
2023 Denison Spring Programming Contest
Granville, Ohio

11 February, 2023

Rules:

1. There are six problems to be completed in four hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output.

3. No whitespace should appear in the output except between printed fields.

4. All whitespace, either in input or output, will consist of exactly one blank character.

5. The allowed programming languages are all available on Kattis (including C, C++, Python, and
Java).

6. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required. However, the more readable your code, the more likely
judges will be to give you a hint if you are stuck.

7. All communication with the judges will be handled email to lalla@denison.edu.

8. No cheating will be tolerated.



Boss Battle 
You are stuck at a boss level of your favourite video game. The boss battle 
happens in a circular room with n indestructible pillars arranged evenly around 
the room. The boss hides behind an unknown pillar. Then the two of you proceed 
in turns. 

• First, in your turn, you can throw a bomb past one of the pillars. The bomb 
will defeat the boss if it is behind that pillar, or either of the adjacent 
pillars. 

• Next, if the boss was not defeated, it may either stay where it is, or use its 
turn to move to a pillar that is adjacent to its current position. With the 
smoke of the explosion you cannot see this movement. 

The last time you tried to beat the boss you failed because you ran out of bombs. 
This time you want to gather enough bombs to make sure that whatever the boss 
does you will be able to beat it. What is the minimum number of bombs you need 
in order to defeat the boss in the worst case? See Figure 1 for an example. 

 
Figure 1: Example for n=4. In this case 2 bombs are enough. Grey pillars represent pillars 

where the boss cannot be hiding. The bomb is represented in black. 

Input 

The input consists of: 

• One line with a single integer n (1≤n≤100), the number of pillars in the 
room. 

Output 



Output the minimum number of bombs needed to defeat the boss in the worst 
case. 

Sample Input 1 Sample Output 1 

4 
 

2 
 

Sample Input 2 Sample Output 2 

7 
 

5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Coin Stacks 

 
Picture by KMR Photography via Wikimedia Commons, cc by 

A and B are playing a collaborative game that involves n stacks of coins, 
numbered from 1 to n. Every round of the game, they select a nonempty stack 
each, but they are not allowed to choose the same stack. They then remove a coin 
from both the two selected stacks and then the next round begins. 

The players win the game if they manage to remove all the coins. Is it possible 
for them to win the game, and if it is, how should they play? 

Input 

The first line of input contains an integer n (2≤n≤50), the number of coin stacks. 
Then follows a line containing n nonnegative integers a1,a2,…,an, where ai is 
the number of coins in the i’th stack. The total number of coins is at most 1000. 

Output 



If the players can win the game, output a line containing “yes”, followed by a 
description of the moves. Otherwise output a line containing “no”. When 
describing the moves, output one move per line, each move being described by 
two distinct integers a and b (between 1 and n) indicating that the players 
remove a coin from stacks a and b. If there are several possible solutions, output 
any one of them. 

Sample Input 1 Sample Output 1 

3 
1 4 3 
 

yes 
1 2 
2 3 
2 3 
2 3 
 

Sample Input 2 Sample Output 2 

3 
1 1 1 
 

no 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Installing Apps 

 
Mobile radio telephone, public domain 

Sandra recently bought her first smart phone. One of her friends suggested a 
long list of applications (more commonly known as “apps”) that she should 
install on the phone. Sandra immediately started installing the apps from the 
list, but after installing a few, the phone did not have enough disk space to install 
any more apps. Sometimes, the app installation failed because there was not 
even enough space to download the installation package. Other apps could be 
downloaded just fine, but had insufficient space to store the installed app. 



Each app that Sandra installs has a download size d and a storage size s. To 
download the app, Sandra’s phone must have at least d megabytes of free disk 
space. After the app has been installed, it then uses s megabytes of disk space on 
the phone. The download size may be smaller than the storage size (e.g., if the 
app data is heavily compressed) or larger than the storage size (e.g., if the 
download contains material that might not get used such as translations to 
different languages). The installer is very efficient and can transform the 
downloaded package to an installed app without using any extra disk space. 
Thus, to install an app, the phone must have at least max(d,s) megabytes of free 
disk space. 

Sandra quickly realised that she may have run out of space just because she 
installed apps in the wrong order. Thus, she decided to give the installation 
another try. She uninstalled all apps, and will now choose an installation order 
that lets her install the largest number of apps from the list. Sandra may not 
install any app more than once. 

Help her determine what apps on the list she should install, and in what order. 

Input 

The input consists of: 

• One line with two integers n, c (1≤n≤500,1≤c≤10000), the number of 
available apps and the available disk space of the phone in megabytes. 

• n lines, each with two integers d,s (1≤d,s≤10000), the download size and 
storage size of an app, in megabytes. 

Output 

Output one line with the maximum number of apps that can be installed. Then 
output one line listing the numbers of those apps, in the order that Sandra 
should install them. In the case that no apps can be installed, this line can be 
omitted. 

The apps are numbered from 1 to n, in the order they are given in the input. If 
there are multiple optimal solutions, output any one of them. 



Sample Input 1 Sample Output 1 

2 100 
99 1 
1 99 
 

2 
1 2 
 

Sample Input 2 Sample Output 2 

2 100 
500 1 
1 500 
 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Methodic Multiplication 

 



Giuseppe Peano, public domain 

After one computer crash too many, Alonso has had enough of all this shoddy 
software and poorly written code! He decides that in order for this situation to 
improve, the glass house that is modern programming needs to be torn down 
and rebuilt from scratch using only completely formal axiomatic reasoning. As 
one of the first steps, he decides to implement arithmetic with natural numbers 
using the Peano axioms. 

