sj−f(i, j) : 1 ≤ i ≤ 3}
given that kj = 3 (see Figure 2). Note that since sj is
always assigned to be as early as possible, at least one
element in this set will be 0. Assign:

kj =

{
1 if pj ≤ αcj + βI3(j)

3 otherwise

Where α ≈ 8.763 and β ≈ 1.921 are the positive solu-
tions to

K = 1− 2β/α = 1/3 + 2/α = 4/3(β2/α) . (3)

Note that although it is legal to assign a job to two
processors in this problem, our algorithm never assigns
kj = 2.

THEOREM 3. The competitive ratio of our algorithm
for the job-dependent overhead model is no more than
3− 4β/α = 2K + 1 ≈ 2.123 when m = 3.

PROOF. Our argument will be structured much like
the proof of Theorem 2 in [9], and again, we adapt the
same notation. Let t11 denote the time in the online al-
gorithm where a job is executing on one processor con-
currently with idle time, and let t21 and t31 be time in
the online algorithm in which only two and three jobs
are executing on one machine concurrently with each
other, respectively. Let J3 = {j : kj = 3} (split on
three processors). Denote t̂11 and t̃11 to be the same as in
the proof of Theorem 2. Observe that

∑
j∈J3 I3(j) ≥

t̃11.

It will be useful to establish certain inequalities based
on (3). It can be verified that

1.685 ≈ 3K < 2K + 1 (4)

1.921 ≈ α/2(1−K) < 2K + 1 (5)

.421 ≈ β/2(1−K) < K ≈ .562 (6)

2.562 ≈ 2α/3(1−K) < 4K + 2 ≈ 4.246 (7)

From the online algorithm we know that∑
j∈J3

cj < 1/α
∑
j∈J3

pj − β/αt̃11 . (8)

We now consider the makespan of the online algorithm

C = t̃11 + t21 + t31 +
∑
j∈J3

(pj
3

+ 2cj

)
+ t̂11

= t̃11 + t21 + t31 +
1

3

∑
j∈J3

pj + 2
∑
j∈J3

cj + t̂11

< (1− 2(β/α))t̃11 + t21 + t31

+ (1/3 + 2/α)
∑
j∈J3

pj + t̂11 by (8)

= Kt̃11 + t21 + t31 +K
∑
j∈J3

pj + t̂11

= Kt11 + t21 + t31 +K
∑
j∈J3

pj + (1−K)t̂11

= 3K

1

3
t11 +

2

3
t21 + t31 +

1

3

∑
j∈J3

pj


+ (1−K)t̂11 − (3K − 1)t31 − (2K − 1)t21 .

We now proceed by cases based on the existence of
t̂11 and how the optimal solution assigns the job that
finishes last in the algorithm’s schedule. For the first



jj

Time

m1
m2
m3

sjf(2, j) f(1, j)

Figure 2: Example of possible schedule created by the algorithm for when m = 3, illustrating the definitions in both Theorems 2 and 3. The

black, gray, and striped areas (marked by the key above the schedule) denote areas that contribute to the t11, t21, and t31 time, respectively. Note the

last black area of the schedule is t̂11. Also observe the illustration of f(i, j) at the beginning of the schedule. In this case, I3(j) = sj − f(2, j).

two cases, we use the fact that

C∗ ≥ 1

3

∑
j

pj =
1

3

t11 + 2t21 + 3t31 +
∑
j∈J3

pj

 .

In the first case, assume that t̂11 = 0, or that there is no
open idle time at the end of the schedule in which only
one machine is running. Thus we know that:

C ≤ 3KC∗ + (1−K)t̂11 − (3K − 1)t31 − (2K − 1)t21

≤ 3KC∗ < (2K + 1)C∗ by (4)

Note that the second inequality holds since 2K−1 > 0,
and t31 and t21 are both non-negative.
For the rest of the cases, assume that t̂11 > 0. Let job
` be the job in the algorithm that finishes last. Observe
that since t̂11 > 0, k` = 1 and there is time at the end
of the schedule where job ` is running by itself. For the
second case, assume that in the optimal schedule ` is
assigned to 1 processor. It follows that C∗ ≥ p`. Thus
we can say that:

C ≤ 3KC∗ + (1−K)t̂11 − (3K − 1)t31 − (2K − 1)t21

≤ 3KC∗ + (1−K)p` ≤ (2K + 1)C∗ .

For the third case, assume that the optimal schedule
assigns ` to 2 processors. Hence we know that

C∗ ≥ 1

3

t11 + 2t21 + 3t31 +
∑
j∈J3

pj

+ c` . (9)

Therefore

C ≤ 3K(C∗ − c`) + (1−K)t̂11

− (3K − 1)t31 − (2K − 1)t21 by (9)

≤ 3K(C∗ − c`) + (1−K)t̂11

− (2K − 1)I(`) since t21 + t31 ≥ I(`)
= 3K(C∗ − c`) + (1−K)(p` − I(`))
− (2K − 1)I(`)

≤ 3K(C∗ − c`)− (2K − 1)I(`)

+ (1−K)(
p`
2
− c` + C∗ − I(`))

since C∗ ≥ p`/2 + c`

= (2K + 1)C∗ − (2K + 1)c` −KI(`)

+ (1−K)
p`
2

≤ (2K + 1)C∗ − (2K + 1)c` −KI(`)

+ (1−K)
αc` + βI(`)

2

= (2K + 1)C∗ + (α/2(1−K)− (2K + 1))c`

+ (β/2(1−K)−K)I(`)

≤ (2K + 1)C∗ by (5) and (6) .

In the final case, assume that ` is assigned to 3 proces-
sors in the optimal schedule. Thus we know that

C∗ ≥ 1

3

t11 + 2t21 + 3t31 +
∑
j∈J3

pj

+ 2c` . (10)

Through a similar argument made in case 3, it can be



seen that

C ≤ 3K(C∗ − 2c`)− (2K − 1)I(`)

+ (1−K)(
2

3
p` − 2c` + C∗ − I(`))

since C∗ ≥ p`/3 + 2c`

= (2K + 1)C∗ − (4K + 2)c` −KI(`)

+ (1−K)
2

3
p`

≤ (2K + 1)C∗ − (4K + 2)c` −KI(`)

+ (1−K)
2(αc` + βI(`))

3

= (2K + 1)C∗ + (2α/3(1−K)− (4K + 2))c`

+ (4β/3(1−K)−K)I(`)

= (2K + 1)C∗ + (2α/3(1−K)− (4K + 2))c`

+ (K −K)I(`) by (3)

≤ (2K + 1)C∗ by (7) .

5. CONCLUSION
We have shown that for the more general model with
job-dependent overhead, any online algorithm must be
at least 1

8(5 +
√
73) ≈ 1.693-competitive when m =

3. Furthermore, we have given an algorithm for this
same model that we have shown is no more than 2.123-
competitive. Thus the optimal online algorithm when
m = 3 must be between these two bounds. We also
have given an algorithm for the model with constant
overhead penalty whenm = 2 that approaches an asymp-
totic competitive ratio of 4/3. This algorithm also con-
nects the 3/2-competitive algorithm presented in [9] and
the 2-competitive algorithm SET studied in [10], show-
ing that when m = 2, these algorithms only differ
based on what we initially pick for ε.

There are several different open questions to consider
for future research:

• What is the competitive ratio of the optimal online
algorithm for the job-dependent overhead model
when m = 3? Given that this question has not
been answered for m = 3 for the model studied
in [1], it is unlikely that this answer will be eas-
ily obtained for our model; however, as to how
much we can tighten this range is a question that
deserves more attention.

• What is the lower bound on the asymptotic com-
petitive ratio for the constant overhead model for
whenm = 2, or more specifically, can one do bet-
ter asymptotically than our algorithm? (Note that
the lower bound in [10] for m = 2 only applies to
strong competitive ratios).

• The algorithms in [9] are asymptotically competi-
tive. Can one construct algorithms that match the
strong competitive ratio lower bounds in [10]?

• The basic algorithm SET has competitive ratio 4
as m→∞ [10] . Can one construct a better algo-
rithm which approaches a lower competitive ratio
as m→∞?
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