The Peano axioms (named after Italian mathematican Giuseppe Peano) are an 
axiomatic formalization of the arithmetic properties of the natural numbers. We 
have two symbols: the constant 0, and a unary successor function S. The natural 
numbers, starting at 0, are then 0, S(0), S(S(0)), S(S(S(0))), and so on. With 
these two symbols, the operations of addition and multiplication are defined 
inductively by the following axioms: for any natural numbers x and y, we have 

x+0=xx⋅0=0x+S(y)=S(x+y)x⋅S(y)=x⋅y+x 

The two axioms on the left define addition, and the two on the right define 
multiplication. 

For instance, given x=S(S(0)) and y=S(0) we can repeatedly apply these axioms 
to derive 

x⋅y=S(S(0))⋅S(0)=S(S(0))⋅0+S(S(0))=0+S(S(0))=S(0+S(0))=S(S(0+0))=S(S(0)) 

Write a program which given two natural numbers x and y, defined in Peano 
arithmetic, computes the product x⋅y. 

Input 

The input consists of two lines. Each line contains a natural number defined in 
Peano arithmatic, using at most 1000 characters. 

Output 

Output the product of the two input numbers. 



Sample Input 1 Sample Output 1 

S(S(0)) 
S(S(S(0))) 
 

S(S(S(S(S(S(0)))))) 
 

Sample Input 2 Sample Output 2 

S(S(S(S(S(0))))) 
0 
 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Terraces 
After seeing all the beautiful landscaping around Cossin, Yraglac is inspired to 
work on his own gardening. Since food is such a scarce commodity on Mars, he 
decides it would be nice to plant an agricultural crop: Martian rice. The unique 
thing about Martian rice is that it will only grow in flat areas where water can 
pool, which makes it important to terrace the garden carefully. Given a height 
profile of Yraglac’s garden, can you help him determine how much of the land 
can grow rice on? 

Yraglac’s garden is divided into a regular grid of perfectly square 1 m ×1 m cells, 
and he provides you a map indicating the exact height of the land within each 
cell. The entire garden is surrounded by a wall that is higher than the highest 
cell. In our model of the Mars world, rain water (real or artificial) can flow from 
a cell to any of its four adjacent cells (north, east, south, or west), provided the 
adjacent cell’s height is lower than or equal to the cell’s height. A cell is said to 
be able to collect or pool water if any water landing in the cell cannot flow to 
another cell of lower height, either directly or through any of its neighbouring 
cells. Arrows in the diagram below illustrate possible directions of water flow 
between cells, and circles indicate the four cells that can collect water. 



 
Input 

The input begins with two integers, xy, which indicate the dimensions of 
Yraglac’s garden, in metres (1≤x,y≤500). Then following y lines 
containing x integers, hij, each which indicate the heights of each cell in 
Yraglac’s garden (0≤hij≤999). 

Output 

Output the number of square metres of land that Yraglac can grow his rice crop 
on. 

Sample Input 1 Sample Output 1 



4 3 
0 0 4 3 
0 2 2 3 
2 1 4 3 
 

4 
 

Sample Input 2 Sample Output 2 

7 2 
0 4 1 4 2 4 3 
0 4 1 4 2 4 3 
 

8 
 

Sample Input 3 Sample Output 3 

5 3 
1 1 1 1 1 
3 3 3 3 3 
5 5 5 5 5 
 

5 
 

Sample Input 4 Sample Output 4 

4 4 
8 8 8 8 
8 4 8 8 
8 8 2 8 
8 8 8 8 
 

2 

 
 
 
 
 
 
 
 
 
 
 
 



Unique Dice 

 
A very large collection of dice. 

You are about to leave home for your weekly game of Pumpkins and Flagons 
(P&F) when a text comes in asking you to bring a large collection of identical 
P&F dice. They have asked the right person, for you have a very large collection 
of P&F dice which, unfortunately, is currently unsorted. 

These dice are ordinary cubes with a number on each of the six faces. The 
numbers are in the range 1–6, but they do not need to be distinct. For 
example, {1,2,3,4,5,6}, {1,1,1,1,1,1} and {2,2,2,4,4,5} are all valid sets of 
numbers for the six faces. For this problem you want to find the size of the 
largest set of identical dice you can create from your very large collection. Two 
dice are considered identical to each other if it is possible to rotate one of the 



dice so that their top numbers are the same, their bottom numbers are the same, 
and so on for all six faces. 

 
Figure 1: The six faces of a die. 

Input 

The first line contains an integer n (1≤n≤500000), indicating the number of dice 
in your collection. The next n lines each contains six integers in the range 1–6, 
separated by spaces, giving, in order, the numbers that appears on the top, 
bottom, front, back, left and right faces (see Figure 1). 

Output 

Print a single integer giving the size of the largest set of identical dice that can 
be made from given collection. 



Sample Input 1 Sample Output 1 

2 
1 6 2 5 4 3 
1 6 3 4 2 5 
 

2 
 

Sample Input 2 Sample Output 2 

2 
1 6 2 5 3 4 
1 6 3 4 2 5 
 

1 
 

Sample Input 3 Sample Output 3 

5 
1 1 2 2 2 2 
1 2 1 2 2 2 
1 2 2 1 2 2 
1 2 2 2 1 2 
1 2 2 2 2 1 
 

4 
 

 


